Maxwell’s Equations in Homogeneous Spaces for Admissible Electromagnetic Fields
Abstract
:1. Introduction
2. Homogeneous Spaces
3. Maxwell’s Equations for an Admissible Electromagnetic Field in Homogeneous Spacetime
4. Maxwell’s Equations for Spaces Type I–VI According to Bianchi Classification
4.1. Group
4.2. Group
- For , Equation (31) implies a linear dependence of the componentsAll independent components of are arbitrary functions of
- Let us take the function out of (32). As a result, we obtain:Hence:>From the remaining equations of the system, we get:The functions , , and all components of , except , are arbitrary functions of . The component results from the equation :
4.3. Group
- In this case the>From (31) it follows a linear dependence of the componentsand all independent components of are arbitrary functions of . The component is found from Equation (33).
- Hence:>From the remaining equations of the system, we get:The functions , and all components of , except , are arbitrary functions of . The component results from Equation (33).
4.4. Group
- (A)
- >From the system (37) it follows:Using these relations, we obtain a consequence from the remaining equations of the system (37) and (38):With Equation (41), the dependent functions can be expressed in terms of the independent functions. Let us write down the solutions.
- are arbitrary functions of time. The function is expressed in terms of these functions using the relation (33)
- , is an arbitrary function, depending on .are arbitrary functions of time. The function is expressed in terms of these functions using the relation (33).
- .are arbitrary functions of time. The function is expressed in terms of these functions using the relation (33).
- (B)
- Maxwell’s equations take the form:The set of equations has the following
4.5. Group
4.6. Group
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stackel, P. Uber die intagration der Hamiltonschen differentialechung mittels separation der variablen. Math. Ann. 1897, 49, 145–147. [Google Scholar] [CrossRef]
- Stackel, P. Ueber Die Bewegung Eines Punktes In Einer N-Fachen Mannigfaltigkeit. Math. Ann. 1893, 42, 537–563. [Google Scholar] [CrossRef]
- Jarov-Jrovoy, M.S. Integration of Hamilton-Jacobi equation by complete separation of variables method. J. Appl. Math. Mech. 1963, 27, 173–219. [Google Scholar]
- Eisenhart, L.P. Separable systems of stackel. Math. Ann. 1934, 35, 284–305. [Google Scholar] [CrossRef]
- Levi-Civita, T. Sulla Integraziome Della Equazione Di Hamilton-Jacobi Per Separazione Di Variabili. Math. Ann. 1904, 59, 383–397. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Symmetry of motion equations of free particle in riemannian space. Russ. Phys. J. 1975, 18, 1650–1654. [Google Scholar] [CrossRef]
- Shapovalov, V.N.; Eckle, G.G. Separation of Variables in the Dirac Equation. Russ. Phys. J. 1973, 16, 818–823. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Symmetry and separation of variables in a linear second-order differential equation. I, II. Russ. Phys. J. 1978, 21, 645–695. [Google Scholar]
- Bagrov, V.G.; Meshkov, A.G.; Shapovalov, V.N.; Shapovalov, A.V. Separation of variables in the Klein-Gordon equations I. Russ. Phys. J. 1973, 16, 1533–1538. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Meshkov, A.G.; Shapovalov, V.N.; Shapovalov, A.V. Separation of variables in the Klein-Gordon equations II. Russ. Phys. J. 1973, 16, 1659–1665. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Meshkov, A.G.; Shapovalov, V.N.; Shapovalov, A.V. Separation of variables in the Klein-Gordon equations III. Russ. Phys. J. 1974, 17, 812–815. [Google Scholar] [CrossRef]
- Shapovalov, V.N. Stäckel spaces. Sib. Math. J. 1979, 20, 1117–1130. [Google Scholar] [CrossRef]
- Miller, W. Symmetry and Separation of Variables; Cambridge University Press: Cambridge, UK, 1984; 318p. [Google Scholar]
- Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.0). Symmetry 2020, 12, 12891291. [Google Scholar] [CrossRef]
- Obukhov, V.V. Hamilton-Jacobi equation for a charged test particle in the Stackel space of type (2.1). Int. J. Geom. Methods Mod. Phys. 2020, 17, 2050186. [Google Scholar] [CrossRef]
- Obukhov, V.V. Separation of variables in Hamilton-Jacobi and Klein-Gordon-Fock equations for a charged test particle in the stackel spaces of type (1.1). Int. J. Geom. Methods Mod. Phys. 2021, 18, 2150036. [Google Scholar] [CrossRef]
- Carter, B. New family of Einstein spaces. Phys. Lett. 1968, 25, 399–400. [Google Scholar] [CrossRef]
- Carter, B. Separability of the Killing-Maxwell system underlying the generalized angular momentum constant in the Kerr-Newman black hole metrics. J. Math. Phys. 1987, 28, 1535. [Google Scholar] [CrossRef]
- Bagrov, V.G.; Obukhov, V.V. Classes of exact solutions of the Einstein-Maxwell equations. Ann. Der Phys. 1983, 40, 181–188. [Google Scholar] [CrossRef]
- Mitsopoulos, A.; Mitsopoulos, A.; Tsamparlis, M.; Leon, G.; Paliathanasis, A.; Paliathanasis, A. New conservation laws and exact cosmological solutions in Brans-Dicke cosmology with an extra scalar field. Symmetry 2021, 13, 1364. [Google Scholar] [CrossRef]
- Rajaratnam, K.; Mclenaghan, R.G. Classification of Hamilton-Jacobi separation In orthogonal coordinates with diagonal curvature. J. Math. Phys. 2014, 55, 083521. [Google Scholar] [CrossRef] [Green Version]
- Chong, Z.W.; Gibbons, G.W.; Pope, C.N. Separability and Killing tensors in Kerr-Taub-Nut-De Sitter metrics in higher dimensions. Phys. Lett. 2005, 609, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Vasudevan, M.; Stevens, K.A.; Page, D.N. Separability of The Hamilton-Jacobi And Klein-Gordon Equations In Kerr-De Sitter Metrics. Class. Quantum Gravity 2005, 22, 339–352. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified gravity theories on a nutshell: Inflation, bounce and late-time evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Bamba, K.S.; Capozziello, S.; Nojiri, S.; Odintsov, S.D. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M.; Odintsov, S.D. Hamiltonian dynamics and Noether symmetries in extended gravity cosmology. Uropean Phys. J. 2012, 72, 2068. [Google Scholar] [CrossRef]
- McLenaghan, R.G.; Rastelli, G.; Valero, C. Complete separability of the Hamilton-Jacobi equation for the charged particle orbits in a Lienard-Wiehert field. J. Math. Phys. 2020, 61, 122903. [Google Scholar] [CrossRef]
- Shapovalov, A.V.; Shirokov, I.V. Noncommutative integration method for linear partial differential equations. Functional algebras and dimensional reduction. Theor. Math. Phys. 1996, 106, 3–15. [Google Scholar] [CrossRef]
- Osetrin, E.K.; Osetrin, K.E.; Filippov, A.E. Stationary homogeneous models of Stackel spaces of type (2.1). Russ. Phys. J. 2020, 63, 57–65. [Google Scholar] [CrossRef]
- Osetrin, E.; Osetrin, K.; Filippov, A. Spatially Homogeneous Conformally Stackel Spaces of Type (3.1). Russ. Phys. J. 2020, 63, 403–409. [Google Scholar] [CrossRef]
- Osetrin, E.; Osetrin, K.; Filippov, A. Plane Gravitational Waves in Spatially-Homogeneous Models of type-(3.1) Stackel Spaces. Russ. Phys. J. 2019, 64, 292–301. [Google Scholar] [CrossRef]
- Mozhey, N.P. Affine connections on three-dimensional pseudo-Riemannian homogeneous spaces. I. Russ. Math. J. 2013, 57, 44–62. [Google Scholar] [CrossRef]
- Garcia, A.; Hehl, F.W.; Heinicke, C.; Macias, A. The Cotton tensor in Riemannian spacetimes. Class. Quantum Gravity 2004, 21, 1099–1118. [Google Scholar] [CrossRef]
- Marchesiello, A.; Snobl, L.; Winternitz, P. Three-dimensional superintegrable systems in a static electromagnetic field. J. Phys. Math. Gen. 2015, 48, 395206. [Google Scholar] [CrossRef] [Green Version]
- Breev, A.I.; Shapovalov, A.V. Noncommutative integration of the Dirac equation in homogeneous spaces. Symmetry 2020, 12, 1867. [Google Scholar] [CrossRef]
- Breev, A.I.; Shapovalov, A.V. Vacuum quantum effects on Lie groups with bi-invariant metrics. Int. J. Geom. Methods Mod. Phys. 2019, 16, 1950122. [Google Scholar] [CrossRef] [Green Version]
- Petrov, A.Z. Einstein Spaces; Pergamon Press: Oxford, UK, 1969. [Google Scholar]
- Obukhov, V.V. Algebra of symmetry operators for Klein-Gordon-Fock Equation. Symmetry 2021, 13, 727. [Google Scholar] [CrossRef]
- Obukhov, V.V. Algebra of the symmetry operators of the Klein-Gordon-Fock equation for the case when groups of motions G3 act transitively on null subsurfaces of spacetime. Symmetry 2022, 14, 346. [Google Scholar] [CrossRef]
- Obukhov, V.V. Algebras of integrals of motion for the Hamilton-Jacobi and Klein-Gordon-Fock equations in spacetime with a four-parameter groups of motions in the presence of an external electromagnetic field. J. Math. Phys. 2022, 63, 023505. [Google Scholar] [CrossRef]
- Magazev, A.A. Integrating Klein-Gordon-Fock equations in an extremal electromagnetic field on Lie groups. Theor. Math. Phys. 2012, 173, 1654–1667. [Google Scholar] [CrossRef] [Green Version]
- Magazev, A.A. Constructing a complete integral of the Hamilton-Jacobi equation on pseudo-riemannian spaces with simply transitive groups of motions. Math. Physics, Anal. Geom. 2021, 24, 11. [Google Scholar] [CrossRef]
- Magazev, A.A.; Shirokov, I.V.; Yurevich, Y.A. Integrable magnetic geodesic flows on Lie groups. Theor. Math. Phys. 2008, 156, 1127–1140. [Google Scholar] [CrossRef]
- Landau, L.D.; Lifshits, E.M. Theoretical Physics. Field Theory, 7th ed.; Butterworth-Heinemann: Oxford, UK, 1988; Volume II, 512p, ISBN 5-02-014420-7. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obukhov, V.V. Maxwell’s Equations in Homogeneous Spaces for Admissible Electromagnetic Fields. Universe 2022, 8, 245. https://doi.org/10.3390/universe8040245
Obukhov VV. Maxwell’s Equations in Homogeneous Spaces for Admissible Electromagnetic Fields. Universe. 2022; 8(4):245. https://doi.org/10.3390/universe8040245
Chicago/Turabian StyleObukhov, Valery V. 2022. "Maxwell’s Equations in Homogeneous Spaces for Admissible Electromagnetic Fields" Universe 8, no. 4: 245. https://doi.org/10.3390/universe8040245
APA StyleObukhov, V. V. (2022). Maxwell’s Equations in Homogeneous Spaces for Admissible Electromagnetic Fields. Universe, 8(4), 245. https://doi.org/10.3390/universe8040245