Insights into AGB Nucleosynthesis Thanks to Spectroscopic Abundance Measurements in Intrinsic and Extrinsic Stars
Abstract
:1. Introduction
2. Technetium, Intrinsic Stars and Extrinsic Stars
2.1. S-Type Stars
2.2. Technetium-Rich M Stars
2.3. Nitrogen-Rich, No-Tc M Stars
2.4. MS Stars
2.5. SC Stars
2.6. C Stars
3. The s-process along the AGB
3.1. s-process in S Stars
3.2. s-process in C Stars
3.3. Real-Time AGB Evolution
4. “Cold Cases”
4.1. s-process in Extrinsic Stars
4.2. s-process in Post-AGB Stars
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
1 | More precisely, is defined as the largest luminosity reached during the deepening of the convective envelope in the former pulse region. |
2 | |
3 | This specificity (namely C/O ) is often, erroneously, attributed to S stars in the literature, but S stars actually have C/O . |
4 | Whether a thermal pulse is a necessary and/or sufficient condition to induce a Mira pulsation mode switch is not presently known. |
5 | So-called “intermediate” process because it requires neutron densities (nn∼– cm−3) intermediate [76] between those of the s-process (nn∼ cm−3) and of the r-process (nn > 1024 cm−3). |
6 | ls (resp., hs) denoting elements from the first (resp., second) heavy element peak. |
7 | as opposed to the “shell-source” post-AGB, the latter presenting a mid-infrared excess produced by the expanding spherical circumstellar envelope of the former AGB star [85]. |
References
- Merrill, P.W. Spectroscopic Observations of Stars of Class S. Astrophys. J. 1952, 116, 21–26. [Google Scholar] [CrossRef]
- Merrill, P.W. Spectroscopic Classification of Red Stars. Publ. Astron. Soc. Aust. 1956, 68, 356. [Google Scholar] [CrossRef]
- Gallino, R.; Arlandini, C.; Busso, M.; Lugaro, M.; Travaglio, C.; Straniero, O.; Chieffi, A.; Limongi, M. Evolution and Nucleosynthesis in Low-Mass Asymptotic Giant Branch Stars. II. Neutron Capture and the s-process. Astrophys. J. 1998, 497, 388. [Google Scholar] [CrossRef]
- Goriely, S.; Mowlavi, N. Neutron-capture nucleosynthesis in AGB stars. Astron. Astrophys. 2000, 362, 599–614. [Google Scholar]
- Busso, M.; Gallino, R.; Lambert, D.L.; Travaglio, C.; Smith, V.V. Nucleosynthesis and Mixing on the Asymptotic Giant Branch. III. Predicted and Observed s-process Abundances. Astrophys. J. 2001, 557, 802–821. [Google Scholar] [CrossRef] [Green Version]
- Karakas, A.I.; Lattanzio, J.C. The Dawes Review 2: Nucleosynthesis and Stellar Yields of Low- and Intermediate-Mass Single Stars. Publ. Astron. Soc. Aust. 2014, 31, e030. [Google Scholar] [CrossRef] [Green Version]
- Lugaro, M.; Herwig, F.; Lattanzio, J.C.; Gallino, R.; Straniero, O. s-process Nucleosynthesis in Asymptotic Giant Branch Stars: A Test for Stellar Evolution. Astrophys. J. 2003, 586, 1305. [Google Scholar] [CrossRef] [Green Version]
- McClure, R.D.; Fletcher, J.M.; Nemec, J.M. The binary nature of the barium stars. Astrophys. J. 1980, 238, L35–L38. [Google Scholar] [CrossRef]
- Jorissen, A.; Boffin, H.M.J.; Karinkuzhi, D.; Van Eck, S.; Escorza, A.; Shetye, S.; Van Winckel, H. Barium and related stars, and their white-dwarf companions. I. Giant stars. Astron. Astrophys. 2019, 626, A127. [Google Scholar] [CrossRef] [Green Version]
- Van Eck, S.; Jorissen, A. The Henize sample of S stars. III. Uncovering the binary intruders. Astron. Astrophys. 2000, 360, 196–212. [Google Scholar]
- Karinkuzhi, D.; Van Eck, S.; Goriely, S.; Siess, L.; Jorissen, A.; Merle, T.; Escorza, A.; Masseron, T. Low-mass low-metallicity AGB stars as an efficient i-process site explaining CEMP-sr stars. Astron. Astrophys. 2021, 645, A61. [Google Scholar] [CrossRef]
- Little-Marenin, I.R.; Little, S.J. A search for technetium (Tc II) in barium stars. Astron. J. 1987, 93, 1539–1541. [Google Scholar] [CrossRef]
- Palmeri, P.; Quinet, P.; Biémont, É.; Yushchenko, A.V.; Jorissen, A.; Van Eck, S. Radiative decay of the 4d5(6S)5p z5,7Po states in TcII: Comparison along the homologous and isoelectronic sequences. Application to astrophysics. Mon. Not. R. Astron. Soc. 2007, 374, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Sanner, F. Search for stellar TcO. Astron. J. 1978, 83, 194–196. [Google Scholar] [CrossRef]
- Little-Marenin, I.R.; Little, S.J. Technetium in late-type stars. I - Observations. Astron. J 1979, 84, 1374–1383. [Google Scholar] [CrossRef]
- Little, S.J.; Little-Marenin, I.R.; Bauer, W.H. Additional late-type stars with technetium. Astron. J. 1987, 94, 981–995. [Google Scholar] [CrossRef]
- Abia, C.; Wallerstein, G. Heavy-element abundances in seven SC stars and several related stars. Mon. Not. R. Astron. Soc. 1998, 293, 89. [Google Scholar] [CrossRef]
- Lebzelter, T.; Hron, J. Technetium and the third dredge up in AGB stars. I. Field stars. Astron. Astrophys. 2003, 411, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Shetye, S.; Van Eck, S.; Jorissen, A.; Van Winckel, H.; Siess, L.; Goriely, S.; Escorza, A.; Karinkuzhi, D.; Plez, B. S stars and s-process in the Gaia era. I. Stellar parameters and chemical abundances in a sub-sample of S stars with new MARCS model atmospheres. Astron. Astrophys. 2018, 620, A148. [Google Scholar] [CrossRef] [Green Version]
- Shetye, S.; Van Eck, S.; Jorissen, A.; Goriely, S.; Siess, L.; Van Winckel, H.; Plez, B.; Godefroid, M.; Wallerstein, G. S stars and s-process in the Gaia era. II. Constraining the luminosity of the third dredge-up with Tc-rich S stars. Astron. Astrophys. 2021, 650, A118. [Google Scholar] [CrossRef]
- Goriely, S.; Siess, L. Sensitivity of the s-process nucleosynthesis in AGB stars to the overshoot model. Astron. Astrophys. 2018, 609, A29. [Google Scholar] [CrossRef] [Green Version]
- Choplin, A.; Siess, L.; Goriely, S. The intermediate neutron capture process. I. Development of the i-process in low-metallicity low-mass AGB stars. Astron. Astrophys. 2021, 648, A119. [Google Scholar] [CrossRef]
- Van Eck, S.; Jorissen, A.; Udry, S.; Mayor, M.; Pernier, B. The HIPPARCOS Hertzsprung-Russell diagram of S stars: Probing nucleosynthesis and dredge-up. Astron. Astrophys. 1998, 329, 971–985. [Google Scholar]
- Shetye, S.; Van Eck, S.; Goriely, S.; Siess, L.; Jorissen, A.; Escorza, A.; Van Winckel, H. Discovery of technetium- and niobium-rich S stars: The case for bitrinsic stars. Astron. Astrophys. 2020, 635, L6. [Google Scholar] [CrossRef]
- Brown, J.A.; Smith, V.V.; Lambert, D.L.; Dutchover, E.J.; Hinkle, K.H.; Johnson, H.R. S stars without technetium—The binary star connection. Astron. J. 1990, 99, 1930. [Google Scholar] [CrossRef]
- Jorissen, A.; Mayor, M. Orbital elements of S stars: Revisiting the evolutionary status of S stars. Astron. Astrophys. 1992, 260, 115. [Google Scholar]
- Van Eck, S.; Jorissen, A. The Henize sample of S stars. I. The technetium dichotomy. Astron. Astrophys. 1999, 345, 127–136. [Google Scholar]
- Van Eck, S.; Jorissen, A. The Henize sample of S stars. II. Data. Astron. Astrophys. Suppl. Ser. 2000, 145, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Barnbaum, C.; Morris, M. s-process Enhancement and the Presence of Tc in 84 Carbon Stars. In Proceedings of the American Astronomical Society, 182nd AAS Meeting, Berkeley, CA, USA, 6–10 June 1993; Volume 182, p. 876. [Google Scholar]
- Gustafsson, B.; Edvardsson, B.; Eriksson, K.; Jørgensen, U.G.; Nordlund, Å.; Plez, B. A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties. Astron. Astrophys. 2008, 486, 951. [Google Scholar] [CrossRef]
- Uttenthaler, S.; McDonald, I.; Bernhard, K.; Cristallo, S.; Gobrecht, D. Interplay between pulsation, mass loss, and third dredge-up: More about Miras with and without technetium. Astron. Astrophys. 2019, 622, A120. [Google Scholar] [CrossRef] [Green Version]
- Vanture, A.D.; Wallerstein, G.; Brown, J.A.; Bazan, G. Abundances of Tc and related elements in stars of type M, MS, and S. Astrophys. J. 1991, 381, 278. [Google Scholar] [CrossRef]
- Noguere, G.; Geslot, B.; Gruel, A.; Leconte, P.; Salamon, L.; Heyse, J.; Kopecky, S.; Paradela, C.; Schillebeeckx, P. Average neutron cross sections of 99Tc. Phys. Rev. C 2020, 102, 015807. [Google Scholar] [CrossRef]
- Smith, V.V.; Lambert, D.L. The chemical composition of red giants. III. Astrophys. J. Suppl. Ser. 1990, 72, 387. [Google Scholar] [CrossRef]
- Smith, V.V.; Lambert, D.L. s-process-enriched cool stars with and without technetium—Clues to asymptotic giant branch and binary star evolution. Astrophys. J. 1988, 333, 219–226. [Google Scholar] [CrossRef]
- Kamath, D.; Van Winckel, H.; Wood, P.R.; Asplund, M.; Karakas, A.I.; Lattanzio, J.C. Discovery of a Metal-poor, Luminous Post-AGB Star that Failed the Third Dredge-up. Astrophys. J. 2017, 836, 15. [Google Scholar] [CrossRef] [Green Version]
- Barnbaum, C. A high-resolution spectral atlas of carbon stars. Astrophys. J. Suppl. Ser. 1996, 90, 317. [Google Scholar] [CrossRef]
- Sanner, F. Observations of technetium stars. Astrophys. J. 1978, 219, 538–542. [Google Scholar] [CrossRef]
- Abia, C.; Isern, J. The Chemical Composition of Carbon Stars. II. The J-Type Stars. Astrophys. J. 2000, 536, 438–449. [Google Scholar] [CrossRef] [Green Version]
- Zamora, O.; Abia, C.; Plez, B.; Domínguez, I.; Cristallo, S. The chemical composition of carbon stars. The R-type stars. Astron. Astrophys. 2009, 508, 909–922. [Google Scholar] [CrossRef] [Green Version]
- Abia, C.; de Laverny, P.; Cristallo, S.; Kordopatis, G.; Straniero, O. Properties of carbon stars in the solar neighbourhood based on Gaia DR2 astrometry. Astron. Astrophys. 2020, 633, A135. [Google Scholar] [CrossRef] [Green Version]
- Käppeler, F.; Gallino, R.; Bisterzo, S.; Aoki, W. The s process: Nuclear physics, stellar models, and observations. Rev. Mod. Phys. 2011, 83, 157–194. [Google Scholar] [CrossRef] [Green Version]
- Busso, M.; Wasserburg, G.J.; Nollett, K.M.; Calandra, A. Can Extra Mixing in RGB and AGB Stars Be Attributed to Magnetic Mechanisms? Astrophys. J. 2007, 671, 802–810. [Google Scholar] [CrossRef] [Green Version]
- Busso, M.; Palmerini, S.; Maiorca, E.; Cristallo, S.; Straniero, O.; Abia, C.; Gallino, R.; La Cognata, M. On the Need for Deep-mixing in Asymptotic Giant Branch Stars of Low Mass. Astrophys. J. Lett. 2010, 717, L47–L51. [Google Scholar] [CrossRef]
- Smith, V.V.; Lambert, D.L. The chemical composition of red giants. I. Astrophys. J. 1985, 294, 326. [Google Scholar] [CrossRef]
- Smith, V.V.; Lambert, D.L. The chemical composition of red giants. II - Helium burning and the s-process in the MS and S stars. Astrophys. J. 1986, 311, 843–863. [Google Scholar] [CrossRef]
- Vanture, A.D.; Wallerstein, G.; Suntzeff, N.B. Abundance patterns of the S stars in ω Cen. Astrophys. J. 2002, 569, 984. [Google Scholar] [CrossRef]
- Vanture, A.D.; Wallerstein, G.; Gallino, R.; Masera, S. Abundances of Post-Iron-Peak Elements in HD 35155: A Symbiotic Star of Spectral Type S. Astrophys. J. 2003, 587, 384–389. [Google Scholar] [CrossRef]
- Busso, M.; Gallino, R.; Lambert, D.L.; Raiteri, C.M.; Smith, V.V. Nucleosynthesis and mixing on the asymptotic giant branch. I—MS and S stars with and without Tc. Astrophys. J. 1992, 399, 218–230. [Google Scholar] [CrossRef]
- Busso, M.; Lambert, D.L.; Beglio, L.; Gallino, R.; Raiteri, C.M.; Smith, V.V. Nucleosynthesis and Mixing on the Asymptotic Giant Branch. II. Carbon and Barium Stars in the Galactic Disk. Astrophys. J. 1995, 446, 775. [Google Scholar] [CrossRef]
- Shetye, S.; Goriely, S.; Siess, L.; Van Eck, S.; Jorissen, A.; Van Winckel, H. Observational evidence of third dredge-up occurrence in S-type stars with initial masses around 1 M⊙. Astron. Astrophys. 2019, 625, L1. [Google Scholar] [CrossRef] [Green Version]
- Utsumi, K. Abundance Analysis of Cool Carbon Stars. Publ. Astron. Soc. Jpn. 1970, 22, 93. [Google Scholar]
- Utsumi, K. Abundance Analyses of Thirty Cool Carbon Stars. Proc. Jpn. Acad. Ser. B 1985, 61, 193–196. [Google Scholar] [CrossRef] [Green Version]
- Molnár, L.; Joyce, M.; Kiss, L.L. Stellar Evolution in Real Time: Models Consistent with the Direct Observation of a Thermal Pulse in T Ursae Minoris. Astrophys. J. 2019, 879, 62. [Google Scholar] [CrossRef]
- Neyskens, P.; Van Eck, S.; Jorissen, A.; Goriely, S.; Siess, L.; Plez, B. The temperature and chronology of heavy-element synthesis in low-mass stars. Nature 2015, 517, 174–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, V.V. An abundance analysis of the cool barium stars. Astron. Astrophys. 1984, 132, 326–338. [Google Scholar]
- Allen, D.M.; Barbuy, B. Analysis of 26 barium stars. II. Contributions of s-, r-, and p-processes in the production of heavy elements. Astron. Astrophys. 2006, 454, 917–931. [Google Scholar] [CrossRef]
- Smiljanic, R.; Porto de Mello, G.F.; da Silva, L. Abundance analysis of barium and mild barium stars. Astron. Astrophys. 2007, 468, 679–693. [Google Scholar] [CrossRef]
- Karinkuzhi, D.; Van Eck, S.; Jorissen, A.; Goriely, S.; Siess, L.; Merle, T.; Escorza, A.; Van der Swaelmen, M.; Boffin, H.M.J.; Masseron, T.; et al. When binaries keep track of recent nucleosynthesis. The Zr-Nb pair in extrinsic stars as an s-process diagnostic. Astron. Astrophys. 2018, 618, A32. [Google Scholar] [CrossRef]
- Roriz, M.P.; Lugaro, M.; Pereira, C.B.; Sneden, C.; Junqueira, S.; Karakas, A.I.; Drake, N.A. Heavy elements in barium stars. Mon. Not. R. Astron. Soc. 2021, 507, 1956–1971. [Google Scholar] [CrossRef]
- Vanture, A.D. The CH Stars. III. Heavy Element Abundances. Astron. J. 1992, 104, 1997. [Google Scholar] [CrossRef]
- Purandardas, M.; Goswami, A.; Goswami, P.P.; Shejeelammal, J.; Masseron, T. Chemical analysis of CH stars - III. Atmospheric parameters and elemental abundances. Mon. Not. R. Astron. Soc. 2019, 486, 3266–3289. [Google Scholar] [CrossRef]
- Masseron, T.; Johnson, J.A.; Plez, B.; Van Eck, S.; Primas, F.; Goriely, S.; Jorissen, A. A holistic approach to carbon-enhanced metal-poor stars. Astron. Astrophys. 2010, 509, A93. [Google Scholar] [CrossRef]
- Placco, V.M.; Beers, T.C.; Ivans, I.I.; Filler, D.; Imig, J.A.; Roederer, I.U.; Abate, C.; Hansen, T.; Cowan, J.J.; Frebel, A.; et al. Hubble Space Telescope Near-Ultraviolet Spectroscopy of Bright CEMP-s Stars. Astrophys. J. 2015, 812, 109. [Google Scholar] [CrossRef]
- Yamada, S.; Suda, T.; Komiya, Y.; Aoki, W.; Fujimoto, M.Y. The Stellar Abundances for Galactic Archaeology (SAGA) Database— III. Analysis of enrichment histories for elements and two modes of star formation during the early evolution of the Milky Way. Mon. Not. R. Astron. Soc. 2013, 436, 1362–1380. [Google Scholar] [CrossRef] [Green Version]
- Bisterzo, S.; Gallino, R.; Käppeler, F.; Wiescher, M.; Imbriani, G.; Straniero, O.; Cristallo, S.; Görres, J.; deBoer, R.J. The branchings of the main s-process: Their sensitivity to α-induced reactions on 13C and 22Ne and to the uncertainties of the nuclear network. Mon. Not. R. Astron. Soc. 2015, 449, 506–527. [Google Scholar] [CrossRef] [Green Version]
- Busso, M.; Vescovi, D.; Palmerini, S.; Cristallo, S.; Antonuccio-Delogu, V. s-processing in AGB Stars Revisited. III. Neutron Captures from MHD Mixing at Different Metallicities and Observational Constraints. Astrophys. J. 2021, 908, 55. [Google Scholar] [CrossRef]
- Neyskens, P.; Van Eck, S.; Plez, B.; Goriely, S.; Siess, L.; Jorissen, A. Technetium Abundances in S-type AGB Stars to Constrain Mixing and Nucleosynthesis Processes. In Proceedings of the Tenth Pacific Rim Conference on Stellar Astrophysics, Seoul, Korea, 27–31 May 2013; Lee, H.W., Kang, Y.W., Leung, K.C., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2014; Volume 482, p. 81. [Google Scholar]
- Hill, V.; Barbuy, B.; Spite, M.; Spite, F.; Cayrel, R.; Plez, B.; Beers, T.C.; Nordström, B.; Nissen, P.E. Heavy-element abundances in the CH/CN-strong very metal-poor stars CS 22948-27 and CS 29497-34. Astron. Astrophys. 2000, 353, 557–568. [Google Scholar]
- Beers, T.C.; Christlieb, N. The Discovery and Analysis of Very Metal-Poor Stars in the Galaxy. Annu. Rev. Astron. Astrophys. 2005, 43, 531–580. [Google Scholar] [CrossRef] [Green Version]
- Gull, M.; Frebel, A.; Cain, M.G.; Placco, V.M.; Ji, A.P.; Abate, C.; Ezzeddine, R.; Karakas, A.I.; Hansen, T.T.; Sakari, C.; et al. The R-Process Alliance: Discovery of the First Metal-poor Star with a Combined r- and s-process Element Signature. Astrophys. J. 2018, 862, 174. [Google Scholar] [CrossRef]
- Lucatello, S.; Tsangarides, S.; Beers, T.C.; Carretta, E.; Gratton, R.G.; Ryan, S.G. The Binary Frequency Among Carbon-enhanced, s-process-rich, Metal-poor Stars. Astrophys. J. 2005, 625, 825–832. [Google Scholar] [CrossRef] [Green Version]
- Starkenburg, E.; Shetrone, M.D.; McConnachie, A.W.; Venn, K.A. Binarity in carbon-enhanced metal-poor stars. Mon. Not. R. Astron. Soc. 2014, 441, 1217–1229. [Google Scholar] [CrossRef]
- Hansen, T.T.; Andersen, J.; Nordström, B.; Beers, T.C.; Placco, V.M.; Yoon, J.; Buchhave, L.A. The role of binaries in the enrichment of the early Galactic halo. III. Carbon-enhanced metal-poor stars - CEMP-s stars. Astron. Astrophys. 2016, 588, A3. [Google Scholar] [CrossRef] [Green Version]
- van Hoof, P.A.M.; Herwig, F.; Kimeswenger, S.; Van de Steene, G.C.; Avison, A.; Zijlstra, A.A.; Hajduk, M.; Guzmán-Ramirez, L.; Woodward, P.R. The i process in the post-AGB star V4334 Sgr. Memor. Soc. Astronom. Ital. 2017, 88, 463. [Google Scholar]
- Hampel, M.; Stancliffe, R.J.; Lugaro, M.; Meyer, B.S. The Intermediate Neutron-capture Process and Carbon-enhanced Metal-poor Stars. Astrophys. J. 2016, 831, 171. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, N.; Kajino, T.; Mathews, G.J.; Fujimoto, M.Y.; Aoki, W. Flash-Driven Convective Mixing in Low-Mass, Metal-deficient Asymptotic Giant Branch Stars: A New Paradigm for Lithium Enrichment and a Possible s-process. Astrophys. J. 2004, 602, 377–388. [Google Scholar] [CrossRef]
- Lugaro, M.; Karakas, A.I.; Stancliffe, R.J.; Rijs, C. The s-process in Asymptotic Giant Branch Stars of Low Metallicity and the Composition of Carbon-enhanced Metal-poor Stars. Astrophys. J. 2012, 747, 2. [Google Scholar] [CrossRef] [Green Version]
- Campbell, S.W.; Lugaro, M.; Karakas, A.I. Evolution and nucleosynthesis of extremely metal-poor and metal-free low- and intermediate-mass stars. II. s-process nucleosynthesis during the core He flash. Astron. Astrophys. 2010, 522, L6. [Google Scholar] [CrossRef] [Green Version]
- Goriely, S.; Siess, L. The s-process Nucleosynthesis. In From Lithium to Uranium: Elemental Tracers of Early Cosmic Evolution, Proceedings of the IAU Symposium, Paris, France, 23–27 May 2005; Hill, V., Francois, P., Primas, F., Eds.; Cambridge University Press: Cambridge, UK, 2005; Volume 228, pp. 451–460. [Google Scholar] [CrossRef] [Green Version]
- Jones, S.; Ritter, C.; Herwig, F.; Fryer, C.; Pignatari, M.; Bertolli, M.G.; Paxton, B. H ingestion into He-burning convection zones in super-AGB stellar models as a potential site for intermediate neutron-density nucleosynthesis. Mon. Not. R. Astron. Soc. 2016, 455, 3848–3863. [Google Scholar] [CrossRef] [Green Version]
- Herwig, F.; Pignatari, M.; Woodward, P.R.; Porter, D.H.; Rockefeller, G.; Fryer, C.L.; Bennett, M.; Hirschi, R. Convective-reactive Proton-12C Combustion in Sakurai’s Object (V4334 Sagittarii) and Implications for the Evolution and Yields from the First Generations of Stars. Astrophys. J. 2011, 727, 89. [Google Scholar] [CrossRef] [Green Version]
- Denissenkov, P.A.; Herwig, F.; Woodward, P.; Andrassy, R.; Pignatari, M.; Jones, S. The i-process yields of rapidly accreting white dwarfs from multicycle He-shell flash stellar evolution models with mixing parametrizations from 3D hydrodynamics simulations. Mon. Not. R. Astron. Soc. 2019, 488, 4258–4270. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, O.; Herwig, F. Convective H-He interactions in massive population III stellar evolution models. Mon. Not. R. Astron. Soc. 2021, 500, 2685–2703. [Google Scholar] [CrossRef]
- Van Winckel, H. Post-AGB Stars. Annu. Rev. Astron. Astrophys. 2003, 41, 391–427. [Google Scholar] [CrossRef]
- De Smedt, K.; Van Winckel, H.; Kamath, D.; Siess, L.; Goriely, S.; Karakas, A.I.; Manick, R. Detailed homogeneous abundance studies of 14 Galactic s-process enriched post-AGB stars: In search of lead (Pb). Astron. Astrophys. 2016, 587, A6. [Google Scholar] [CrossRef] [Green Version]
- Werner, K.; Herwig, F. The Elemental Abundances in Bare Planetary Nebula Central Stars and the Shell Burning in AGB Stars. Publ. Astron. Soc. Aust. 2006, 118, 183–204. [Google Scholar] [CrossRef]
- Gvaramadze, V.V.; Pakhomov, Y.V.; Kniazev, A.Y.; Ryabchikova, T.A.; Langer, N.; Fossati, L.; Grebel, E.K. TYC 8606-2025-1: A mild barium star surrounded by the ejecta of a very late thermal pulse. Mon. Not. R. Astron. Soc. 2019, 489, 5136–5145. [Google Scholar] [CrossRef] [Green Version]
- Kamath, D.; Wood, P.R.; Van Winckel, H.; Nie, J.D. A newly discovered stellar type: Dusty post-red giant branch stars in the Magellanic Clouds. Astron. Astrophys. 2016, 586, L5. [Google Scholar] [CrossRef]
- Abia, C.; Domínguez, I.; Gallino, R.; Busso, M.; Masera, S.; Straniero, O.; de Laverny, P.; Plez, B.; Isern, J. s-process Nucleosynthesis in Carbon Stars. Astrophys. J. 2002, 579, 817–831. [Google Scholar] [CrossRef] [Green Version]
- McClure, R.D. The R Stars: Carbon Stars of a Different Kind. Publ. Astron. Soc. Aust. 1997, 109, 256–263. [Google Scholar] [CrossRef]
- Tomkin, J.; Lambert, D.L. Heavy-element abundances in the mild barium stars Omicron Virginis and 16 Serpentis. Astrophys. J. 1986, 311, 819–825. [Google Scholar] [CrossRef]
- Kobayashi, C.; Karakas, A.I.; Lugaro, M. The Origin of Elements from Carbon to Uranium. Astrophys. J. 2020, 900, 179. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van Eck, S.; Shetye, S.; Siess, L. Insights into AGB Nucleosynthesis Thanks to Spectroscopic Abundance Measurements in Intrinsic and Extrinsic Stars. Universe 2022, 8, 220. https://doi.org/10.3390/universe8040220
Van Eck S, Shetye S, Siess L. Insights into AGB Nucleosynthesis Thanks to Spectroscopic Abundance Measurements in Intrinsic and Extrinsic Stars. Universe. 2022; 8(4):220. https://doi.org/10.3390/universe8040220
Chicago/Turabian StyleVan Eck, Sophie, Shreeya Shetye, and Lionel Siess. 2022. "Insights into AGB Nucleosynthesis Thanks to Spectroscopic Abundance Measurements in Intrinsic and Extrinsic Stars" Universe 8, no. 4: 220. https://doi.org/10.3390/universe8040220
APA StyleVan Eck, S., Shetye, S., & Siess, L. (2022). Insights into AGB Nucleosynthesis Thanks to Spectroscopic Abundance Measurements in Intrinsic and Extrinsic Stars. Universe, 8(4), 220. https://doi.org/10.3390/universe8040220