Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems
Abstract
:1. Introduction
2. The Fock Space, Non-Relativistic Quantum Current Algebra and Its Cyclic Representations
2.1. The Fock Space Representation
2.2. Non-Relativistic Quantum Current Algebra and Its Cyclic Representations
2.3. The Generating Functional Equation, Cyclic Current Algebra Representation and Hamiltonian Operator Groundstate
2.4. The Hamiltonian Operator Reconstruction and the Cyclic Current Algebra Representation
2.5. Current Algebra Representations, Generating Functional Method and Ergodicity of the Hilbert Space Representation Measure
2.6. The Creation–Annihilation Heisenberg Algebra, Its Coherent State Representations and Linearization of Nonlinear Dynamical Systems on Hilbert Spaces
2.7. The Canonical Heisenberg Algebra and Its Cyclic Hilbert Space Representations
2.8. Conclusions
3. Quantum Current Lie Algebra as a Universal Algebraic Structure of Symmetries of Completely Integrable Nonlinear Dynamical Systems
3.1. Quantum Lie Algebra of Currents and Its Vector Field Representations
3.2. Completely Integrable Hamiltonian Systems and the Current Algebra Symmetry Integrability Criterion
3.3. Integrable Systems, Their Symmetry Analysis and Structure of the Poissonian Operators
3.3.1. Two-Dimensional Korteweg–de Vries Type Hydrodynamic System
3.3.2. Nonlinear Schrëdinger Type Dynamical System
3.3.3. The Benjamin–Ono Nonlinear Dynamical System
3.4. Conclusions
4. The Current Algebra Representations and the Factorized Structure of Quantum Integrable Many-Particle Hamiltonian Systems
4.1. The Current Algebra Representation and the Hamiltonian Reconstruction of the Calogero–Moser–Sutherland Quantum Model
4.2. The Current Algebra Representation and Integrability of the Calogero–Moser–Sutherland Quantum Model
5. The Dual Current Algebra Density Representation and the Factorized Structure of Quantum Integrable Many-Particle Hamiltonian Systems
5.1. The Current Algebra Density Representation
5.2. The Current Algebra Representation and Hamiltonian Reconstruction: A Many-Dimensional Quantum Oscillator Model
5.3. Conclusions
6. The Quantum Current Algebra Quasi-Classical Representations and the Collective Variable Approach in Equilibrium Statistical Physics
Introductory Notes
7. The Bogolubov-Zubarev “Collective” Variables Transform
8. The Functional-Analytic Solution and Its Ursell–Mayer Type Diagram Expansion
Conclusions
9. The Wigner Type Current Algebra Representation and Its Application to Non-Equilibrium Classical Statistical Mechanics
9.1. Many-Particle Distribution Functions Space and Its Poissonian Structure
9.2. Generating Representation Functional and Its Solution Space Structure
9.3. Bogolubov–Boltzmann Kinetic Equation in the Frame of Functional Hypothesis
9.4. The Kinetic Equations for Many-Particle Distribution Functions, Their Lie-Algebraic Structure and Invariant Reductions
9.5. The Classical Lie-Poisson-Vlasov Bracket and Kinetic Equation for the One-Particle Distribution Function
9.6. Boltzmann–Vlasov Kinetic Equations and Microscopic Exact Solutions
9.7. The Invariant Reduction of the Bogolubov Distribution Functions Chain
9.8. Conclusions and Perspectives
10. The Current Algebra Functional Representations and Geometric Structure of Quasi-Stationary Hydrodynamic Flows
10.1. Introductory Notes
10.2. Diffeomorphism Group Structure and Functional Phase Space Description
10.3. A Modified Current Algebra, Its Functional Representation and Geometric Description of the Ideal Liquid Dynamics
10.4. The Hamiltonian Analysis and Related Adiabatic Liquid Dynamics
10.5. The Hamiltonian Analysis and Related Isothermal Liquid Dynamics
10.6. The Hamiltonian Analysis and Adiabatic Magneto-Hydrodynamic Superfluid Motion
10.7. A Modified Current Lie Algebra, Magneto-Hydrodynamic Invariants and Their Geometry
11. A Modified Current Lie Algebra Symmetry on Torus, Its Lie-Algebraic Structure and Related Integrable Heavenly Type Dynamical Systems
11.1. Introductory Notes
11.2. Differential-Geometric Setting: The Diffeomorphism Group and Its Description
11.3. A Modified Current Lie Algebra and Related Symmetry Analysis on Functional Manifolds
11.4. A New Modified Spatially Four-Dimensional Mikhalev–Pavlov Heavenly Type Integrable System
11.5. A Modified Martinez Alonso-Shabat Heavenly Type Integrable System
11.6. A Modified Current Loop Algebra and Multidimensional Heavenly Type Integrable Equations: The Generalized Lie-Algebraic Structures
11.7. A New Modified Spatially Four-Dimensional Mikhalev-Pavlov Type Heavenly Equation
12. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Goldin, G.A. Lectures on diffeomorphism groups in quantum physics. In Contemporary Problems in Mathematical Physics, Proceedings of the Third International Workshop, Helsinki, Finland, 30–31 October 2014; World Scientific Publishing: Singapore, 2004; pp. 3–93. [Google Scholar]
- Goldin, G.A.; Sharp, D.H. Lie algebras of local currents and their representations. In Group Representations in Mathematics and Physics; Battelle Seattle 1969 Rencontres, Lecture Nootes in Physics; Springer: Berlin/Heidelberg, Germany, 1970; Volume 6, pp. 300–311. [Google Scholar]
- Goldin, G.A.; Sharp, D.H. Functional Differential Equations Determining Representations of Local Current Algebras in Magic without Magic: John Archibald Wheeler; Klauder, J.R., Ed.; Freeman: San Francisco, CA, USA, 1972. [Google Scholar]
- Goldin, G.A. Nonrelativistic current algebras as unitary representations of groups. J. Math. Phys. 1971, 12, 462–487. [Google Scholar] [CrossRef]
- Goldin, G.A.; Grodnik, J.; Powers, R.T.; Sharp, D. Nonrelativistic current algebra in the N/V-limit. J. Math. Phys. 1974, 15, 88–100. [Google Scholar] [CrossRef] [Green Version]
- Goldin, G.A.; Menikoff, R.; Sharp, F.H. Diffeomorphism groups, gauge groups, and quantum theory. Phys. Rev. Lett. 1983, 51, 2246–2249. [Google Scholar] [CrossRef]
- Goldin, G.A.; Menikoff, R.; Sharp, F.H. Representations of a local current algebra in nonsimply connected space and the Aharonov-Bohm effect. J. Math. Phys. 1981, 22, 1664–1668. [Google Scholar] [CrossRef]
- Bogolubov, N.N., Jr.; Prorok, D.; Prykarpatski, A.K. Integrability Aspects of the Current Algebra Representation and the Factorized Quantum Nonlinear Schrëdinger Type Dynamical Systems. Phys. Part. Nucl. 2020, 51, 434–442. [Google Scholar] [CrossRef]
- Prorok, D.; Prykarpatski, A. Quantum Current Algebra Symmetries and Integrable Many-Particle Schrëdinger Type Quantum Hamiltonian Operators. Symmetry 2019, 11, 975. [Google Scholar] [CrossRef] [Green Version]
- Prorok, D.; Prykarpatski, A. The current algebra representations of quantum many-particle Schrëdinger Hamiltonian models, their factorized structure and integrability. Condens. Matter Phys. 2019, 22, 33101–33130. [Google Scholar] [CrossRef]
- Blackmore, D.; Prykarpatsky, A.K.; Samoylenko, V.H. Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Differential-Geometrical Integrability Analysis; World Scientific: Singapore, 2011. [Google Scholar]
- Bogolyubov, N.N., Jr.; Prikarpatskii, A.K. Quantum current Lie algebra as the universal algebraic structure of the symmetries of completely integrable nonlinear dynamical systems of theoretical and mathematical physics. Theor. Math. Phys. 1988, 75, 329–339. [Google Scholar] [CrossRef]
- Mitropolsky, Y.A.; Bogolubov, N.N.; Prykarpatsky, A.K.; Samoylenko, V.H. Integrable dynamical systems. In Spectral and Differential Geometric Aspects; Naukova Dumka: Kyiv, Ukraine, 1987. [Google Scholar]
- Kowalski, K. Methods of Hilbert Spaces in the Theory of Nonlinear Dynamical Systems; World Scientific: Singapore, 1994. [Google Scholar]
- Kowalski, K.; Steeb, W.-H. Non Linear Dynamical Systems and Carleman Linearization; World Scientific: Singapore, 1991. [Google Scholar]
- Prykarpatsky, A.K.; Bogoliubov, N.N., Jr.; Golenia, J.; Taneri, U. Introductive Backgrounds to Modern Quantum Mathematics with Application to Nonlinear Dynamical Systems. Int. J. Theor. Phys. 2008, 47, 2882–2897. [Google Scholar] [CrossRef] [Green Version]
- Faddeev, L.D.; Tahtadjian, L.A. Hamiltonian Approach in Soliton Theory; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Blaszak, M. Bi-Hamiltonian Dynamical Systems; Springer: New York, NY, USA, 1998. [Google Scholar]
- Reyman, A.G.; Semenov-Tian-Shansky, M.A. Integrable Systems; The Computer Research Institute : Moscow, Russia, 2003. (In Russian) [Google Scholar]
- Bogolubov, N.N., Jr.; Prykarpatsky, A.K. Quantum method of Bogolyubov generating functionals in statistical physics: Lie current algebra, its representations and functional equations. Sov. J. Part. Nucl. 1986, 17, 789–827. [Google Scholar]
- Bogolubov, N.N., Jr.; Prykarpatsky, A.K. NN Bogolyubov’s quantum method of generating functionals in statistical physics: The current Lie algebra, its representations and functional equations. Ukr. Mat. Zhurnal 1986, 38, 245–249. [Google Scholar] [CrossRef]
- Bogolyubov, N.N., Jr.; Prykarpatsky, A.K. The Wigner quantized operator and N. N. Bogolyubov generating functional method in nonequilibrium statistical physics. Dokl. Akad. Nauk SSSR 1985, 285, 1365–1370. [Google Scholar]
- Ivankiv, L.I.; Prykarpatsky, Y.A.; Samoilenko, V.H.; Prykarpatski, A.K. Quantum Current Algebra Symmetry and Description of Boltzmann Type Kinetic Equations in Statistical Physics. Symmetry 2021, 13, 1452. [Google Scholar] [CrossRef]
- Prykarpatsky, Y.A.; Kycia, R.; Prykarpatski, A.K. On the Bogolubov’s chain of kinetic equations, the invariant subspaces and the corresponding Dirac type reduction. Ann. Math. Phys. 2021, 4, 074–083. [Google Scholar]
- Kupershmidt, B. Hydrodynamical Poisson brackets and local Lie algebras. Phys. Lett. 1987, 21, 167–174. [Google Scholar] [CrossRef]
- Arnold, V.I. Sur la geometrie differerentielle des groupes de Lie de dimension infinie et ses applications a l’hydrodynamique des fluides parfaits. Ann. Inst. Fourier 1966, 16, 319–361. [Google Scholar] [CrossRef] [Green Version]
- Holm, D.; Kupershmidt, B. Poisson structures of superfluids. Phys. Lett. 1982, 91, 425–430. [Google Scholar] [CrossRef]
- Kupershmidt, B.A.; Ratiu, T. Canonical Maps between Semidirect Products with Applications to Elasticity and Superfluids. Commun. Math. Phys. 1983, 90, 235–250. [Google Scholar] [CrossRef] [Green Version]
- Marsden, J.; Ratiu, T.; Schmid, R.; Spencer, R.; Weinstein, A. Hamiltonian systems with symmetry, coadjoint orbits, and plasma physics. Atti Acad. Sci. Torino 1983, 117, 289–340. [Google Scholar]
- Marsden, J.; Weinstein, A. The Hamiltonian structure of the Maxwell-Vlasov equations. Phys. D 1982, 4, 394–406. [Google Scholar] [CrossRef]
- Weinstein, A. Sophus Lie and symplectic geometry. Expos. Math. 1983, 1, 95–96. [Google Scholar]
- Weinstein, A. The local structure of Poisson manifolds. J. Differ. Geom. 1983, 18, 523–557. [Google Scholar] [CrossRef]
- Marsden, J.; Weinstein, A. Reduction of symplectic manifolds with symmetry. Rep. Math. Phys. 1974, 5, 121–130. [Google Scholar] [CrossRef]
- Gay-Balmaz, F.; Monastyrsky, M.; Ratiu, T.S. Lagrangian Reductions and Integrable Systems in Condensed Matter. Commun. Math. Phys. 2015, 335, 609–636. [Google Scholar] [CrossRef]
- Gay-Balmaz, F.; Yoshimira, H. Dirac reduction for nonholonomic mechanical systems and semi-direct product. arXiv 2014, arXiv:1410.5394v1. [Google Scholar]
- Holm, D.D.; Tronci, C. Euler-Poincare formulation of hybrid plasma models. arXiv 2011, arXiv:1012.0999v2. [Google Scholar] [CrossRef] [Green Version]
- Khesin, B.; Lenells, J.; Misiolek, G.; Preston, S.C. Geometry of diffeomorphism groups, complete integrability and geometric statistics. Geom. Funct. Anal. 2013, 23, 334–366. [Google Scholar] [CrossRef] [Green Version]
- Kolev, B. Lie groups and mechanics: Introduction. J. Nonl. Math. Phys. 2004, 11, 480–498. [Google Scholar] [CrossRef] [Green Version]
- Kushner, A.; Lychagin, V.; Roop, M. Optimal Thermodynamic Processes for Gases. Entropy 2020, 22, 448. [Google Scholar] [CrossRef]
- Marsden, J.E.; Ratiu, T.S.; Shkoller, S. The geometry and analysis of the averaged Euler equations and a new diffeomorphism group. Geom. Funct. Anal. 2000, 10, 582–599. [Google Scholar] [CrossRef] [Green Version]
- Marsden, J.; Ratiu, T.; Weinstein, A. Reduction and Hamiltoninan structures on duals of semidirect product Lie algebras. Contemp. Math. 1984, 28, 55–100. [Google Scholar]
- Mrugala, R. Continuous contact transformations in thermodynamics. Rep. Math. Phys. 1993, 33, 149–154. [Google Scholar] [CrossRef]
- Mrugala, R. Lie, Jacobi, Poisson and quasi-Poisson structures in thermodynamics. Tensor. New Ser. 1995, 56, 37–45. [Google Scholar]
- Preston, S.C. For ideal fluids, Eulerian and Lagrangian instabilities are equivalent. Geom. Funct. Anal. 2004, 14, 1044–1062. [Google Scholar] [CrossRef]
- Schneider, E. Differential invariants. In Nonlinear PDEs, Their Geometry, and Applications; Kycia, R.A., Ulan, M., Schneider, E., Eds.; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Schneider, E. Differential invariants of measurements, and their connection to central moments. arXiv 2020, arXiv:2005.08895v1. [Google Scholar]
- Tronci, C.; Tassi, E.; Camporeale, E.; Morrison, P.J. Hybrid Vlasov-MHD models: Hamiltonian vs. non-Hamiltonian. arXiv 2014, arXiv:1403.2773v2. [Google Scholar] [CrossRef]
- Vizman, C. Geodesic Equations on Diffeomorphism Groups. SIGMA 2008, 4, 030. [Google Scholar] [CrossRef]
- Blackmore, D.; Balinsky, A.A.; Prykarpatski, A.K. Entropy and Ergodicity of Boole-Type Transformations. Entropy 2021, 23, 1405. [Google Scholar] [CrossRef]
- Nikitin, V.Y.; Tsybenko, S. On Clebsch variables in hydrodynamics of classical fluids and plasmas. Czechoslov. J. Phys. 2002, 52, 305–309. [Google Scholar]
- Jackson, D.M.; Moffatt, I. An Introduction to Quantum and Vassiliev Knot Invariants; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Esen, O.; Grmela, M.; Gumral, H.; Pavelka, M. Lifts of Symmetric Tensors: Fluids, Plasma, and Grad Hierarchy. Entropy 2019, 21, 907. [Google Scholar] [CrossRef] [Green Version]
- Grmela, M. Contact Geometry of Mesoscopic Thermodynamics and Dynamics. Entropy 2014, 16, 1652–1686. [Google Scholar] [CrossRef] [Green Version]
- Balinsky, A.A.; Blackmore, D.; Kycia, R.; Prykarpatski, A.K. Geometric Aspects of the Isentropic Liquid Dynamics and Vorticity Invariants. Entropy 2020, 22, 1241. [Google Scholar] [CrossRef] [PubMed]
- Berezin, F.A. The Method of Second Quantization (Monographs and Textbooks in Pure and Applied Physics); Academic Press: Cambridge, MA, USA, 1966. [Google Scholar]
- Bogolubov, N.N.; Bogolubov, N.N., Jr. Introduction to Quantum Statistical Mechanics; Gordon and Breach: New York, NY, USA; London, UK, 1994. [Google Scholar]
- Berezin, F.A.; Shubin, M.A. Schrëdinger Equation; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; 555p. [Google Scholar]
- Faddeev, L.D.; Yakubovskii, O.A. Lectures on Quantum Mechanics for Mathematics Students; American Mathematical Society: Providence, RI, USA, 2009. [Google Scholar]
- Prykarpatsky, A.; Mykytyuk, I. Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects; Kluwer Academic Publishers: Alphen aan den Rijn, The Newtherlands, 1998. [Google Scholar]
- Takhtajan, L.A. Quantum Mechanics for Mathematicians; Department of Mathematics, Stony Brook University: Stony Brook, NY, USA, 2008. [Google Scholar]
- Berezanskii, Y.M. Expansions in Eigenfunctions of Selfadjoint Operators; Translations of Mathematical Monographs; American Mathematical Society: Providence, RI, USA, 1968; 809p. [Google Scholar]
- Berezansky, Y.M.; Kondratiev, Y.G. Spectral Methods in Infinite Dimensional Analysis, v.1 and 2; Kluwer: Alphen aan den Rijn, The Netherlands, 1995. [Google Scholar]
- Dirac, P.A.M. The Principles of Quantum Mechanics, 2nd ed.; Clarendon Press: Oxford, UK, 1935. [Google Scholar]
- Fock, V.A. Konfigurationsraum und zweite Quantelung. Zeischrift Phys. Bd. 1932, 75, 622–647. [Google Scholar] [CrossRef]
- Prykarpatsky, A.K.; Taneri, U.; Bogolubov, N.N., Jr. Quantum Field Theory and Application to Quantum Nonlinear Optics; World Scientific: Singapore, 2002. [Google Scholar]
- Gelfand, I.; Vilenkin, N. Generalized Functions; Academic Press: Cambridge, MA, USA, 1964; Volume 4. [Google Scholar]
- Balakrishnan, A.V. Applied Functional Analysis; Springer: New York, NY, USA, 1981. [Google Scholar]
- Bogolubov, N.N., Jr.; Prykarpatsky, A.K. Quantum method of generating Bogolubov functionals in statistical physics: Current Lie algebras, their representations and functional equations. Phys. Elem. Part. At. Nucl. 1986, 17, 791–827. [Google Scholar]
- Reed, M.; Simon, B. Theory of Operators, v.3; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Albeverio, S.; Kondratiev, Y.G.; Streit, L. How to Generalize White Noice Analysis to Non-Gaussian Measures; Bi-Bo-S: Bielefeld, Germany, 1992. [Google Scholar]
- Albeverio, S.; Daletsky, A.; Kondratiev, Y.; Lytvynov, E. Laplace operators in de-Rham complexes associated with measures on configuration spaces. J. Geom. Phys. 2003, 47, 259–302. [Google Scholar] [CrossRef] [Green Version]
- Aref’eva, I.Y. Current formalism in nonrelativistic quantum mechanics. Theoret. Math. Phys. 1972, 10, 146–155. [Google Scholar] [CrossRef]
- Parthasarathy, K.R. Introduction to Probability and Measure; Hindustan Book Agency: New Delhi, India, 2005. [Google Scholar]
- Goldin, G.A.; Sharp, D.H. Rotational generators in two-dimensional space and particles obeying unusual statistics. Phys. Rev. D 1983, 28, 830–832. [Google Scholar] [CrossRef]
- Araki, H. Hamiltonian Formalism and the Canonical Commutation Relations in Quantum Field Theory. J. Math. Phys. 1960, 1, 492–504. [Google Scholar] [CrossRef]
- Menikoff, R. Generating functionals determining representation of a nonrelativistic local current algebra in the N/V-limit. J. Math. Phys. 1974, 15, 1394–1408. [Google Scholar] [CrossRef]
- Menikoff, R.; Sharp, D. Representation of a local current algebra: Their dynamical determination. J. Math. Phys. 1975, 16, 2341–2352. [Google Scholar] [CrossRef]
- Campbell, C.E. Extended Jastrow functions. Phys. Lett. 1973, 44, 471–477. [Google Scholar] [CrossRef]
- Feenberg, E. Ground state of an interacting boson system. Ann. Phys. 1974, 84, 128–137. [Google Scholar] [CrossRef]
- Berezansky, Y.M. A generalization of white noice analysis by means of theory of hypergroups. Rep. Math. Phys. 1996, 38, 289–300. [Google Scholar] [CrossRef]
- Prykarpatsky, A.K.; Bogoliubov, N.N., Jr.; Golenia, J. A symplectic generalization of the Peradzyński helicity theorem and some applications. Int. J. Theor. Phys. 2008, 47, 1919–1928. [Google Scholar] [CrossRef]
- Beckenbach, E.F.; Bellman, R. Inequalities; Springer: Berlin/Heidelberg, Germany, 1961. [Google Scholar]
- Friedrichs, K. Spektraltheorie halbbeschränkter Operatoren I–III. Math. Ann. 1934, 109, 465–487, 685–713. [Google Scholar] [CrossRef]
- Kato, T. Perturbations Theory of Linear Operators; Springer: Berlin/Heidelberg, Germany, 1966. [Google Scholar]
- Reed, M.; Simon, B. Functional Analysis, v.1; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Bogolubov, N.N. Problems of Dynamical Theory in Statistical Physics; Geophysics Research Directorate, AF Cambridge Research Laboratories, Air Force Research Division, United States Air Force: Washington, DC, USA, 1960. [Google Scholar]
- Onofri, E. A note on coherent state representations of Lie groups. J. Math. Phys. 1975, 16, 1087. [Google Scholar] [CrossRef]
- Twareque-Ali, S.; Antoine, J.-P.; Gazeau, J.-P.; Mueller, U.A. Coherent states and their generalizations: A mathematical overview. Rev. Math. Phys. 1995, 7, 1013–1104. [Google Scholar] [CrossRef]
- Schrëdinger, E. Der stetige Ubergang von der Mikro-zur Makromechanik. Naturwiss 1926, 14, 664–666. [Google Scholar] [CrossRef]
- Glauber, R.J. Quantum Theory of Optical Coherence; Selected Papers and Lectures; Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar]
- Klauder, J.R. Continuous-representation theory. I. Postulates of continuousrepresentation theory. J. Math. Phys. 1963, 4, 1055–1058. [Google Scholar] [CrossRef]
- Klauder, J.R. Continuous-representation theory. II. Generalized relation between quantum and classical dynamics. J. Math. Phys. 1963, 4, 1058–1073. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Klauder, J.R.; Skagerstam, B.S. Coherent States—Applications in Physics and Mathematical Physics; World Scientific: Singapore, 1985. [Google Scholar]
- Perelomov, A.M. Coherent States for Arbitrary Lie Group. Commun. Math. Phys. 1972, 26, 222–236. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, R. Geometry of symmetrized states. Ann. Phys. 1972, 74, 391–463. [Google Scholar] [CrossRef]
- Gilmore, R. On properties of coherent states. Rev. Mex. Fis. 1974, 23, 143–187. [Google Scholar]
- Von Neumann, J. Mathematische Grundlagen der Quanten Mechanik; Springer: Berlin/Heidelberg, Germany, 1932. [Google Scholar]
- Weyl, H. The Theory of Groups and Quantum Mechanics; Dover: Mineola, NY, USA, 1931. [Google Scholar]
- Valatin, J.G. Comments on the theory of superconductivity. Nuovo Cim. 1958, 7, 843–857. [Google Scholar] [CrossRef]
- Bogolubov, N.N., Jr.; Blackmore, D.; Prykarpatski, A.K. The Lagrangian and Hamiltonian Aspects of the Electrodynamic Vacuum-Field Theory Models. Boson J. Mod. Phys. 2016, 2, 105–196. [Google Scholar]
- Onofri, E.; Pauri, M. Dynamical Quantization. J. Math. Phys. 1972, 13, 533. [Google Scholar] [CrossRef]
- Bargmann, V. On a Hilbert space of analytic functions and an associated integral transform, Part I, Commun. Pure Appl. Math. 1961, 14, 187–214. [Google Scholar] [CrossRef]
- Sontz, S.B. On the reproducing kernel of the Segal-Bargmann space. J. Math. Phys. 1999, 40, 1664–1676. [Google Scholar] [CrossRef]
- Szafraniec, F.H. Przestrzenie Hilberta z Jadrem Reprodukcyjnym; Jagiellonian University Publisher: Kraków, Poland, 2004. [Google Scholar]
- Rudin, W. Functional Analysis; International Series in Pure and Applied Mathematics, McGraw-Hill Series in Higher Mathematics; Tata McGraw-Hill: New York, NY, USA, 1974. [Google Scholar]
- Kondratiev, Y.G.; Streit, L.; Westerkamp, W.; Yan, J.-A. Generalized Functions in Infinite Dimensional Analysis. Hiroshima Math. J. 1998, 28, 213–260. [Google Scholar] [CrossRef]
- Lytvynov, E.W.; Rebenko, A.L.; Shchepaniuk, G.V. Wick calculus on spaces of generalized functions compound Poisson white noise. Rep. Math. Phys. 1997, 39, 219–247. [Google Scholar] [CrossRef]
- Kowalski, K.; Steeb, W.-H. Symmetries and first integrals for nonlinear dynamical systems: Hilbert space approach. I. Prog. Theor. Phys. 1991, 85, 713–722. [Google Scholar] [CrossRef]
- Kostant, B. Quantization and representation. Lond. Math. Soc. Lect. Notes Ser. A 1979, 34, 287–316. [Google Scholar]
- Novikov, S.P. Theory of Solitons: The Inverse Scattering Method (Monographs in Contemporary Mathematics); Springer: Berlin/Heidelberg, Germany, 1984. [Google Scholar]
- Bogolyubov, N.N., Jr.; Prikarpatskii, A.K. A bi-local periodic problem for the Sturm-Liouville and Dirac operators and some applications to the theory of nonlinear dynamical systems. Ukr. Math. J. 1990, 42, 702–707. [Google Scholar] [CrossRef]
- Fil, B.N.; Prikarpatskii, A.K.; Pritula, N.N. Quantum Lie algebra of currents—The universal algebraic structure of symmetries of completely integrable dynamical systems. Ukr. Math. J. 1988, 40, 645–649. [Google Scholar] [CrossRef]
- Bogolyubov, N.N., Jr.; Prikarpatskii, A.K. Complete integrability of the nonlinear Ito and Benney-Kaup systems: Gradient algorithm and Lax representation. Theor. Math. Phys. 1986, 67, 586–596. [Google Scholar] [CrossRef]
- Bogolyubov, N.N., Jr.; Prikarpatskii, A.K. Bogolyubov generating functional method in statistical mechanics and the analog of the transformation to collective variables. Theor. Math. 1986, 66, 305–317. [Google Scholar] [CrossRef]
- Bogolyubov, N.N., Jr.; Prikarpatskii, A.K.; Kurbatov, A.M.; Samoilenko, V.G. Nonlinear model of Schrëdinger type: Conservation laws, Hamiltonian structure, and complete integrability. Theor. Math. Phys. 1985, 65, 1154–1164. [Google Scholar] [CrossRef]
- Bogolyubov, N.N., Jr.; Prikarpatskii, A.K. A bilocal periodic problem for Sturm–Liouville and Dirac differential operators, and some applications in the theory of nonlinear dynamical systems. Dokl. Math. 1990, 41, 21–25. [Google Scholar]
- Bogolyubov, N.N., Jr.; Prikarpatskii, A.K. The N.N. Bogolubov generating functional method in statistical mechanics and a collective variables transform analog. Theor. Math. Phys. 1986, 66, 463–480. (In Russian) [Google Scholar] [CrossRef]
- Gelfand, I.M.; Fuchs, D.B. Cohomology of the Lie algebra of vector fields on the circle. Funct. Anal. Appl. 1968, 2, 342–343. [Google Scholar] [CrossRef]
- Olver, P. Applications of Lie Groups to Differential Equations; Graduate Texts in Mathematics Series 107; Springer: New York, NY, USA, 1986. [Google Scholar]
- Fuchssteiner, B.; Fokas, A.S. Symplectic structures, their Bäcklund transformations and hereditary symmetries. Phys. Nonlinear Phenom. 1981, 4, 47–66. [Google Scholar] [CrossRef]
- Abraham, R.; Marsden, J. Foundations of Mechanics, 2nd ed.; Benjamin Cummings: San Francisco, CA, USA, 2008. [Google Scholar]
- Godbillon, C. Geometrie Differentielle et Mecanique Analytique; Hermann: Paris, France, 1969. [Google Scholar]
- Sidorenko, Y.N.; Prikarpatskii, A.K. Periodic problem for nonlinear Ablowitz model. J. Sov. Math. 1993, 65, 1921–1927. [Google Scholar] [CrossRef]
- Sidorenko, Y.N. Elliptic bundles and generating operators. Zap. Nauchn. Semin. LOMI 1987, 161, 76–87. [Google Scholar] [CrossRef]
- Lax, P.D. Periodic solutions of the Korteweg-de Vries equation. Comm. Pure Appl. Math. 1968, 21, 467–490. [Google Scholar] [CrossRef]
- Cartan, A. Differential Forms; Dover Publisher: Mineola, NY, USA, 1971. [Google Scholar]
- Kaup, D.; Newell, A.C. An exact solution for a derivative nonlinear Schrëdinger equation. J. Math. Phys. 1987, 19, 798–801. [Google Scholar] [CrossRef]
- Fokas, A.S.; Santini, P.M. BiHamiltonian formulation of the Kadomtsev–Petviashvili and Benjamin–Ono equations. J. Math. Phys. 1988, 29, 604–617. [Google Scholar] [CrossRef]
- Prykarpatskyj, A.K.; Samoilenko, V.H.; Andrushkiw, R.I. Algebraic structure of the gradient-holonomic algorithm for Lax integrable nonlinear dynamical systems. II. The reduction via Dirac and canonical quantization procedure. J. Math. Phys. 1994, 35, 4088–4116. [Google Scholar] [CrossRef]
- Hentosh, O.E.; Balinsky, A.A.; Prykarpatski, A.K. Poisson structures on (non) associative noncommutative algebras and integrable Kontsevich type Hamiltonian systems. Ann. Math. Phys. 2020, 3, 001–006. [Google Scholar]
- Lapointe, L.; Vinet, L. Exact operator solution of the Calogero-Sutherland model. Commun. Math. Phys. 1996, 178, 425–452. [Google Scholar] [CrossRef] [Green Version]
- Sergeev, A.N.; Veselov, A.P. Dunkl operators at infinity and Calogero–Moser systems. arXiv 2013, arXiv:1311.0853. [Google Scholar] [CrossRef] [Green Version]
- An-Chun, J.; Qing, S.; Xie, X.C.; Liu, W.M. Josephson Effect for Photons in Two Weakly Linked Microcavities. Phys. Rev. Lett. 2009, 102, 023602. [Google Scholar]
- Sklyanin, E.K. Quantum version of the method of inverse scattering problem, Differential geometry, Lie groups and mechanics. Part III. J. Sov. Math. 1982, 19, 1546–1596. [Google Scholar] [CrossRef]
- Sklyanin, E.K.; Takhtadzhyan, L.A.; Faddeev, L.D. Quantum inverse problem method. I. Theoret. Math. Phys. 1979, 40, 688–706. [Google Scholar] [CrossRef]
- Dunkl, C.F. Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 1989, 311, 167–183. [Google Scholar] [CrossRef]
- Aniceto, I.; Avan, J.; Jevicki, A. Poisson structures of Calogero–Moser and Ruijsenaars–Schneider models. J. Phys. A Math. Theor. 2010, 43, 185201. [Google Scholar] [CrossRef] [Green Version]
- Pardee, W.J.; Schlessinger, L. Wright. J. Phys Rev. 1968, 165, 1883. [Google Scholar]
- Kac, M. Some Stochastic Problems in Physics and Mathematics, Colloquium Lectures in Pure and Applied Science; Magnolia Petroleum Co.: Galveston, TX, USA, 1956; Volume 2. [Google Scholar]
- Bogolubov, N.N.; Shirkov, D.V. Introduction to the Theory of Quantizerd Fields; Interscience: New York, NY, USA, 1959; 479p. [Google Scholar]
- Balescu, R. Equilibrium and Non-Equilibrium Statistical Mechanics; Wiley: Hoboken, NJ, USA, 1975. [Google Scholar]
- Bogolyubov, N.N. Problems of Dynamical Theory in Statistical Physics; Moscow-Leningrad GITTL (State Publishing House for Technical and Theoretical Literature): Moscow, Russia, 1946. [Google Scholar]
- Bohm, D. The General Collective Variables Theory; Mir: Moscow, Russia, 1964; 187p. (In Russian) [Google Scholar]
- Prykarpatsky, A.K.; Kaleniuk, P.I. Gibbs representations of current Lie algebra and quantum functional Bogoliubov equation. Dokl. Acad. Nauk USSR 1988, 301, 871–876. [Google Scholar]
- Prykarpatsky, A.K. The NN Bogolubov generating functional method in statistical mechanics and a collective variables transform analog within the grand canonical ensemble. Dokl. SSSR 1985, 285, 1096–1101. (In Russian) [Google Scholar]
- Vladimirov, V.S. Generalized Functions in Mathematical Physics; Nauka: Moscow, Russia, 1979; 319p. (In Russian) [Google Scholar]
- Granas, A.; Dugunji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003; 564p. [Google Scholar]
- Akhiezer, A.I.; Peletminsky, S.V. Methods of Statistical Physics; Pergamon Press: Oxford, UK, 2013. [Google Scholar]
- Bogolubov, N.N., Jr.; Sadovnikov, B.J.; Shumovsky, A.S. Mathematical Methods of Statistical Mechanical Model Systems; CRC: Boca Raton, FL, USA, 1984. [Google Scholar]
- Petrina, D.Y.; Gerasimenko, V.I.; Malyshev, P.V. Mathematical Foundations of Classical Statistical Mechanics; CRC Press Publisher: Boca Raton, FL, USA, 2002. [Google Scholar]
- Berezin, F.A.; Sushko, V.N. Relativistic two-dimensional model of a melf-interacting fermion field with non-vanishing rest mass. Sov. Phys. JETP 1965, 21, 865–873. [Google Scholar]
- Tsvetkov, A.A. Integrals of the nonlinear quantum Schrëdinger equation and the trace of the resolvent of the Dirac operator. Funkt. Anal. Appl. 1981, 15, 92–93. [Google Scholar] [CrossRef]
- Tsvetkov, A.A. On a family of commutative Wick symbols. Theor. Math. Phys. 1981, 47, 302–309. [Google Scholar] [CrossRef]
- Bogolubov, N.N., Jr.; Sadovnikov, B.I. Some Problems of Statistical Mechanics; Vyshaya Shkola Publisher: Minsk, Belarus, 1975. [Google Scholar]
- Gibbon, J. Collisionless Boltzmann equations and integrable moment equations. Physica 1981, 3, 502–511. [Google Scholar] [CrossRef]
- Bogolubov, N.N. Microscopic solutions of the Boltzmann-Enskog equation in kinetic theory for elastic balls. Theor. Math. Phys. 1975, 24, 804–807. [Google Scholar] [CrossRef]
- Bazarov, I.P.; Gevorkian, E.V.; Nikolaev, P.N. Nonequilibrium Thermodynamics and Physical Kinetics; Moscow University Press: Moscow, Russia, 1989. [Google Scholar]
- Bogolubov, N.N., Jr.; Prykarpatsky, A.K.; Samoilenko, V.H. Hamiltonian Structure of Hydrodynamical Benney Type Equations and Associated with Them Boltzmann-Vlasove Equations on Axis; Preprint of the Institute of Mathematics of NAS of Ukraine: Kiev, Ukraine, 1991; Volume 91, p. 25. [Google Scholar]
- Chapman, S.; Cowling, T. Mathematical Theory of Non-Uniform Gases; Cambridge University Press: London, UK; New York, NY, USA, 1952. [Google Scholar]
- Libov, R. Introduction to the Theory of Kinetic Equations; Wiley: Hoboken, NJ, USA, 1969. [Google Scholar]
- Mendes, R.V. Current algebra, statistical mechanics and quantum models. arXiv 2017, arXiv:1711.03027v1. [Google Scholar]
- Bardos, C.; Besse, N. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits. Kinet. Relat. Model. 2013, 6, 893–917. [Google Scholar] [CrossRef]
- Boglolubov, N.N., Jr.; Brankov, J.G.; Zagrebnov, V.A.; Kurbatov, A.M.; Tonchev, N.S. Approximating Hamiltonian Method in Statistical Physics; Bulgarian Academy of Sciences Publ.: Sophia, Bulgaria, 1981. [Google Scholar]
- Daletsky, Y.L.; Kadobyansky, R.M. The Poisson structures hierarchy and interacting ststems dynamics. Proceed. Ukr. Sci. 1994, 8, 21–26. [Google Scholar]
- Ivankiv, L.I.; Prykarpatski, A.K.; Samulyak, R.V. Non-Equilibrium Statistical Mechanics of Many-Particle Systems in Bounded Domain with Surface Peculiarities and Adsorption Phenomenon; Preprint N1-92, Institute for applied Problems of Mechanics and Mathematics of NASU: Lviv, Ukraine, 1992. [Google Scholar]
- Kozlov, V.V. Thermal Equilibrium in the Sense of Gibbs and Poincare; Inst. Komp’yut. Issled. Publisher: Izhevsk, Russia, 2002. [Google Scholar]
- Kozlov, V.V. Gibbs Ensembles and Nonequilibrium Statistical Mechanics; Regulyarnaya i Khaoticheskaya Dinamika Publisher: Izhevsk, Russia, 2008. [Google Scholar]
- Kozlov, V.V. The Vlasov kinetic equation, dynamics of continuum and turbulence. Regul. Chaotic Dyn. 2011, 16, 602–622. [Google Scholar] [CrossRef]
- Lions, P.L.; Perthame, B. Propagation of Moments and Regularity for the 3-Dimensional Vlasov-Poisson System. Invent. Math. 1991, 105, 415–430. [Google Scholar] [CrossRef]
- Mandjavidze, J.; Sissakian, A. Generating functional method of N.N. Bogolubov and multiple production physics. arXiv 2000, arXiv:hep-ph/0003039v1. [Google Scholar]
- Marsden, J.E.; Morrison, P.J.; Weinstein, A. The Hamiltonian structure of the BBBGKY hierarchy equations. Contemp. Math. 1984, 28, 115–124. [Google Scholar]
- Mikhaylov, A.I. The functional mechanics: Evolution of the moments of distribution function and the Poincare recurrence theorem. Vestn. Samar. Gos. Tekh. Univ. Fiz.-Mat. Nauk. 2011, 1, 124–133. [Google Scholar] [CrossRef]
- Mikhaylov, A.I. The functional mechanics: Evolution of the moments of distribution function and the Poincare recurrence theorem. P-Adic Numbers Ultrametr. Anal. Appl. 2011, 3, 205–211. [Google Scholar] [CrossRef]
- Trushechkin, A.S. Microscopic solutions of kinetic equations and the irreversibility problem. Proc. Steklov Inst. Math. 2014, 285, 251–274. [Google Scholar] [CrossRef]
- Villani, C. A review of mathematical topics in collisional kinetic theory. In Handbook of Mathematical Fluid Dynamics; Friedlander, S., Serre, D., Eds.; Elsevier Science Publisher: Amsterdam, The Netherlands, 2002; Volume 1. [Google Scholar]
- Volovik, G.E. Poisson bracket scheme for vortex dynamics in superfluids and superconductors and the effect of the band structure of the crystal. J. Exp. Theor. Phys. Lett. 1996, 64, 845–852. [Google Scholar] [CrossRef] [Green Version]
- Kruglikov, B.; Morozov, O. Integrable dispersionless PDE in 4D, their symmetry pseudogroups and deformations. arXiv 2015, arXiv:1410.7104v2. [Google Scholar] [CrossRef] [Green Version]
- Zubarev, D.N. Nonequilibrium Statistical Thermodynamics; Consultants Bureau: New York, NY, USA, 1974. [Google Scholar]
- Vlasov, A.A. Statistical Distribution Functions; Nauka Publisher: Moscow, Russia, 1966. [Google Scholar]
- Arnold, V.I. Mathematical Methods of Classical Mechanics; Springer: New York, NY, USA, 1978. [Google Scholar]
- Bogolyubov, N.N., Jr.; Prikarpatskii, A.K.; Samoilenko, V.G. Bogolyubov’s functional equation and the Lie-poisson-Vlasov symplectic structure associated with it. Ukr. Math. J. 1986, 38, 654–657. [Google Scholar] [CrossRef]
- Mokhov, O.I. Symplectic and Poisson Geometry on Loop Spaces of Smooth Manifolds and Integrable Equations; Cambridge Scientific Publishers: Cottenham, UK, 2008. [Google Scholar]
- Prykarpatsky, Y.A. Canonical reduction on cotangent symplectic manifolds with group action and on associated principal bundles with connections. J. Nonlinear Oscil. 2006, 9, 96–106. [Google Scholar] [CrossRef]
- Bogoliubov, N.N.; Blackmore, D.; Prykarpatsky, A.K. On Benney Type Hydrodynamical Systems and Their Boltzmann-Vlasov Equations Kinetic Models. Preprint IC/2006/006. The Abdus Salam International Center for Theoretical Physics, United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency. Available online: http://www.ictp.it/pub_off (accessed on 1 December 2021).
- Lebedev, D.R.; Manin, Y.I. Benney’s long wave equations: Lax representation and conservation laws. In Zapiski Nauchnykh Seminarov LOMI.-1980-96; Boundary Value Problems of Mathematical Physics and Adjacent Function Theory Questions; Elsevier: Amsterdam, The Netherlands, 2019; pp. 169–178. (In Russian) [Google Scholar]
- Marsden, J.; Chorin, A. Mathematical Foundations of the Mechanics of Liquid; Springer: New York, NY, USA, 1993. [Google Scholar]
- Chernoff, P.R.; Royden, H.F. The equation ∂f/∂dx = ∂f/∂y. Am. Math. Mon. 1975, 82, 530–531. [Google Scholar] [CrossRef]
- Montel, P. Sur differentielles totales et les fontions monogenes. CR Acad. Sci. Paris 1913, 156, 1820–1822. [Google Scholar]
- Tolstoff, G. Sur la differentielle totale. Recl. Math. 1941, 9, 461–468. [Google Scholar]
- Ebin, D.; Marsden, J. Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math. 1970, 125, 102–163. [Google Scholar] [CrossRef]
- Kambe, T. Geometric theory of fluid flows and dynamical systems. Fluid Dyn. Res. 2002, 30, 331–378. [Google Scholar] [CrossRef]
- Arnold, V.I.; Khesin, B.A. Topological Methods in Hydrodynamics; Springer: New York, NY, USA, 1998. [Google Scholar]
- Holm, D.; Marsden, J.; Ratiu, T.; Weinstein, A. Nonlinear stability of fluid and plasma equilibria. Phys. Rep. 1985, 123, 1–116. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, E.A.; Mikhailov, A.V. On the topological meaning of canonical Clebsch variables. Phys. Lett. A 1980, 77, 37–38. [Google Scholar] [CrossRef]
- Henyea, F. Gauge groups and Noether’s theorem for continuum mechanics. AIF Conf. Proc. 1982, 88, 85–90. [Google Scholar]
- Warner, F.W. Foundations of Diffderentiable Manifolds and Lie Groups; Springer: New York, NY, USA, 1983. [Google Scholar]
- Huang, K. Statistical Mechanics; John Wiley and Sons Inc.: New York, NY, USA; London, UK, 1963. [Google Scholar]
- Minlos, R.A. Introduction to Mathematical Statistical Physics; University Lecture Series 19; American Mathematical Society: Providence, RI, USA, 1999. [Google Scholar]
- Holm, D.; Kupershmidt, B. Superfluid plasmas: Multivelocity nonlinear hydrodynamics of superfluid solutions with charged condensates coupled electromagnetically. Phys. Rev. 1987, 36, 3947–3956. [Google Scholar] [CrossRef]
- Moffat, H.K. The degree of knottedness of tangled vortex lines. J. Fluid Mech. 1969, 35, 117–129. [Google Scholar] [CrossRef]
- Kulish, P.P. An Analogue of the Korteweg-de Vries Quation for the Superconformal Algebra, Differential Geometry, Lie Groups and Mechanics. Zap. Nauchnykh Semin. POMI 1986, 155, 142–149. [Google Scholar]
- Ovsienko, V. Bi-Hamilton nature of the equation utx = uxyuy − uyyux. arXiv 2008, arXiv:0802.1818v1. [Google Scholar]
- Mikhalev, V.G. On the Hamiltonian formalism for Korteweg-de Vries type hierarchies. Funct. Anal. Its Appl. 1992, 26, 140–142. [Google Scholar] [CrossRef]
- Misiolek, G. A shallow water equation as a geodesic flow on the Bott-Virasoro group. J. Geom. Phys. 1998, 24, 203–208. [Google Scholar] [CrossRef]
- Sheftel, M.B.; Malykh, A.A.; Yazıcı, D. Recursion operators and bi-Hamiltonian structure of the general heavenly equation. arXiv 2016, arXiv:1510.03666v3. [Google Scholar] [CrossRef] [Green Version]
- Hentosh, O.E.; Prykarpatsky, Y.A.; Blackmore, D.; Prykarpatski, A.K. Pfeiffer-Sato solutions of Buhl’s problem and a Lagrange-D’Alembert principle for Heavenly equations. In Nonlinear Systems and Their Remarkable Mathematical Structures; Euler, N., Ed.; CRC Press: Boca Raton, FL, USA, 2018; pp. 187–232. ISBN 9780429470462. [Google Scholar]
- Hentosh, O.Y.; Prykarpatsky, Y.A.; Blackmore, D.; Prykarpatski, A. Generalized Lie-algebraic structures related to integrable dispersionless dynamical systems and their application. J. Math. Sci. Model. 2018, 1, 105–130. [Google Scholar] [CrossRef] [Green Version]
- Hentosh, O.Y.; Prykarpatsky, Y.A.; Blackmore, D.; Prykarpatski, A. Lie-algebraic structure of Lax–Sato integrable heavenly equations and the Lagrange–d’Alembert principle. J. Geom. Phys. 2017, 120, 208–227. [Google Scholar] [CrossRef]
- Prykarpatski, A.K. On the Linearization Covering Technique and its Application to Integrable Nonlinear Differential Systems. Symmetry Integr. Geom. Methods Appl. 2018, 14, 023. [Google Scholar] [CrossRef]
- Prykarpatskyy, Y. On the Integrable Chaplygin Type Hydrodynamic Systems and Their Geometric Structure. Symmetry 2020, 12, 697. [Google Scholar] [CrossRef]
- Doubrov, B.; Ferapontov, E.V. On the integrability of symplectic Monge-Ampère equations. J. Geom. Phys. 2010, 60, 1604–1616. [Google Scholar] [CrossRef] [Green Version]
- Ferapontov, E.V.; Moss, J. Linearly degenerate PDEs and quadratic line complexes. arXiv 2012, arXiv:1204.2777v1. [Google Scholar]
- Prykarpatski, A.K.; Hentosh, O.E.; Prykarpatsky, A.K. Geometric Structure of the Classical Lagrange-d’Alembert Principle and its Application to Integrable Nonlinear Dynamical Systems. Mathematics 2017, 5, 75. [Google Scholar] [CrossRef] [Green Version]
- Hertling, C. Frobenius Manifolds and Moduli Spaces for Singularities; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Pressley, A.; Segal, G. Loop Groups; Clarendon Press: London, UK, 1986. [Google Scholar]
- Audin, M. Lectures on gauge theory and integrable systems. In Gauge Theory and Symplectic Geometry; Hurtubise, J., Lalonde, F., Eds.; Kluwer: Alphen aan den Rijn, The Netherlands, 1997; pp. 1–48. [Google Scholar]
- Ovsienko, V.; Roger, C. Looped Cotangent Virasoro Algebra and Non-Linear Integrable Systems in Dimension 2 + 1. Commun. Math. Phys. 2007, 273, 357–378. [Google Scholar] [CrossRef] [Green Version]
- Plebański, J.F. Some solutions of complex Einstein equations. J. Math. Phys. 1975, 16, 2395–2402. [Google Scholar] [CrossRef]
- Dunajski, M. Anti-self-dual four-manifolds with a parallel real spinor. Proc. Roy Soc. A 2002, 458, 1205. [Google Scholar] [CrossRef] [Green Version]
- Dunajski, M.; Mason, L.J.; Tod, P. Einstein-Weyl geometry, the dKP equation and twistor theory. J. Geom. Phys. 2001, 37, 63–93. [Google Scholar] [CrossRef] [Green Version]
- Manakov, S.V.; Santini, P.M. On the solutions of the second heavenly and Pavlov equations. J. Phys. A Mat. Theor. 2009, 42, 404013. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, M.V. Integrable hydrodynamic chains. J. Math. Phys. 2003, 44, 4134–4156. [Google Scholar] [CrossRef] [Green Version]
- Schief, W.K. Self-dual Einstein spaces via a permutability theorem for the Tzitzeica equation. Phys. Lett. A 1996, 223, 55–62. [Google Scholar] [CrossRef]
- Schief, W.K. Self-dual Einstein spaces and a discrete Tzitzeica equation. A permutability theorem link. In Symmetries and Integrability of Difference Equations; Clarkson, P., Nijhoff, F., Eds.; London Mathematical Society, Lecture Note Series 255; Cambridge University Press: Cambridge, UK, 1999; pp. 137–148. [Google Scholar]
- Takasaki, K.; Takebe, T. SDiff(2) Toda equation— Hierarchy, Tau function, and symmetries. Lett. Math. Phys. 1991, 23, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Takasaki, K.; Takebe, T. Integrable Hierarchies and Dispersionless Limit. Rev. Math. Phys. 1995, 7, 743–808. [Google Scholar] [CrossRef] [Green Version]
- Strachan, I.A.B.; Szablikowski, B.M. Novikov algebras and a classification of multicomponent Camassa-Holm equations. Stud. Appl. Math. 2014, 133, 84–117. [Google Scholar] [CrossRef] [Green Version]
- Sergyeyev, A.; Szablikowski, B.M. Central extensions of cotangent universal hierarrchy: (2+1)-dimensional bi-Hamiltonian systems. Phys. Lett. A 2008, 372, 7016–7023. [Google Scholar] [CrossRef] [Green Version]
- Szablikowski, B. Hierarchies of Manakov-Santini Type by Means of Rota-Baxter and Other Identities. SIGMA 2016, 12, 022. [Google Scholar] [CrossRef] [Green Version]
- Prykarpatski, A.K.; Balinsky, A.A. On Symmetry Properties of Frobenius Manifolds and Related Lie-Algebraic Structures. Symmetry 2021, 13, 979. [Google Scholar] [CrossRef]
- Adler, M. On a trace functional for formal pseudo-differential operators and the symplectic structure of the Korteweg-de Vries equation. Invent. Math. 1979, 50, 219–248. [Google Scholar] [CrossRef]
- Semenov-Tian-Shansky, M. What is a classical R-matrix? Funct. Anal. Appl. 1983, 17, 259–272. [Google Scholar] [CrossRef]
- Hentosh, O.E.; Prykarpatsky, Y.A.; Balinsky, A.A.; Prykarpatski, A.K. The dispersionless completely integrable heavenly type Hamiltonian flows and their differential-geometric structure. Ann. Math. Phys. 2019, 2, 011–025. [Google Scholar] [CrossRef]
- Thirring, W. Classical Mathematical Physics, 3rd ed.; Springer: Berlin, Germany, 1992. [Google Scholar]
- Alonso, L.M.; Shabat, A.B. Hydrodynamic reductions and solutions of a universal hierarchy. Theoret. Math. Phys. 2004, 104, 1073–1085. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prykarpatski, A.K. Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems. Universe 2022, 8, 288. https://doi.org/10.3390/universe8050288
Prykarpatski AK. Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems. Universe. 2022; 8(5):288. https://doi.org/10.3390/universe8050288
Chicago/Turabian StylePrykarpatski, Anatolij K. 2022. "Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems" Universe 8, no. 5: 288. https://doi.org/10.3390/universe8050288
APA StylePrykarpatski, A. K. (2022). Quantum Current Algebra in Action: Linearization, Integrability of Classical and Factorization of Quantum Nonlinear Dynamical Systems. Universe, 8(5), 288. https://doi.org/10.3390/universe8050288