How-to Compute EPRL Spin Foam Amplitudes
Abstract
:1. Introduction
- Step 1.
- Draw the 2-complex.In Section 3, we describe how to build the 2-complex from the triangulation. It is crucial in regularizing the gravitational path integral and writing a finite transition amplitude.
- Step 2.
- Write the EPRL spin foam amplitude.In Section 4, we give the prescription to write the transition amplitude associated with a 2-complex, and we introduce a very convenient graphical method to represent the amplitude. For the calculation, we resort to a divide-and-conquer strategy.
- Step 3.
- Divide the EPRL transition amplitude into vertex contributions.In Section 5, we show how to divide any transition amplitude into vertex amplitudes.
- Step 4.
- Compute the EPRL vertex amplitudes.In Section 6, we discuss the calculation of the vertex amplitude in terms of invariants and booster functions.
- Step 5.
- Use sl2cfoam-next to compute a number.We perform the numerical evaluation of the amplitude in Section 7 using the numerical library sl2cfoam-next and discuss the necessary approximations. In this section, we also discuss and improve the extrapolation scheme discussed in [13] as a tentative to lift, at least part of, the approximation used to calculate the amplitude.
2. Overview of the EPRL Model
3. How-to Draw the 2-Complex
Triangulation | 2-complex | |||
4-simplex | ⇄ | Vertex | ||
Tetrahedron | ⇄ | Edge | ||
Triangle | ⇄ | Face | ||
Tetrahedron within 4-simplex | ⇄ | Half-edge | ||
Oriented couple of tetrahedra in the same simplex | ⇄ | Wedge |
An Example: The Triangulation
4. How-to Write the EPRL Spin Foam Amplitude
4.1. Graphical Notation
4.2. An Example: Writing the Amplitude
5. How-to Divide the EPRL Transition Amplitudes
An Example: Decomposing the Amplitude
6. How-to Compute the EPRL Vertex Amplitudes
7. How-to Calculate Numbers
7.1. Historical Overview
7.2. Introducing the Cut-Off
7.3. Using the sl2cfoam-next
7.4. Computing One Vertex
7.5. An Example: Computing the Amplitude with sl2cfoam-next
7.6. Results and Extrapolation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. SU(2) Toolbox
Appendix B. SL(2,C) Toolbox
Appendix C. Approximation of a Convergent Series
N | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | This theory has no degrees of freedom: all the solutions of the equations of motion are gauge equivalent to the trivial one and . The name derives from the name of the variables used and the simple form of the action . |
2 | Explicitly, if , and are three wedges of the same vertex we have
|
3 | The code in [39] was tested with the kernel julia 1.7.0 |
References
- Engle, J.; Livine, E.; Pereira, R.; Rovelli, C. LQG vertex with finite Immirzi parameter. Nucl. Phys. 2008, B799, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Freidel, L.; Krasnov, K. A New Spin Foam Model for 4D Gravity. Class. Quantum Gravity 2008, 25, 125018. [Google Scholar] [CrossRef]
- Dona, P.; Gozzini, F.; Sarno, G. Numerical analysis of spin foam dynamics and the flatness problem. Phys. Rev. D 2020, 102, 106003. [Google Scholar] [CrossRef]
- Engle, J.S.; Kaminski, W.; Oliveira, J.R. Addendum to ‘EPRL/FK asymptotics and the flatness problem’. Class. Quantum Gravity 2021, 38, 119401. [Google Scholar] [CrossRef]
- Asante, S.K.; Dittrich, B.; Haggard, H.M. Effective Spin Foam Models for Four-Dimensional Quantum Gravity. Phys. Rev. Lett. 2020, 125, 231301. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Huang, Z.; Liu, H.; Qu, D. Complex critical points and curved geometries in four-dimensional Lorentzian spinfoam quantum gravity. arXiv 2021, arXiv:2110.10670. [Google Scholar]
- Engle, J.; Rovelli, C. The accidental flatness constraint does not mean a wrong classical limit. arXiv 2021, arXiv:2111.03166. [Google Scholar]
- Barrett, J.W.; Dowdall, R.J.; Fairbairn, W.J.; Hellmann, F.; Pereira, R. Lorentzian spin foam amplitudes: Graphical calculus and asymptotics. Class. Quantum Gravity 2010, 27, 165009. [Google Scholar] [CrossRef] [Green Version]
- Dona, P.; Speziale, S. Asymptotics of lowest unitary SL(2,C) invariants on graphs. Phys. Rev. D 2020, 102, 86016. [Google Scholar] [CrossRef]
- Reisenberger, M.P.; Rovelli, C. Sum over surfaces form of loop quantum gravity. Phys. Rev. D 1997, 56, 3490–3508. [Google Scholar] [CrossRef] [Green Version]
- Dona, P.; Fanizza, M.; Sarno, G.; Speziale, S. Numerical study of the Lorentzian Engle-Pereira-Rovelli-Livine spin foam amplitude. Phys. Rev. D 2019, 100, 106003. [Google Scholar] [CrossRef] [Green Version]
- Dona, P.; Sarno, G. Numerical methods for EPRL spin foam transition amplitudes and Lorentzian recoupling theory. Gen. Relativ. Gravit. 2018, 50, 127. [Google Scholar] [CrossRef] [Green Version]
- Frisoni, P.; Gozzini, F.; Vidotto, F. Numerical analysis of the self-energy in covariant LQG. arXiv 2021, arXiv:2112.14781. [Google Scholar]
- Sarno, G.; Speziale, S.; Stagno, G.V. 2-vertex Lorentzian spin foam amplitudes for dipole transitions. Gen. Relativ. Gravit. 2018, 50, 43. [Google Scholar] [CrossRef] [Green Version]
- Frisoni, P. Studying the eprl spinfoam self-energy. arXiv 2021, arXiv:2112.08528. [Google Scholar]
- Bahr, B.; Steinhaus, S. Hypercuboidal renormalization in spin foam quantum gravity. Phys. Rev. D 2017, 95, 126006. [Google Scholar] [CrossRef] [Green Version]
- Allen, C.; Girelli, F.; Steinhaus, S. Numerical evaluation of spin foam amplitudes beyond simplices. arXiv 2021, arXiv:2201.09902. [Google Scholar] [CrossRef]
- Perez, A. The Spin-Foam Approach to Quantum Gravity. Living Rev. Relativ. 2013, 16, 3. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Bianchi, E. A short review of loop quantum gravity. Rep. Prog. Phys. 2021, 84, 42001. [Google Scholar] [CrossRef]
- Rovelli, C.; Vidotto, F. Covariant Loop Quantum Gravity: An Elementary Introduction to Quantum Gravity and Spinfoam Theory; Cambridge Univeristity Press: Cambridge, UK, 2015. [Google Scholar]
- Han, M.; Huang, Z.; Liu, H.; Qu, D.; Wan, Y. Spinfoam on a lefschetz thimble: Markov chain monte carlo computation of a lorentzian spinfoam propagator. Phys. Rev. D 2021, 103, 84026. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Christodoulou, M.; Martin-Dussaud, P.; Rovelli, C.; Soltani, F. End of a black hole’s evaporation. Phys. Rev. D 2021, 103, 106014. [Google Scholar] [CrossRef]
- Christodoulou, M.; Rovelli, C.; Speziale, S.; Vilensky, I. Planck star tunneling time: An astrophysically relevant observable from background-free quantum gravity. Phys. Rev. D 2016, 94, 84035. [Google Scholar] [CrossRef] [Green Version]
- Gozzini, F.; Vidotto, F. Primordial fluctuations from quantum gravity. Front. Astron. Space Sci. 2021, 7, 118. [Google Scholar] [CrossRef]
- Frisoni, P.; Gozzini, F.; Vidotto, F. Numerical study of the 4-simplex graph refinement with MCMC methods in covariant LQG. 2022, in preparation.
- Asante, S.K.; Dittrich, B.; Padua-Arguelles, J. Effective spin foam models for Lorentzian quantum gravity. Class. Quantum Gravity 2021, 38, 195002. [Google Scholar] [CrossRef]
- Plebanski, J.F. On the separation of Einsteinian substructures. J. Math. Phys. 1977, 18, 2511–2520. [Google Scholar] [CrossRef]
- Baez, J.C. An Introduction to Spin Foam Models of BF Theory and Quantum Gravity. Lect. Notes Phys. 2000, 543, 25–93. [Google Scholar]
- Holst, S. Barbero’s Hamiltonian derived from a generalized Hilbert-Palatini action. Phys. Rev. D 1996, 53, 5966–5969. [Google Scholar] [CrossRef] [Green Version]
- Kaminski, W.; Kisielowski, M.; Lewandowski, J. Spin-Foams for All Loop Quantum Gravity. Class. Quantum Gravity 2010, 27, 95006, Erratum in Class. Quantum Gravity 2012, 29, 049502. [Google Scholar] [CrossRef] [Green Version]
- Bianchi, E.; Regoli, D.; Rovelli, C. Face amplitude of spinfoam quantum gravity. Class. Quantum Gravity 2010, 27, 185009. [Google Scholar] [CrossRef]
- Martin-Dussaud, P. A primer of group theory for loop quantum gravity and spin-foams. Gen. Relativ. Gravit. 2019, 51, 110. [Google Scholar] [CrossRef] [Green Version]
- Engle, J.; Pereira, R. Regularization and finiteness of the Lorentzian LQG vertices. Phys. Rev. D 2009, 79, 84034. [Google Scholar] [CrossRef] [Green Version]
- Speziale, S. Boosting Wigner’s nj-symbols. J. Math. Phys. 2017, 58, 32501. [Google Scholar] [CrossRef] [Green Version]
- Gozzini, F. A high-performance code for eprl spin foam amplitudes. Class. Quantum Gravity 2021, 38, 225010. [Google Scholar] [CrossRef]
- Anderson, R.L.; Raczka, R.; Rashid, M.A.; Winternitz, P. Clebsch-gordan coefficients for the coupling of sl(2,c) principal-series representations. J. Math. Phys. 1970, 11, 1050–1058. [Google Scholar] [CrossRef]
- Kerimov, G.A.; Verdiev, I.A. Clebsch-Gordan Coefficients of the SL(2,c) Group. Rept. Math. Phys. 1978, 13, 315–326. [Google Scholar] [CrossRef]
- Dona, P.; Fanizza, M.; Martin-Dussaud, P.; Speziale, S. Asymptotics of SL(2,C) coherent invariant tensors. Commun. Math. Phys. 2021, 389, 399–437. [Google Scholar] [CrossRef]
- Dona, P.; Frisoni, P. HowToSpinFoamAmplitude. Available online: https://github.com/PietropaoloFrisoni/HowToSpinFoamAmplitude (accessed on 8 February 2022).
- Dona, P.; Sarno, G. Sl2cfoam. Available online: https://github.com/qg-cpt-marseille/sl2cfoam (accessed on 8 February 2022).
- Johansson, H.T.; Forssén, C. Fast and accurate evaluation of wigner 3j, 6j, and 9j symbols using prime factorization and multiword integer arithmetic. SIAM J. Sci. Comput. 2016, 38, A376–A384. [Google Scholar] [CrossRef]
- Klib. Available online: https://github.com/attractivechaos/klib (accessed on 8 February 2022).
- Granlund, T. GNU Multiple Precision Arithmetic Library 4.1.2. 2002. Available online: https://gmplib.org/ (accessed on 8 February 2022).
- mpfr: A multiple-precision binary floating-point library with correct rounding. RR5753, INRIA. 2005. p.15. ffinria-00070266f. Available online: https://www.mpfr.org/ (accessed on 8 February 2022).
- Enge, A.; Gastineau, M.; Théveny, P.; Zimmermann, P. INRIA, 1.1.0 version, 2018; mpc—A Library for Multiprecision Complex Arithmetic with Exact Rounding. 2018. Available online: http://mpc.multiprecision.org/ (accessed on 8 February 2022).
- Dona, P. Infrared divergences in the EPRL-FK Spin Foam model. Class. Quantum Gravity 2018, 35, 175019. [Google Scholar] [CrossRef] [Green Version]
- Gozzini, F. Sl2cfoam-next. Available online: https://github.com/qg-cpt-marseille/sl2cfoam-next (accessed on 8 February 2022).
- Bezanson, J.; Edelman, A.; Karpinski, S.; Shah, V.B. Julia: A fresh approach to numerical computing. SIAM Rev. 2017, 59, 65–98. [Google Scholar] [CrossRef] [Green Version]
- Blackford, L.S.; Petitet, A.; Pozo, R.; Remington, K.; Whaley, R.C.; Demmel, J.; Dongarra, J.; Duff, I.; Hammarling, S.; Henry, G.; et al. An updated set of basic linear algebra subprograms (blas). ACM Trans. Math. Softw. 2002, 28, 135–151. [Google Scholar]
- Besard, T.; Foket, C.; Sutter, B.D. Effective extensible programming: Unleashing Julia on GPUs. IEEE Trans. Parallel Distrib. Syst. 2018, 30, 827–841. [Google Scholar] [CrossRef] [Green Version]
- Besard, T.; Churavy, V.; Edelman, A.; Sutter, B.D. Rapid software prototyping for heterogeneous and distributed platforms. Adv. Eng. Softw. 2019, 132, 29–46. [Google Scholar] [CrossRef]
- Riello, A. Self-Energy of the Lorentzian EPRL-FK Spin Foam Model of Quantum Gravity. Phys. Rev. D 2013, 88, 24011. [Google Scholar] [CrossRef] [Green Version]
- Frisoni, P.; Gozzini, F. Star Spinfoam Model. Available online: https://github.com/PietropaoloFrisoni/Star-spinfoam-model (accessed on 8 February 2022).
- Fishman, M.; White, S.R.; Stoudenmire, E.M. The ITensor software library for tensor network calculations. axXiv 2020, arXiv:2007.14822. [Google Scholar]
- Aitken, A. On Bernoulli’s Numerical Solution of Algebraic Equations. Proc. R. Soc. Edinb. 1927, 46, 289–305. [Google Scholar] [CrossRef]
- Aleksandroviic, V.D.; Moskalev, A.N.; Kel’manoviic, K.V. Quantum Theory of Angular Momentum: Irreducible Tensors, Spherical Harmonics, Vector Coupling Coefficients, 3nj Symbols; World Scientific: Singapore, 1988. [Google Scholar]
- Mäkinen, I. Introduction to SU(2) Recoupling Theory and Graphical Methods for Loop Quantum Gravity. arXiv 2019, arXiv:1910.06821. [Google Scholar]
- Yutsis, A.P.; Levinson, I.B.; Vanagas, V.V. Mathematical Apparatus of the Theory of Angular Momentum; Israel Program for Scientific Translation: Jerusalem, Israel, 1962. [Google Scholar]
- Rasch, J.; Yu, A.C.H. Efficient storage scheme for precalculated wigner 3j, 6j and gaunt coefficients. SIAM J. Sci. Comput. 2004, 25, 1416–1428. [Google Scholar] [CrossRef]
- Dona, P.; Fanizza, M.; Sarno, G.; Speziale, S. Su(2) graph invariants, regge actions and polytopes. Class. Quantum Gravity 2018, 35, 45011. [Google Scholar] [CrossRef] [Green Version]
- Carmeli, M.; Leibowitz, E.; Nissani, N. Gravitation: SL(2,C) Gauge Theory and Conservation Laws; World Scientific: Singapore, 1990. [Google Scholar]
- Ruhl, W. The Lorentz Group and Harmonic Analysis; W.A. Benjamin, Inc.: New York, NY, USA, 1970. [Google Scholar]
- Dao, V.D.; Nguyen, V.H. On the theory of unitary representations of the sl(2,c) group. Acta Phys. Hung. 1967, 22, 201–219. [Google Scholar]
- Rashid, M. Boost matrix elements of the homogeneous lorentz group. J. Math. Phys. 1979, 20, 1514–1519. [Google Scholar] [CrossRef]
- Basu, D.; Srinivasan, S. A unified treatment of the groups so(4) and so(3,1). Czechoslov. J. Phys. B 1977, 27, 629–635. [Google Scholar] [CrossRef]
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|---|
8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | |
---|---|---|---|---|---|---|---|---|---|---|
, | , | ||
, | , | ||
, | , | ||
, | , | ||
, | , | ||
, | , | ||
, | , | ||
, | , |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donà, P.; Frisoni, P. How-to Compute EPRL Spin Foam Amplitudes. Universe 2022, 8, 208. https://doi.org/10.3390/universe8040208
Donà P, Frisoni P. How-to Compute EPRL Spin Foam Amplitudes. Universe. 2022; 8(4):208. https://doi.org/10.3390/universe8040208
Chicago/Turabian StyleDonà, Pietro, and Pietropaolo Frisoni. 2022. "How-to Compute EPRL Spin Foam Amplitudes" Universe 8, no. 4: 208. https://doi.org/10.3390/universe8040208
APA StyleDonà, P., & Frisoni, P. (2022). How-to Compute EPRL Spin Foam Amplitudes. Universe, 8(4), 208. https://doi.org/10.3390/universe8040208