ALPINE: A Large Survey to Understand Teenage Galaxies
Abstract
:1. Introduction
- contribution of obscured star formation to the cosmic SFR density;
- gas reservoirs and modes of star formation;
- enrichment of the circumgalactic medium (CGM) via outflows from galaxies;
- mixture of kinematic structure, emergence of rotators, and merger rates;
- abundance of “UV-dark” sources detected serendipitously at high redshifts.
2. ALPINE—The Largest Post-Reionization Multiwavelength Survey
2.1. Sample and Observations
2.2. Overview of ALPINE’s Research Topics
3. Results
3.1. C and Far-Infrared Continuum Luminosity Function
3.1.1. The C Luminosity Function
3.1.2. The Total Far-Infrared Luminosity Function
3.2. Is C a Good Tracer of Star Formation at ?
3.3. SFR Density, Main-Sequence, and Dust Abundance across Cosmic Time
3.4. Gas Reservoirs and Baryon Cycle at
3.4.1. Gas Fractions, Depletion Times, and Large Range in Gas Properties
3.4.2. Enrichment of the IGM at z∼4–6
3.5. Contribution of Mergers to Mass Assembly and the Emergence of Rotators
4. Discussion
5. Conclusions
- The demographics of z∼5 C-emitters, i.e., LF, is quantified for the first time by the ALPINE main and serendipitous samples. This study shows evidence of a possible much higher volume density of luminous C-emitters at z∼5 than that of z∼0.
- The C emission is a good tracer of total SFR for main-sequence galaxies at z∼5. The relation is consistent with what was found at lower redshifts (including local galaxies). This suggests no significant evolution of the C−SFR relation across cosmic time up to for main-sequence galaxies at this stellar mass.
- Significant dust attenuation (45–65%) is found in the most massive () galaxies, together with a significant number of “UV/optical-dark” galaxies at 4–6. This shows that UV-selected samples miss a dusty population of galaxies even at . The most massive galaxies still challenge current models of dust production.
- The gas fraction of main-sequence galaxies increases out to and follows in shape the evolution of the sSFR. While the gas fraction evolves significantly, the star-formation efficiency does not; hence, it is suggested to contribute little to the increased star-formation activity in high-z galaxies.
- Outflows are ubiquitous in highly star-forming main-sequence galaxies and may contribute to enriching the IGM with metals. Enriched IGM is also suggested by extended C emission halos around the galaxies.
- The morpho-kinematic selection of major mergers suggests an increase of galaxy interactions at 4–6. Adopting state-of-the-art estimates of merger timescales, major mergers contribute at most to the galaxy mass assembly at that epoch.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The C emission was estimated from the vs. relation from Capak et al. [31]. |
2 | http://www.cfht.hawaii.edu/~arnouts/lephare.html, accessed on 23 May 2022 |
3 | The IRX relation relates the rest-UV continuum slope (, described in Faisst et al. [26]) to the (IRX) luminosity ratio. |
4 | The method is implemented in the Python package linmix at https://github.com/jmeyers314/linmix, accessed on 23 May 2022. |
5 | Note that all of these relations have been calibrated to the same IMF. |
6 | with the total SFR derived from the infrared and UV SFRs. |
7 | Radius from phase center where primary beam attenuation is <. |
References
- Ciotti, L.; Ostriker, J.P. Cooling Flows and Quasars: Different Aspects of the Same Phenomenon? I. Concepts. Astrophys. J. 1997, 487, L105–L108. [Google Scholar] [CrossRef] [Green Version]
- Ilbert, O.; Salvato, M.; Le Floc’h, E.; Aussel, H.; Capak, P.; McCracken, H.J.; Mobasher, B.; Kartaltepe, J.; Scoville, N.; Sanders, D.B.; et al. Galaxy Stellar Mass Assembly Between 0.2 < z < 2 from the S-COSMOS Survey. Astrophys. J. 2010, 709, 644–663. [Google Scholar] [CrossRef] [Green Version]
- Cheung, E.; Bundy, K.; Cappellari, M.; Peirani, S.; Rujopakarn, W.; Westfall, K.; Yan, R.; Bershady, M.; Greene, J.E.; Heckman, T.M.; et al. Suppressing star formation in quiescent galaxies with supermassive black hole winds. Nature 2016, 533, 504–508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodighiero, G.; Daddi, E.; Baronchelli, I.; Cimatti, A.; Renzini, A.; Aussel, H.; Popesso, P.; Lutz, D.; Andreani, P.; Berta, S.; et al. The Lesser Role of Starbursts in Star Formation at z = 2. Astrophys. J. 2011, 739, L40. [Google Scholar] [CrossRef] [Green Version]
- Speagle, J.S.; Steinhardt, C.L.; Capak, P.L.; Silverman, J.D. A Highly Consistent Framework for the Evolution of the Star-Forming “Main Sequence” from z∼0–6. Astrophys. J. Suppl. Ser. 2014, 214, 15. [Google Scholar] [CrossRef] [Green Version]
- Bell, E.F.; Wolf, C.; Meisenheimer, K.; Rix, H.W.; Borch, A.; Dye, S.; Kleinheinrich, M.; Wisotzki, L.; McIntosh, D.H. Nearly 5000 Distant Early-Type Galaxies in COMBO-17: A Red Sequence and Its Evolution since z∼1. Astrophys. J. 2004, 608, 752–767. [Google Scholar] [CrossRef] [Green Version]
- Madau, P.; Dickinson, M. Cosmic Star-Formation History. Annu. Rev. Astron. Astrophys. 2014, 52, 415–486. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, P.F.; Somerville, R.S.; Hernquist, L.; Cox, T.J.; Robertson, B.; Li, Y. The Relation between Quasar and Merging Galaxy Luminosity Functions and the Merger-driven Star Formation History of the Universe. Astrophys. J. 2006, 652, 864–888. [Google Scholar] [CrossRef] [Green Version]
- Ho, I.T.; Kudritzki, R.P.; Kewley, L.J.; Zahid, H.J.; Dopita, M.A.; Bresolin, F.; Rupke, D.S.N. Metallicity gradients in local field star-forming galaxies: Insights on inflows, outflows, and the coevolution of gas, stars and metals. Mon. Not. R. Astron. Soc. 2015, 448, 2030–2054. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Genzel, R.; Sternberg, A. The Evolution of the Star-Forming Interstellar Medium Across Cosmic Time. Annu. Rev. Astron. Astrophys. 2020, 58, 157–203. [Google Scholar] [CrossRef]
- Scoville, N.; Lee, N.; Vanden Bout, P.; Diaz-Santos, T.; Sanders, D.; Darvish, B.; Bongiorno, A.; Casey, C.M.; Murchikova, L.; Koda, J.; et al. Evolution of Interstellar Medium, Star Formation, and Accretion at High Redshift. Astrophys. J. 2017, 837, 150. [Google Scholar] [CrossRef]
- Silverman, J.D.; Daddi, E.; Rodighiero, G.; Rujopakarn, W.; Sargent, M.; Renzini, A.; Liu, D.; Feruglio, C.; Kashino, D.; Sanders, D.; et al. A Higher Efficiency of Converting Gas to Stars Pushes Galaxies at z∼1.6 Well Above the Star-forming Main Sequence. Astrophys. J. 2015, 812, L23. [Google Scholar] [CrossRef] [Green Version]
- Conselice, C.J. The Evolution of Galaxy Structure Over Cosmic Time. Annu. Rev. Astron. Astrophys. 2014, 52, 291–337. [Google Scholar] [CrossRef] [Green Version]
- Bouwens, R.J.; Illingworth, G.D.; Oesch, P.A.; Labbé, I.; van Dokkum, P.G.; Trenti, M.; Franx, M.; Smit, R.; Gonzalez, V.; Magee, D. UV-continuum Slopes of <4000 z ~4–8 Galaxies from the HUDF/XDF, HUDF09, ERS, CANDELS-South, and CANDELS-North Fields. Astrophys. J. 2014, 793, 115. [Google Scholar] [CrossRef] [Green Version]
- Elmegreen, D.M.; Elmegreen, B.G.; Whitmore, B.C.; Chandar, R.; Calzetti, D.; Lee, J.C.; White, R.; Cook, D.; Ubeda, L.; Mok, A.; et al. A Comparison of Star-forming Clumps and Tidal Tails in Local Mergers and High-redshift Galaxies. Astrophys. J. 2021, 908, 121. [Google Scholar] [CrossRef]
- Förster Schreiber, N.M.; Shapley, A.E.; Genzel, R.; Bouché, N.; Cresci, G.; Davies, R.; Erb, D.K.; Genel, S.; Lutz, D.; Newman, S.; et al. Constraints on the Assembly and Dynamics of Galaxies. II. Properties of Kiloparsec-scale Clumps in Rest-frame Optical Emission of z∼2 Star-forming Galaxies. Astrophys. J. 2011, 739, 45. [Google Scholar] [CrossRef] [Green Version]
- Le Fèvre, O.; Saisse, M.; Mancini, D.; Brau-Nogue, S.; Caputi, O.; Castinel, L.; D’Odorico, S.; Garilli, B.; Kissler-Patig, M.; Lucuix, C.; et al. Commissioning and performances of the VLT-VIMOS instrument. In Proceedings of the Instrument Design and Performance for Optical/Infrared Ground-Based Telescopes, Waikoloa, HI, USA, 22–28 August 2002; Volume 4841, pp. 1670–1681. [Google Scholar] [CrossRef]
- Le Fèvre, O.; Tasca, L.A.M.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zamorani, G.; et al. The VIMOS Ultra-Deep Survey: ∼10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2<z<6. Astron. Astrophys. 2015, 576, A79. [Google Scholar] [CrossRef] [Green Version]
- Faber, S.M.; Phillips, A.C.; Kibrick, R.I.; Alcott, B.; Allen, S.L.; Burrous, J.; Cantrall, T.; Clarke, D.; Coil, A.L.; Cowley, D.J.; et al. The DEIMOS spectrograph for the Keck II Telescope: Integration and testing. In Proceedings of the Instrument Design and Performance for Optical/Infrared Ground-Based Telescopes, Waikoloa, HI, USA, 22–28 August 2002; Volume 4841, pp. 1657–1669. [Google Scholar] [CrossRef] [Green Version]
- Hasinger, G.; Capak, P.; Salvato, M.; Barger, A.J.; Cowie, L.L.; Faisst, A.; Hemmati, S.; Kakazu, Y.; Kartaltepe, J.; Masters, D.; et al. The DEIMOS 10K Spectroscopic Survey Catalog of the COSMOS Field. Astrophys. J. 2018, 858, 77. [Google Scholar] [CrossRef] [Green Version]
- Bouwens, R.J.; Illingworth, G.D.; Oesch, P.A.; Trenti, M.; Labbé, I.; Bradley, L.; Carollo, M.; van Dokkum, P.G.; Gonzalez, V.; Holwerda, B.; et al. UV Luminosity Functions at Redshifts z∼4 to z∼10: 10,000 Galaxies from HST Legacy Fields. Astrophys. J. 2015, 803, 34. [Google Scholar] [CrossRef] [Green Version]
- Davidzon, I.; Ilbert, O.; Laigle, C.; Coupon, J.; McCracken, H.J.; Delvecchio, I.; Masters, D.; Capak, P.; Hsieh, B.C.; Le Fèvre, O.; et al. The COSMOS2015 galaxy stellar mass function. Thirteen billion years of stellar mass assembly in ten snapshots. Astron. Astrophys. 2017, 605, A70. [Google Scholar] [CrossRef]
- Shim, H.; Chary, R.R.; Dickinson, M.; Lin, L.; Spinrad, H.; Stern, D.; Yan, C.H. z ~4 Hα Emitters in the Great Observatories Origins Deep Survey: Tracing the Dominant Mode for Growth of Galaxies. Astrophys. J. 2011, 738, 69. [Google Scholar] [CrossRef] [Green Version]
- Faisst, A.L.; Capak, P.; Hsieh, B.C.; Laigle, C.; Salvato, M.; Tasca, L.; Cassata, P.; Davidzon, I.; Ilbert, O.; Le Fèvre, O.; et al. A Coherent Study of Emission Lines from Broadband Photometry: Specific Star Formation Rates and [O iii]/Hβ Ratio at 3<z<6. Astrophys. J. 2016, 821, 122. [Google Scholar] [CrossRef] [Green Version]
- Béthermin, M.; Fudamoto, Y.; Ginolfi, M.; Loiacono, F.; Khusanova, Y.; Capak, P.L.; Cassata, P.; Faisst, A.; Le Fèvre, O.; Schaerer, D.; et al. The ALPINE-ALMA [CII] survey: Data processing, catalogs, and statistical source properties. Astron. Astrophys. 2020, 643, A2. [Google Scholar] [CrossRef]
- Faisst, A.L.; Schaerer, D.; Lemaux, B.C.; Oesch, P.A.; Fudamoto, Y.; Cassata, P.; Béthermin, M.; Capak, P.L.; Le Fèvre, O.; Schaerer, D.; et al. The ALPINE-ALMA [C II] Survey: Multiwavelength Ancillary Data and Basic Physical Measurements. Astrophys. J. Suppl. Ser. 2020, 247, 61. [Google Scholar] [CrossRef] [Green Version]
- Le Fèvre, O.; Béthermin, M.; Faisst, A.; Jones, G.C.; Capak, P.; Cassata, P.; Silverman, J.D.; Schaerer, D.; Yan, L.; Amorin, R.; et al. The ALPINE-ALMA [CII] survey. Survey strategy, observations, and sample properties of 118 star-forming galaxies at 4 < z < 6. Astron. Astrophys. 2020, 643, A1. [Google Scholar] [CrossRef]
- Bouwens, R.J.; Illingworth, G.D.; Franx, M.; Chary, R.R.; Meurer, G.R.; Conselice, C.J.; Ford, H.; Giavalisco, M.; van Dokkum, P. UV Continuum Slope and Dust Obscuration from z∼6 to z∼2: The Star Formation Rate Density at High Redshift. Astrophys. J. 2009, 705, 936–961. [Google Scholar] [CrossRef] [Green Version]
- Lutz, D.; Poglitsch, A.; Altieri, B.; Andreani, P.; Aussel, H.; Berta, S.; Bongiovanni, A.; Brisbin, D.; Cava, A.; Cepa, J.; et al. PACS Evolutionary Probe (PEP)—A Herschel key program. Astron. Astrophys. 2011, 532, A90. [Google Scholar] [CrossRef] [Green Version]
- Oliver, S.J.; Bock, J.; Altieri, B.; Amblard, A.; Arumugam, V.; Aussel, H.; Babbedge, T.; Beelen, A.; Béthermin, M.; Blain, A.; et al. The Herschel Multi-tiered Extragalactic Survey: HerMES. Mon. Not. R. Astron. Soc. 2012, 424, 1614–1635. [Google Scholar] [CrossRef] [Green Version]
- Capak, P.L.; Carilli, C.; Jones, G.; Casey, C.M.; Riechers, D.; Sheth, K.; Carollo, C.M.; Ilbert, O.; Karim, A.; Lefevre, O.; et al. Galaxies at redshifts 5 to 6 with systematically low dust content and high [C II] emission. Nature 2015, 522, 455–458. [Google Scholar] [CrossRef]
- Riechers, D.A.; Carilli, C.L.; Capak, P.L.; Scoville, N.Z.; Smolčić, V.; Schinnerer, E.; Yun, M.; Cox, P.; Bertoldi, F.; Karim, A.; et al. ALMA Imaging of Gas and Dust in a Galaxy Protocluster at Redshift 5.3: [C II] Emission in “Typical” Galaxies and Dusty Starbursts ∼1 Billion Years after the Big Bang. Astrophys. J. 2014, 796, 84. [Google Scholar] [CrossRef] [Green Version]
- Barišić, I.; Faisst, A.L.; Capak, P.L.; Pavesi, R.; Riechers, D.A.; Scoville, N.Z.; Cooke, K.C.; Kartaltepe, J.S.; Casey, C.M.; Smolčić, V. Dust Properties of [CII]-detected z∼5.5 Galaxies: New HST/WFC3 near-IR Observations. Astrophys. J. 2017. submitted. [Google Scholar]
- Faisst, A.L.; Capak, P.L.; Yan, L.; Pavesi, R.; Riechers, D.A.; Barišić, I.; Cooke, K.C.; Kartaltepe, J.S.; Masters, D.C. Are High-redshift Galaxies Hot? Temperature of z > 5 Galaxies and Implications for Their Dust Properties. Astrophys. J. 2017, 847, 21. [Google Scholar] [CrossRef] [Green Version]
- Scoville, N.; Aussel, H.; Brusa, M.; Capak, P.; Carollo, C.M.; Elvis, M.; Giavalisco, M.; Guzzo, L.; Hasinger, G.; Impey, C.; et al. The Cosmic Evolution Survey (COSMOS): Overview. Astrophys. J. Suppl. Ser. 2007, 172, 1–8. [Google Scholar] [CrossRef]
- Koekemoer, A.M.; Aussel, H.; Calzetti, D.; Capak, P.; Giavalisco, M.; Kneib, J.P.; Leauthaud, A.; Le Fèvre, O.; McCracken, H.J.; Massey, R.; et al. The COSMOS Survey: Hubble Space Telescope Advanced Camera for Surveys Observations and Data Processing. Astrophys. J. Suppl. Ser. 2007, 172, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Grogin, N.A.; Kocevski, D.D.; Faber, S.M.; Ferguson, H.C.; Koekemoer, A.M.; Riess, A.G.; Acquaviva, V.; Alexander, D.M.; Almaini, O.; Ashby, M.L.N.; et al. CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey. Astrophys. J. Suppl. Ser. 2011, 197, 35. [Google Scholar] [CrossRef]
- Koekemoer, A.M.; Faber, S.M.; Ferguson, H.C.; Grogin, N.A.; Kocevski, D.D.; Koo, D.C.; Lai, K.; Lotz, J.M.; Lucas, R.A.; McGrath, E.J.; et al. CANDELS: The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey—The Hubble Space Telescope Observations, Imaging Data Products, and Mosaics. Astrophys. J. Suppl. Ser. 2011, 197, 36. [Google Scholar] [CrossRef] [Green Version]
- Giacconi, R.; Zirm, A.; Wang, J.; Rosati, P.; Nonino, M.; Tozzi, P.; Gilli, R.; Mainieri, V.; Hasinger, G.; Kewley, L.; et al. Chandra Deep Field South: The 1 Ms Catalog. Astrophys. J. Suppl. Ser. 2002, 139, 369–410. [Google Scholar] [CrossRef] [Green Version]
- Oke, J.B. Absolute Spectral Energy Distributions for White Dwarfs. Astrophys. J. Suppl. Ser. 1974, 27, 21. [Google Scholar] [CrossRef]
- Chabrier, G. Galactic Stellar and Substellar Initial Mass Function. Publ. Astron. Soc. Pac. 2003, 115, 763–795. [Google Scholar] [CrossRef] [Green Version]
- Laigle, C.; McCracken, H.J.; Ilbert, O.; Hsieh, B.C.; Davidzon, I.; Capak, P.; Hasinger, G.; Silverman, J.D.; Pichon, C.; Coupon, J.; et al. The COSMOS2015 Catalog: Exploring the 1 < z < 6 Universe with Half a Million Galaxies. Astrophys. J. Suppl. Ser. 2016, 224, 24. [Google Scholar] [CrossRef] [Green Version]
- Loiacono, F.; Decarli, R.; Gruppioni, C.; Talia, M.; Cimatti, A.; Zamorani, G.; Pozzi, F.; Yan, L.; Lemaux, B.C.; Riechers, D.A.; et al. The ALPINE-ALMA [C II] survey. Luminosity function of serendipitous [C II] line emitters at z ∼ 5. Astron. Astrophys. 2021, 646, A76. [Google Scholar] [CrossRef]
- Carilli, C.L.; Walter, F. Cool Gas in High-Redshift Galaxies. Annu. Rev. Astron. Astrophys. 2013, 51, 105–161. [Google Scholar] [CrossRef] [Green Version]
- De Looze, I.; Cormier, D.; Lebouteiller, V.; Madden, S.; Baes, M.; Bendo, G.J.; Boquien, M.; Boselli, A.; Clements, D.L.; Cortese, L.; et al. The applicability of far-infrared fine-structure lines as star formation rate tracers over wide ranges of metallicities and galaxy types. Astron. Astrophys. 2014, 568, A62. [Google Scholar] [CrossRef] [Green Version]
- Willott, C.J.; Carilli, C.L.; Wagg, J.; Wang, R. Star Formation and the Interstellar Medium in z > 6 UV-luminous Lyman-break Galaxies. Astrophys. J. 2015, 807, 180. [Google Scholar] [CrossRef] [Green Version]
- Maiolino, R.; Nagao, T.; Grazian, A.; Cocchia, F.; Marconi, A.; Mannucci, F.; Cimatti, A.; Pipino, A.; Ballero, S.; Calura, F.; et al. AMAZE. I. The evolution of the mass-metallicity relation at z > 3. Astron. Astrophys. 2008, 488, 463–479. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Camus, R.; Bolatto, A.D.; Wolfire, M.G.; Smith, J.D.; Croxall, K.V.; Kennicutt, R.C.; Calzetti, D.; Helou, G.; Walter, F.; Leroy, A.K.; et al. [C II] 158 μm Emission as a Star Formation Tracer. Astrophys. J. 2015, 800, 1. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Camus, R.; Bolatto, A.; Wolfire, M.; Ostriker, E.; Draine, B.; Leroy, A.; Sandstrom, K.; Hunt, L.; Kennicutt, R.; Calzetti, D.; et al. Thermal Pressure in the Cold Neutral Medium of Nearby Galaxies. Astrophys. J. 2017, 835, 201. [Google Scholar] [CrossRef]
- Pineda, J.L.; Langer, W.D.; Velusamy, T.; Goldsmith, P.F. A Herschel [C ii] Galactic plane survey. I. The global distribution of ISM gas components. Astron. Astrophys. 2013, 554, A103. [Google Scholar] [CrossRef] [Green Version]
- Vallini, L.; Gallerani, S.; Ferrara, A.; Pallottini, A.; Yue, B. On the [CII]-SFR Relation in High Redshift Galaxies. Astrophys. J. 2015, 813, 36. [Google Scholar] [CrossRef]
- Pavesi, R.; Riechers, D.A.; Capak, P.L.; Carilli, C.L.; Sharon, C.E.; Stacey, G.J.; Karim, A.; Scoville, N.Z.; Smolčić, V. ALMA Reveals Weak [N ii] Emission in “Typical” Galaxies and Intense Starbursts at z = 5–6. Astrophys. J. 2016, 832, 151. [Google Scholar] [CrossRef] [Green Version]
- Pavesi, R.; Riechers, D.A.; Faisst, A.L.; Stacey, G.J.; Capak, P.L. Low Star Formation Efficiency in Typical Galaxies at z = 5–6. Astrophys. J. 2019, 882, 168. [Google Scholar] [CrossRef] [Green Version]
- Maiolino, R.; Carniani, S.; Fontana, A.; Vallini, L.; Pentericci, L.; Ferrara, A.; Vanzella, E.; Grazian, A.; Gallerani, S.; Castellano, M.; et al. The assembly of ‘normal’ galaxies at z∼7 probed by ALMA. Mon. Not. R. Astron. Soc. 2015, 452, 54–68. [Google Scholar] [CrossRef] [Green Version]
- Pentericci, L.; Carniani, S.; Castellano, M.; Fontana, A.; Maiolino, R.; Guaita, L.; Vanzella, E.; Grazian, A.; Santini, P.; Yan, H.; et al. Tracing the Reionization Epoch with ALMA: [C II] Emission in z∼7 Galaxies. Astrophys. J. 2016, 829, L11. [Google Scholar] [CrossRef] [Green Version]
- Carniani, S.; Maiolino, R.; Amorin, R.; Pentericci, L.; Pallottini, A.; Ferrara, A.; Willott, C.J.; Smit, R.; Matthee, J.; Sobral, D.; et al. Kiloparsec-scale gaseous clumps and star formation at z = 5–7. Mon. Not. R. Astron. Soc. 2018, 478, 1170–1184. [Google Scholar] [CrossRef] [Green Version]
- Reddy, N.; Dickinson, M.; Elbaz, D.; Morrison, G.; Giavalisco, M.; Ivison, R.; Papovich, C.; Scott, D.; Buat, V.; Burgarella, D.; et al. GOODS-Herschel Measurements of the Dust Attenuation of Typical Star-forming Galaxies at High Redshift: Observations of Ultraviolet-selected Galaxies at z∼2. Astrophys. J. 2012, 744, 154. [Google Scholar] [CrossRef] [Green Version]
- Graziani, L.; Schneider, R.; Ginolfi, M.; Hunt, L.K.; Maio, U.; Glatzle, M.; Ciardi, B. The assembly of dusty galaxies at z ≥ 4: Statistical properties. Mon. Not. R. Astron. Soc. 2020, 494, 1071–1088. [Google Scholar] [CrossRef] [Green Version]
- Hughes, T.M.; Ibar, E.; Villanueva, V.; Aravena, M.; Baes, M.; Bourne, N.; Cooray, A.; Davies, L.J.M.; Driver, S.; Dunne, L.; et al. VALES—III. The calibration between the dust continuum and interstellar gas content of star-forming galaxies. Mon. Not. R. Astron. Soc. 2017, 468, L103–L107. [Google Scholar] [CrossRef]
- Zanella, A.; Daddi, E.; Magdis, G.; Diaz Santos, T.; Cormier, D.; Liu, D.; Cibinel, A.; Gobat, R.; Dickinson, M.; Sargent, M.; et al. The [C II] emission as a molecular gas mass tracer in galaxies at low and high redshifts. Mon. Not. R. Astron. Soc. 2018, 481, 1976–1999. [Google Scholar] [CrossRef] [Green Version]
- Förster Schreiber, N.M.; Genzel, R.; Bouché, N.; Cresci, G.; Davies, R.; Buschkamp, P.; Shapiro, K.; Tacconi, L.J.; Hicks, E.K.S.; Genel, S.; et al. The SINS Survey: SINFONI Integral Field Spectroscopy of z∼2 Star-forming Galaxies. Astrophys. J. 2009, 706, 1364–1428. [Google Scholar] [CrossRef] [Green Version]
- Epinat, B.; Tasca, L.; Amram, P.; Contini, T.; Le Fèvre, O.; Queyrel, J.; Vergani, D.; Garilli, B.; Kissler-Patig, M.; Moultaka, J.; et al. MASSIV: Mass Assembly Survey with SINFONI in VVDS. II. Kinematics and close environment classification. Astron. Astrophys. 2012, 539, A92. [Google Scholar] [CrossRef]
- Molina, J.; Ibar, E.; Swinbank, A.M.; Sobral, D.; Best, P.N.; Smail, I.; Escala, A.; Cirasuolo, M. SINFONI-HiZELS: The dynamics, merger rates and metallicity gradients of ’typical’ star-forming galaxies at z = 0.8–2.2. Mon. Not. R. Astron. Soc. 2017, 466, 892–905. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Sajina, A.; Loiacono, F.; Lagache, G.; Béthermin, M.; Faisst, A.; Ginolfi, M.; Fèvre, O.L.; Gruppioni, C.; Capak, P.L.; et al. The ALPINE-ALMA [C II] Survey: [C II] 158 μm Emission Line Luminosity Functions at z∼4–6. Astrophys. J. 2020, 905, 147. [Google Scholar] [CrossRef]
- Hemmati, S.; Yan, L.; Diaz-Santos, T.; Armus, L.; Capak, P.; Faisst, A.; Masters, D. The Local [C II] 158 μm Emission Line Luminosity Function. Astrophys. J. 2017, 834, 36. [Google Scholar] [CrossRef] [Green Version]
- Gruppioni, C.; Béthermin, M.; Loiacono, F.; Le Fèvre, O.; Capak, P.; Cassata, P.; Faisst, A.L.; Schaerer, D.; Silverman, J.; Yan, L.; et al. The ALPINE-ALMA [CII] survey. The nature, luminosity function, and star formation history of dusty galaxies up to z = 6. Astron. Astrophys. 2020, 643, A8. [Google Scholar] [CrossRef]
- Arnouts, S.; Cristiani, S.; Moscardini, L.; Matarrese, S.; Lucchin, F.; Fontana, A.; Giallongo, E. Measuring and modelling the redshift evolution of clustering: The Hubble Deep Field North. Mon. Not. R. Astron. Soc. 1999, 310, 540–556. [Google Scholar] [CrossRef] [Green Version]
- Ilbert, O.; Arnouts, S.; McCracken, H.J.; Bolzonella, M.; Bertin, E.; Le Fèvre, O.; Mellier, Y.; Zamorani, G.; Pellò, R.; Iovino, A.; et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey. Astron. Astrophys. 2006, 457, 841–856. [Google Scholar] [CrossRef]
- Decarli, R.; Walter, F.; Aravena, M.; Carilli, C.; Bouwens, R.; da Cunha, E.; Daddi, E.; Ivison, R.J.; Popping, G.; Riechers, D.; et al. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: CO Luminosity Functions and the Evolution of the Cosmic Density of Molecular Gas. Astrophys. J. 2016, 833, 69. [Google Scholar] [CrossRef]
- Walter, F.; Decarli, R.; Aravena, M.; Carilli, C.; Bouwens, R.; da Cunha, E.; Daddi, E.; Ivison, R.J.; Riechers, D.; Smail, I.; et al. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: Survey Description. Astrophys. J. 2016, 833, 67. [Google Scholar] [CrossRef]
- Schmidt, M. Space Distribution and Luminosity Functions of Quasi-Stellar Radio Sources. Astrophys. J. 1968, 151, 393. [Google Scholar] [CrossRef]
- Ono, Y.; Ouchi, M.; Harikane, Y.; Toshikawa, J.; Rauch, M.; Yuma, S.; Sawicki, M.; Shibuya, T.; Shimasaku, K.; Oguri, M.; et al. Great Optically Luminous Dropout Research Using Subaru HSC (GOLDRUSH). I. UV luminosity functions at z ∼ 4–7derived with the half-million dropouts on the 100 deg2 sky. PASJ 2018, 70, S10. [Google Scholar] [CrossRef] [Green Version]
- Bouwens, R.J.; Illingworth, G.D.; Franx, M.; Ford, H. UV Luminosity Functions at z∼4, 5, and 6 from the Hubble Ultra Deep Field and Other Deep Hubble Space Telescope ACS Fields: Evolution and Star Formation History. Astrophys. J. 2007, 670, 928–958. [Google Scholar] [CrossRef] [Green Version]
- Swinbank, A.M.; Karim, A.; Smail, I.; Hodge, J.; Walter, F.; Bertoldi, F.; Biggs, A.D.; de Breuck, C.; Chapman, S.C.; Coppin, K.E.K.; et al. An ALMA survey of submillimetre galaxies in the Extended Chandra Deep Field-South: Detection of [C II] at z = 4.4. Mon. Not. R. Astron. Soc. 2012, 427, 1066–1074. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, Y.; Kohno, K.; Tamura, Y.; Oguri, M.; Ezawa, H.; Hayatsu, N.H.; Kitayama, T.; Matsuda, Y.; Matsuo, H.; Oshima, T.; et al. Blind Millimeter Line Emitter Search using ALMA Data Toward Gravitational Lensing Clusters. Astrophys. J. 2017, 845, 108. [Google Scholar] [CrossRef] [Green Version]
- Cooke, E.A.; Smail, I.; Swinbank, A.M.; Stach, S.M.; An, F.X.; Gullberg, B.; Almaini, O.; Simpson, C.J.; Wardlow, J.L.; Blain, A.W.; et al. An ALMA Survey of the SCUBA-2 Cosmology Legacy Survey UKIDSS/UDS Field: Identifying Candidate z ∼ 4.5 [C II] Emitters. Astrophys. J. 2018, 861, 100. [Google Scholar] [CrossRef] [Green Version]
- Lagache, G.; Cousin, M.; Chatzikos, M. The [CII] 158 μm line emission in high-redshift galaxies. Astron. Astrophys. 2018, 609, A130. [Google Scholar] [CrossRef] [Green Version]
- Popping, G.; Narayanan, D.; Somerville, R.S.; Faisst, A.L.; Krumholz, M.R. The art of modelling CO, [C I], and [C II] in cosmological galaxy formation models. Mon. Not. R. Astron. Soc. 2019, 482, 4906–4932. [Google Scholar] [CrossRef] [Green Version]
- Gruppioni, C.; Pozzi, F.; Rodighiero, G.; Delvecchio, I.; Berta, S.; Pozzetti, L.; Zamorani, G.; Andreani, P.; Cimatti, A.; Ilbert, O.; et al. The Herschel PEP/HerMES luminosity function—I. Probing the evolution of PACS selected Galaxies to z∼4. Mon. Not. R. Astron. Soc. 2013, 432, 23–52. [Google Scholar] [CrossRef] [Green Version]
- Koprowski, M.P.; Dunlop, J.S.; Michałowski, M.J.; Coppin, K.E.K.; Geach, J.E.; McLure, R.J.; Scott, D.; van der Werf, P.P. The evolving far-IR galaxy luminosity function and dust-obscured star formation rate density out to z∼5. Mon. Not. R. Astron. Soc. 2017, 471, 4155–4169. [Google Scholar] [CrossRef] [Green Version]
- Decarli, R.; Walter, F.; Gónzalez-López, J.; Aravena, M.; Boogaard, L.; Carilli, C.; Cox, P.; Daddi, E.; Popping, G.; Riechers, D.; et al. The ALMA Spectroscopic Survey in the HUDF: CO Luminosity Functions and the Molecular Gas Content of Galaxies through Cosmic History. Astrophys. J. 2019, 882, 138. [Google Scholar] [CrossRef] [Green Version]
- Riechers, D.A.; Pavesi, R.; Sharon, C.E.; Hodge, J.A.; Decarli, R.; Walter, F.; Carilli, C.L.; Aravena, M.; da Cunha, E.; Daddi, E.; et al. COLDz: Shape of the CO Luminosity Function at High Redshift and the Cold Gas History of the Universe. Astrophys. J. 2019, 872, 7. [Google Scholar] [CrossRef] [Green Version]
- Popping, G.; Somerville, R.S.; Galametz, M. The dust content of galaxies from z = 0 to z = 9. arXiv 2016, arXiv:1609.08622. [Google Scholar] [CrossRef]
- Faisst, A.L.; Fudamoto, Y.; Oesch, P.A.; Scoville, N.; Riechers, D.A.; Pavesi, R.; Capak, P. ALMA characterizes the dust temperature of z∼5.5 star-forming galaxies. Mon. Not. R. Astron. Soc. 2020, 498, 4192–4204. [Google Scholar] [CrossRef]
- Pineda, J.L.; Langer, W.D.; Goldsmith, P.F. A Herschel [C II] Galactic plane survey. III. [C II] as a tracer of star formation. Astron. Astrophys. 2014, 570, A121. [Google Scholar] [CrossRef] [Green Version]
- De Looze, I.; Baes, M.; Bendo, G.J.; Cortese, L.; Fritz, J. The reliability of [C II] as an indicator of the star formation rate. Mon. Not. R. Astron. Soc. 2011, 416, 2712–2724. [Google Scholar] [CrossRef] [Green Version]
- Kennicutt, R.C., Jr. Star Formation in Galaxies Along the Hubble Sequence. Annu. Rev. Astron. Astrophys. 1998, 36, 189–232. [Google Scholar] [CrossRef] [Green Version]
- Bradač, M.; Garcia-Appadoo, D.; Huang, K.H.; Vallini, L.; Quinn Finney, E.; Hoag, A.; Lemaux, B.C.; Borello Schmidt, K.; Treu, T.; Carilli, C.; et al. ALMA [C II] 158 μm Detection of a Redshift 7 Lensed Galaxy behind RXJ1347.1-1145. Astrophys. J. 2017, 836, L2. [Google Scholar] [CrossRef] [Green Version]
- Wolfire, M.G.; Hollenbach, D.; McKee, C.F.; Tielens, A.G.G.M.; Bakes, E.L.O. The Neutral Atomic Phases of the Interstellar Medium. Astrophys. J. 1995, 443, 152. [Google Scholar] [CrossRef]
- Hollenbach, D.J.; Tielens, A.G.G.M. Photodissociation regions in the interstellar medium of galaxies. Rev. Mod. Phys. 1999, 71, 173–230. [Google Scholar] [CrossRef]
- Schaerer, D.; Ginolfi, M.; Béthermin, M.; Fudamoto, Y.; Oesch, P.A.; Le Fèvre, O.; Faisst, A.; Capak, P.; Cassata, P.; Silverman, J.D.; et al. The ALPINE-ALMA [C II] survey. Little to no evolution in the [C II]-SFR relation over the last 13 Gyr. Astron. Astrophys. 2020, 643, A3. [Google Scholar] [CrossRef]
- Fudamoto, Y.; Oesch, P.A.; Faisst, A.; Béthermin, M.; Ginolfi, M.; Khusanova, Y.; Loiacono, F.; Le Fèvre, O.; Capak, P.; Schaerer, D.; et al. The ALPINE-ALMA [CII] survey. Dust attenuation properties and obscured star formation at z∼4.4–5.8. Astron. Astrophys. 2020, 643, A4. [Google Scholar] [CrossRef]
- Kelly, B.C. Some Aspects of Measurement Error in Linear Regression of Astronomical Data. Astrophys. J. 2007, 665, 1489–1506. [Google Scholar] [CrossRef] [Green Version]
- Romano, M.; Morselli, L.; Cassata, P.; Ginolfi, M.; Schaerer, D.; Béthermin, M.; Capak, P.; Faisst, A.; Le Fèvre, O.; Silverman, J.D.; et al. The ALPINE-ALMA [CII] survey: The population of [CII]-undetected galaxies and their role in the L[CII]-SFR relation. Astron. Astrophys. 2022, 660, A14. [Google Scholar] [CrossRef]
- Matthee, J.; Sobral, D.; Boogaard, L.A.; Röttgering, H.; Vallini, L.; Ferrara, A.; Paulino-Afonso, A.; Boone, F.; Schaerer, D.; Mobasher, B. Resolved UV and [C II] Structures of Luminous Galaxies within the Epoch of Reionization. Astrophys. J. 2019, 881, 124. [Google Scholar] [CrossRef] [Green Version]
- Harikane, Y.; Ouchi, M.; Shibuya, T.; Kojima, T.; Zhang, H.; Itoh, R.; Ono, Y.; Higuchi, R.; Inoue, A.K.; Chevallard, J.; et al. SILVERRUSH. V. Census of Lyα, [O III] λ5007, Hα, and [C II] 158 μm Line Emission with ∼1000 LAEs at z = 4.9-7.0 Revealed with Subaru/HSC. Astrophys. J. 2018, 859, 84. [Google Scholar] [CrossRef] [Green Version]
- Bouwens, R.J.; Aravena, M.; Decarli, R.; Walter, F.; da Cunha, E.; Labbé, I.; Bauer, F.E.; Bertoldi, F.; Carilli, C.; Chapman, S.; et al. ALMA Spectroscopic Survey in the Hubble Ultra Deep Field: The Infrared Excess of UV-Selected z = 2–10Galaxies as a Function of UV-Continuum Slope and Stellar Mass. Astrophys. J. 2016, 833, 72. [Google Scholar] [CrossRef] [Green Version]
- McLure, R.J.; Dunlop, J.S.; Cullen, F.; Bourne, N.; Best, P.N.; Khochfar, S.; Bowler, R.A.A.; Biggs, A.D.; Geach, J.E.; Scott, D.; et al. Dust attenuation in 2 < z < 3 star-forming galaxies from deep ALMA observations of the Hubble Ultra Deep Field. Mon. Not. R. Astron. Soc. 2018, 476, 3991–4006. [Google Scholar] [CrossRef] [Green Version]
- Meurer, G.R.; Heckman, T.M.; Calzetti, D. Dust Absorption and the Ultraviolet Luminosity Density at z∼3 as Calibrated by Local Starburst Galaxies. Astrophys. J. 1999, 521, 64–80. [Google Scholar] [CrossRef] [Green Version]
- Maiolino, R.; Schneider, R.; Oliva, E.; Bianchi, S.; Ferrara, A.; Mannucci, F.; Pedani, M.; Roca Sogorb, M. A supernova origin for dust in a high-redshift quasar. Nature 2004, 431, 533–535. [Google Scholar] [CrossRef] [Green Version]
- Hirashita, H.; Nozawa, T.; Kozasa, T.; Ishii, T.T.; Takeuchi, T.T. Extinction curves expected in young galaxies. Mon. Not. R. Astron. Soc. 2005, 357, 1077–1087. [Google Scholar] [CrossRef] [Green Version]
- Stratta, G.; Maiolino, R.; Fiore, F.; D’Elia, V. Dust Properties at z = 6.3 in the Host Galaxy of GRB 050904. Astrophys. J. 2007, 661, L9–L12. [Google Scholar] [CrossRef]
- Gallerani, S.; Maiolino, R.; Juarez, Y.; Nagao, T.; Marconi, A.; Bianchi, S.; Schneider, R.; Mannucci, F.; Oliva, T.; Willott, C.J.; et al. The extinction law at high redshift and its implications. Astron. Astrophys. 2010, 523, A85. [Google Scholar] [CrossRef] [Green Version]
- Asano, R.S.; Takeuchi, T.T.; Hirashita, H.; Inoue, A.K. Dust formation history of galaxies: A critical role of metallicity for the dust mass growth by accreting materials in the interstellar medium. Earth Planets Space 2013, 65, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Dwek, E.; Cherchneff, I. The Origin of Dust in the Early Universe: Probing the Star Formation History of Galaxies by Their Dust Content. Astrophys. J. 2011, 727, 63. [Google Scholar] [CrossRef]
- Todini, P.; Ferrara, A. Dust formation in primordial Type II supernovae. Mon. Not. R. Astron. Soc. 2001, 325, 726–736. [Google Scholar] [CrossRef] [Green Version]
- Nozawa, T.; Kozasa, T.; Umeda, H.; Maeda, K.; Nomoto, K. Dust in the Early Universe: Dust Formation in the Ejecta of Population III Supernovae. Astrophys. J. 2003, 598, 785–803. [Google Scholar] [CrossRef]
- Schneider, R.; Ferrara, A.; Salvaterra, R. Dust formation in very massive primordial supernovae. Mon. Not. R. Astron. Soc. 2004, 351, 1379–1386. [Google Scholar] [CrossRef] [Green Version]
- Khusanova, Y.; Le Fèvre, O.; Cassata, P.; Cucciati, O.; Lemaux, B.C.; Tasca, L.A.M.; Thomas, R.; Garilli, B.; Le Brun, V.; Maccagni, D.; et al. UV and Lyα luminosity functions of galaxies and star formation rate density at the end of HI reionization from the VIMOS UltraDeep Survey (VUDS). Astron. Astrophys. 2020, 634, A97. [Google Scholar] [CrossRef] [Green Version]
- Pillepich, A.; Springel, V.; Nelson, D.; Genel, S.; Naiman, J.; Pakmor, R.; Hernquist, L.; Torrey, P.; Vogelsberger, M.; Weinberger, R.; et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 2018, 473, 4077–4106. [Google Scholar] [CrossRef] [Green Version]
- Béthermin, M.; Wu, H.Y.; Lagache, G.; Davidzon, I.; Ponthieu, N.; Cousin, M.; Wang, L.; Doré, O.; Daddi, E.; Lapi, A. The impact of clustering and angular resolution on far-infrared and millimeter continuum observations. Astron. Astrophys. 2017, 607, A89. [Google Scholar] [CrossRef] [Green Version]
- Casey, C.M.; Zavala, J.A.; Manning, S.M.; Aravena, M.; Béthermin, M.; Caputi, K.I.; Champagne, J.B.; Clements, D.L.; Drew, P.; Finkelstein, S.L.; et al. Mapping Obscuration to Reionization with ALMA (MORA): 2 mm Efficiently Selects the Highest-redshift Obscured Galaxies. Astrophys. J. 2021, 923, 215. [Google Scholar] [CrossRef]
- Prevot, M.L.; Lequeux, J.; Prevot, L.; Maurice, E.; Rocca-Volmerange, B. The typical interstellar extinction in the Small Magellanic Cloud. Astron. Astrophys. 1984, 132, 389–392. [Google Scholar]
- Overzier, R.A.; Heckman, T.M.; Wang, J.; Armus, L.; Buat, V.; Howell, J.; Meurer, G.; Seibert, M.; Siana, B.; Basu-Zych, A.; et al. Dust Attenuation in UV-selected Starbursts at High Redshift and Their Local Counterparts: Implications for the Cosmic Star Formation Rate Density. Astrophys. J. 2011, 726, L7. [Google Scholar] [CrossRef]
- Reddy, N.A.; Oesch, P.A.; Bouwens, R.J.; Montes, M.; Illingworth, G.D.; Steidel, C.C.; van Dokkum, P.G.; Atek, H.; Carollo, M.C.; Cibinel, A.; et al. The HDUV Survey: A Revised Assessment of the Relationship between UV Slope and Dust Attenuation for High-redshift Galaxies. Astrophys. J. 2018, 853, 56. [Google Scholar] [CrossRef] [Green Version]
- Inami, H.; Algera, H.S.B.; Schouws, S.; Sommovigo, L.; Bouwens, R.; Smit, R.; Stefanon, M.; Bowler, R.A.A.; Endsley, R.; Ferrara, A.; et al. The ALMA REBELS Survey: Dust Continuum Detections at z > 6.5. arXiv 2022, arXiv:2203.15136. [Google Scholar]
- Whitaker, K.E.; Pope, A.; Cybulski, R.; Casey, C.M.; Popping, G.; Yun, M.S. The Constant Average Relationship between Dust-obscured Star Formation and Stellar Mass from z = 0 to z = 2.5. Astrophys. J. 2017, 850, 208. [Google Scholar] [CrossRef] [Green Version]
- Dale, D.A.; Helou, G. The Infrared Spectral Energy Distribution of Normal Star-forming Galaxies: Calibration at Far-Infrared and Submillimeter Wavelengths. Astrophys. J. 2002, 576, 159–168. [Google Scholar] [CrossRef]
- Béthermin, M.; Daddi, E.; Magdis, G.; Lagos, C.; Sargent, M.; Albrecht, M.; Aussel, H.; Bertoldi, F.; Buat, V.; Galametz, M.; et al. Evolution of the dust emission of massive galaxies up to z = 4 and constraints on their dominant mode of star formation. Astron. Astrophys. 2015, 573, A113. [Google Scholar] [CrossRef] [Green Version]
- Magdis, G.E.; Daddi, E.; Béthermin, M.; Sargent, M.; Elbaz, D.; Pannella, M.; Dickinson, M.; Dannerbauer, H.; da Cunha, E.; Walter, F.; et al. The Evolving Interstellar Medium of Star-forming Galaxies since z = 2 as Probed by Their Infrared Spectral Energy Distributions. Astrophys. J. 2012, 760, 6. [Google Scholar] [CrossRef] [Green Version]
- da Cunha, E.; Groves, B.; Walter, F.; Decarli, R.; Weiss, A.; Bertoldi, F.; Carilli, C.; Daddi, E.; Elbaz, D.; Ivison, R.; et al. On the Effect of the Cosmic Microwave Background in High-redshift (Sub-)millimeter Observations. Astrophys. J. 2013, 766, 13. [Google Scholar] [CrossRef] [Green Version]
- Sajina, A.; Scott, D.; Dennefeld, M.; Dole, H.; Lacy, M.; Lagache, G. The 1–1000μm spectral energy distributions of far-infrared galaxies. Mon. Not. R. Astron. Soc. 2006, 369, 939–957. [Google Scholar] [CrossRef] [Green Version]
- Casey, C.M. Far-infrared spectral energy distribution fitting for galaxies near and far. Mon. Not. R. Astron. Soc. 2012, 425, 3094–3103. [Google Scholar] [CrossRef] [Green Version]
- Scoville, N.; Aussel, H.; Sheth, K.; Scott, K.S.; Sanders, D.; Ivison, R.; Pope, A.; Capak, P.; Vand en Bout, P.; Manohar, S.; et al. The Evolution of Interstellar Medium Mass Probed by Dust Emission: ALMA Observations at z = 0.3–2. Astrophys. J. 2014, 783, 84. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Schinnerer, E.; Groves, B.; Magnelli, B.; Lang, P.; Leslie, S.; Jiménez-Andrade, E.; Riechers, D.A.; Popping, G.; Magdis, G.E.; et al. Automated Mining of the ALMA Archive in the COSMOS Field (A3COSMOS). II. Cold Molecular Gas Evolution out to Redshift 6. Astrophys. J. 2019, 887, 235. [Google Scholar] [CrossRef] [Green Version]
- Madden, S.C.; Cormier, D.; Hony, S.; Lebouteiller, V.; Abel, N.; Galametz, M.; De Looze, I.; Chevance, M.; Polles, F.L.; Lee, M.Y.; et al. Tracing the total molecular gas in galaxies: [CII] and the CO-dark gas. Astron. Astrophys. 2020, 643, A141. [Google Scholar] [CrossRef]
- Solomon, P.M.; Vanden Bout, P.A. Molecular Gas at High Redshift. Annu. Rev. Astron. Astrophys. 2005, 43, 677–725. [Google Scholar] [CrossRef] [Green Version]
- Genzel, R.; Tacconi, L.J.; Lutz, D.; Saintonge, A.; Berta, S.; Magnelli, B.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; et al. Combined CO and Dust Scaling Relations of Depletion Time and Molecular Gas Fractions with Cosmic Time, Specific Star-formation Rate, and Stellar Mass. Astrophys. J. 2015, 800, 20. [Google Scholar] [CrossRef]
- Dessauges-Zavadsky, M.; Ginolfi, M.; Pozzi, F.; Béthermin, M.; Le Fèvre, O.; Fujimoto, S.; Silverman, J.D.; Jones, G.C.; Vallini, L.; Schaerer, D.; et al. The ALPINE-ALMA [C II] survey. Molecular gas budget in the early Universe as traced by [C II]. Astron. Astrophys. 2020, 643, A5. [Google Scholar] [CrossRef]
- Tacconi, L.J.; Genzel, R.; Saintonge, A.; Combes, F.; García-Burillo, S.; Neri, R.; Bolatto, A.; Contini, T.; Förster Schreiber, N.M.; Lilly, S.; et al. PHIBSS: Unified Scaling Relations of Gas Depletion Time and Molecular Gas Fractions. Astrophys. J. 2018, 853, 179. [Google Scholar] [CrossRef]
- Fujimoto, S.; Silverman, J.D.; Bethermin, M.; Ginolfi, M.; Jones, G.C.; Le Fèvre, O.; Dessauges-Zavadsky, M.; Rujopakarn, W.; Faisst, A.L.; Fudamoto, Y.; et al. The ALPINE-ALMA [C II] Survey: Size of Individual Star-forming Galaxies at z = 4–6and Their Extended Halo Structure. Astrophys. J. 2020, 900, 1. [Google Scholar] [CrossRef]
- Saintonge, A.; Kauffmann, G.; Wang, J.; Kramer, C.; Tacconi, L.J.; Buchbender, C.; Catinella, B.; Graciá-Carpio, J.; Cortese, L.; Fabello, S.; et al. COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies—II. The non-universality of the molecular gas depletion time-scale. Mon. Not. R. Astron. Soc. 2011, 415, 61–76. [Google Scholar] [CrossRef] [Green Version]
- Davé, R.; Finlator, K.; Oppenheimer, B.D. Galaxy evolution in cosmological simulations with outflows—II. Metallicities and gas fractions. Mon. Not. R. Astron. Soc. 2011, 416, 1354–1376. [Google Scholar] [CrossRef] [Green Version]
- Davé, R.; Finlator, K.; Oppenheimer, B.D. An analytic model for the evolution of the stellar, gas and metal content of galaxies. Mon. Not. R. Astron. Soc. 2012, 421, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Genel, S.; Vogelsberger, M.; Springel, V.; Sijacki, D.; Nelson, D.; Snyder, G.; Rodriguez-Gomez, V.; Torrey, P.; Hernquist, L. Introducing the Illustris project: The evolution of galaxy populations across cosmic time. Mon. Not. R. Astron. Soc. 2014, 445, 175–200. [Google Scholar] [CrossRef]
- Lagos, C.d.P.; Crain, R.A.; Schaye, J.; Furlong, M.; Frenk, C.S.; Bower, R.G.; Schaller, M.; Theuns, T.; Trayford, J.W.; Bahé, Y.M.; et al. Molecular hydrogen abundances of galaxies in the EAGLE simulations. Mon. Not. R. Astron. Soc. 2015, 452, 3815–3837. [Google Scholar] [CrossRef]
- Fujimoto, S.; Ouchi, M.; Ferrara, A.; Pallottini, A.; Ivison, R.J.; Behrens, C.; Gallerani, S.; Arata, S.; Yajima, H.; Nagamine, K. First Identification of 10 kpc [C II] 158 μm Halos around Star-forming Galaxies at z = 5–7. Astrophys. J. 2019, 887, 107. [Google Scholar] [CrossRef] [Green Version]
- Ginolfi, M.; Jones, G.C.; Bethermin, M.; Fudamoto, Y.; Loiacono, F.; Fujimoto, S.; Fevre, L.; Faisst, A.; Schaerer, D.; Cassata, P.; et al. The ALPINE-ALMA [C II] Survey: Star formation-driven outflows and circumgalactic enrichment in the early Universe. arXiv 2019, arXiv:1910.04770. [Google Scholar] [CrossRef] [Green Version]
- Ginolfi, M.; Jones, G.C.; Béthermin, M.; Faisst, A.; Lemaux, B.C.; Schaerer, D.; Fudamoto, Y.; Oesch, P.; Dessauges-Zavadsky, M.; Fujimoto, S.; et al. The ALPINE-ALMA [CII] survey. Circumgalactic medium pollution and gas mixing by tidal stripping in a merging system at z ∼ 4.57. Astron. Astrophys. 2020, 643, A7. [Google Scholar] [CrossRef]
- Oppenheimer, B.D.; Davé, R. Cosmological simulations of intergalactic medium enrichment from galactic outflows. Mon. Not. R. Astron. Soc. 2006, 373, 1265–1292. [Google Scholar] [CrossRef]
- Oppenheimer, B.D.; Davé, R.; Kereš, D.; Fardal, M.; Katz, N.; Kollmeier, J.A.; Weinberg, D.H. Feedback and recycled wind accretion: Assembling the z = 0 galaxy mass function. Mon. Not. R. Astron. Soc. 2010, 406, 2325–2338. [Google Scholar] [CrossRef] [Green Version]
- Bournaud, F.; Chapon, D.; Teyssier, R.; Powell, L.C.; Elmegreen, B.G.; Elmegreen, D.M.; Duc, P.A.; Contini, T.; Epinat, B.; Shapiro, K.L. Hydrodynamics of High-redshift Galaxy Collisions: From Gas-rich Disks to Dispersion-dominated Mergers and Compact Spheroids. Astrophys. J. 2011, 730, 4. [Google Scholar] [CrossRef] [Green Version]
- Pallottini, A.; Gallerani, S.; Ferrara, A. The circumgalactic medium of high-redshift galaxies. Mon. Not. R. Astron. Soc. 2014, 444, L105–L109. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.; Genel, S.; Vogelsberger, M.; Springel, V.; Sijacki, D.; Torrey, P.; Hernquist, L. The impact of feedback on cosmological gas accretion. Mon. Not. R. Astron. Soc. 2015, 448, 59–74. [Google Scholar] [CrossRef]
- Anglés-Alcázar, D.; Faucher-Giguère, C.A.; Kereš, D.; Hopkins, P.F.; Quataert, E.; Murray, N. The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations. Mon. Not. R. Astron. Soc. 2017, 470, 4698–4719. [Google Scholar] [CrossRef]
- Hani, M.H.; Sparre, M.; Ellison, S.L.; Torrey, P.; Vogelsberger, M. Galaxy mergers moulding the circum-galactic medium—I. The impact of a major merger. Mon. Not. R. Astron. Soc. 2018, 475, 1160–1176. [Google Scholar] [CrossRef] [Green Version]
- Zepf, S.E.; Stern, D.; Maccarone, T.J.; Kundu, A.; Kamionkowski, M.; Rhode, K.L.; Salzer, J.J.; Ciardullo, R.; Gronwall, C. Very Broad [O III] λλ4959, 5007 Emission from the NGC 4472 Globular Cluster RZ 2109 and Implications for the Mass of Its Black Hole X-Ray Source. Astrophys. J. 2008, 683, L139. [Google Scholar] [CrossRef] [Green Version]
- Kampczyk, P.; Lilly, S.J.; de Ravel, L.; Le Fèvre, O.; Bolzonella, M.; Carollo, C.M.; Diener, C.; Knobel, C.; Kovač, K.; Maier, C.; et al. Environmental Effects in the Interaction and Merging of Galaxies in zCOSMOS. Astrophys. J. 2013, 762, 43. [Google Scholar] [CrossRef]
- Gottlöber, S.; Klypin, A.; Kravtsov, A.V. Merging History as a Function of Halo Environment. Astrophys. J. 2001, 546, 223–233. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Gomez, V.; Genel, S.; Vogelsberger, M.; Sijacki, D.; Pillepich, A.; Sales, L.V.; Torrey, P.; Snyder, G.; Nelson, D.; Springel, V.; et al. The merger rate of galaxies in the Illustris simulation: A comparison with observations and semi-empirical models. Mon. Not. R. Astron. Soc. 2015, 449, 49–64. [Google Scholar] [CrossRef]
- Jones, G.C.; Vergani, D.; Romano, M.; Ginolfi, M.; Fudamoto, Y.; Béthermin, M.; Fujimoto, S.; Lemaux, B.C.; Morselli, L.; Capak, P.; et al. The ALPINE-ALMA [C II] Survey: Kinematic diversity and rotation in massive star-forming galaxies at z 4.4-5.9. Mon. Not. R. Astron. Soc. 2021, 507, 3540–3563. [Google Scholar] [CrossRef]
- Romano, M.; Cassata, P.; Morselli, L.; Jones, G.C.; Ginolfi, M.; Zanella, A.; Béthermin, M.; Capak, P.; Faisst, A.; Le Fèvre, O.; et al. The ALPINE-ALMA [CII] survey. The contribution of major mergers to the galaxy mass assembly at z ∼ 5. Astron. Astrophys. 2021, 653, A111. [Google Scholar] [CrossRef]
- Epinat, B.; Amram, P.; Marcelin, M. GHASP: An Hα kinematic survey of 203 spiral and irregular galaxies—VII. Revisiting the analysis of Hα data cubes for 97 galaxies. Mon. Not. R. Astron. Soc. 2008, 390, 466–504. [Google Scholar] [CrossRef] [Green Version]
- Law, D.R.; Steidel, C.C.; Erb, D.K.; Larkin, J.E.; Pettini, M.; Shapley, A.E.; Wright, S.A. The Kiloparsec-scale Kinematics of High-redshift Star-forming Galaxies. Astrophys. J. 2009, 697, 2057–2082. [Google Scholar] [CrossRef]
- Kamphuis, P.; Józsa, G.I.G.; Oh, S.H.; Spekkens, K.; Urbancic, N.; Serra, P.; Koribalski, B.S.; Dettmar, R.J. Automated kinematic modelling of warped galaxy discs in large H I surveys: 3D tilted-ring fitting of H I emission cubes. Mon. Not. R. Astron. Soc. 2015, 452, 3139–3158. [Google Scholar] [CrossRef] [Green Version]
- Jones, G.C.; Carilli, C.L.; Shao, Y.; Wang, R.; Capak, P.L.; Pavesi, R.; Riechers, D.A.; Karim, A.; Neeleman, M.; Walter, F. Dynamical Characterization of Galaxies at z ∼ 4–6 via Tilted Ring Fitting to ALMA [C II] Observations. Astrophys. J. 2017, 850, 180. [Google Scholar] [CrossRef] [Green Version]
- Conselice, C.J.; Arnold, J. The structures of distant galaxies—II. Diverse galaxy structures and local environments at z = 4–6 implications for early galaxy assembly. Mon. Not. R. Astron. Soc. 2009, 397, 208–231. [Google Scholar] [CrossRef] [Green Version]
- Schaye, J.; Crain, R.A.; Bower, R.G.; Furlong, M.; Schaller, M.; Theuns, T.; Dalla Vecchia, C.; Frenk, C.S.; McCarthy, I.G.; Helly, J.C.; et al. The EAGLE project: Simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 2015, 446, 521–554. [Google Scholar] [CrossRef]
- Kitzbichler, M.G.; White, S.D.M. A calibration of the relation between the abundance of close galaxy pairs and the rate of galaxy mergers. Mon. Not. R. Astron. Soc. 2008, 391, 1489–1498. [Google Scholar] [CrossRef] [Green Version]
- Jiang, C.Y.; Jing, Y.P.; Han, J. A Scaling Relation between Merger Rate of Galaxies and Their Close Pair Count. Astrophys. J. 2014, 790, 7. [Google Scholar] [CrossRef] [Green Version]
- Snyder, G.F.; Lotz, J.M.; Rodriguez-Gomez, V.; Guimarães, R.d.S.; Torrey, P.; Hernquist, L. Massive close pairs measure rapid galaxy assembly in mergers at high redshift. Mon. Not. R. Astron. Soc. 2017, 468, 207–216. [Google Scholar] [CrossRef]
- Epinat, B.; Amram, P.; Marcelin, M.; Balkowski, C.; Daigle, O.; Hernandez, O.; Chemin, L.; Carignan, C.; Gach, J.L.; Balard, P. GHASP: An Hα kinematic survey of spiral and irregular galaxies—VI. New Hα data cubes for 108 galaxies. Mon. Not. R. Astron. Soc. 2008, 388, 500–550. [Google Scholar] [CrossRef] [Green Version]
- Gnerucci, A.; Marconi, A.; Cresci, G.; Maiolino, R.; Mannucci, F.; Calura, F.; Cimatti, A.; Cocchia, F.; Grazian, A.; Matteucci, F.; et al. Dynamical properties of AMAZE and LSD galaxies from gas kinematics and the Tully-Fisher relation at z ~3. Astron. Astrophys. 2011, 528, A88. [Google Scholar] [CrossRef] [Green Version]
- Pensabene, A.; Carniani, S.; Perna, M.; Cresci, G.; Decarli, R.; Maiolino, R.; Marconi, A. The ALMA view of the high-redshift relation between supermassive black holes and their host galaxies. Astron. Astrophys. 2020, 637, A84. [Google Scholar] [CrossRef]
- Tadaki, K.I.; Belli, S.; Burkert, A.; Dekel, A.; Förster Schreiber, N.M.; Genzel, R.; Hayashi, M.; Herrera-Camus, R.; Kodama, T.; Kohno, K.; et al. Structural Evolution in Massive Galaxies at z ∼ 2. Astrophys. J. 2020, 901, 74. [Google Scholar] [CrossRef]
- Fraternali, F.; Karim, A.; Magnelli, B.; Gómez-Guijarro, C.; Jiménez-Andrade, E.F.; Posses, A.C. Fast rotating and low-turbulence discs at z∼4.5: Dynamical evidence of their evolution into local early-type galaxies. Astron. Astrophys. 2021, 647, A194. [Google Scholar] [CrossRef]
- Lelli, F.; Di Teodoro, E.M.; Fraternali, F.; Man, A.W.S.; Zhang, Z.Y.; De Breuck, C.; Davis, T.A.; Maiolino, R. A massive stellar bulge in a regularly rotating galaxy 1.2 billion years after the Big Bang. Science 2021, 371, 713–716. [Google Scholar] [CrossRef]
- Rizzo, F.; Vegetti, S.; Powell, D.; Fraternali, F.; McKean, J.P.; Stacey, H.R.; White, S.D.M. A dynamically cold disk galaxy in the early Universe. Nature 2020, 584, 201–204. [Google Scholar] [CrossRef]
- Rizzo, F.; Vegetti, S.; Fraternali, F.; Stacey, H.R.; Powell, D. Dynamical properties of z 4.5 dusty star-forming galaxies and their connection with local early-type galaxies. Mon. Not. R. Astron. Soc. 2021, 507, 3952–3984. [Google Scholar] [CrossRef]
- Neeleman, M.; Prochaska, J.X.; Kanekar, N.; Rafelski, M. A cold, massive, rotating disk galaxy 1.5 billion years after the Big Bang. Nature 2020, 581, 269–272. [Google Scholar] [CrossRef]
- Smit, R.; Bouwens, R.J.; Carniani, S.; Oesch, P.A.; Labbé, I.; Illingworth, G.D.; van der Werf, P.; Bradley, L.D.; Gonzalez, V.; Hodge, J.A.; et al. Rotation in [C II]-emitting gas in two galaxies at a redshift of 6.8. Nature 2018, 553, 178–181. [Google Scholar] [CrossRef]
- Bakx, T.J.L.C.; Tamura, Y.; Hashimoto, T.; Inoue, A.K.; Lee, M.M.; Mawatari, K.; Ota, K.; Umehata, H.; Zackrisson, E.; Hatsukade, B.; et al. ALMA uncovers the [C II] emission and warm dust continuum in a z = 8.31 Lyman break galaxy. Mon. Not. R. Astron. Soc. 2020, 493, 4294–4307. [Google Scholar] [CrossRef] [Green Version]
- Vanderhoof, B.N.; Faisst, A.L.; Shen, L.; Lemaux, B.C.; Béthermin, M.; Capak, P.L.; Cassata, P.; Le Fèvre, O.; Schaerer, D.; Silverman, J.; et al. The ALPINE-ALMA [C II] survey: Investigation of 10 galaxies at z 4.5 with [O II] and [C II] line emission—ISM properties and [O II]-SFR relation. Mon. Not. R. Astron. Soc. 2022, 511, 1303–1316. [Google Scholar] [CrossRef]
- Pozzi, F.; Calura, F.; Fudamoto, Y.; Dessauges-Zavadsky, M.; Gruppioni, C.; Talia, M.; Zamorani, G.; Bethermin, M.; Cimatti, A.; Enia, A.; et al. The ALPINE-ALMA [CII] survey. Dust mass budget in the early Universe. Astron. Astrophys. 2021, 653, A84. [Google Scholar] [CrossRef]
- Calura, F.; Pozzi, F.; Cresci, G.; Santini, P.; Gruppioni, C.; Pozzetti, L.; Gilli, R.; Matteucci, F.; Maiolino, R. The dust-to-stellar mass ratio as a valuable tool to probe the evolution of local and distant star-forming galaxies. Mon. Not. R. Astron. Soc. 2017, 465, 54–67. [Google Scholar] [CrossRef] [Green Version]
- Gall, C.; Hjorth, J. Maximally Dusty Star-forming Galaxies: Supernova Dust Production and Recycling in Local Group and High-redshift Galaxies. Astrophys. J. 2018, 868, 62. [Google Scholar] [CrossRef]
- Burgarella, D.; Bogdanoska, J.; Nanni, A.; Bardelli, S.; Bethermin, M.; Boquien, M.; Buat, V.; Faisst, A.L.; Dessauges-Zavadsky, M.; Fudamoto, Y.; et al. IR characteristic emission and dust properties of star-forming galaxies at 4.5 < z < 6.2. arXiv 2022, arXiv:2203.02059. [Google Scholar]
- Fudamoto, Y.; Oesch, P.A.; Schouws, S.; Stefanon, M.; Smit, R.; Bouwens, R.J.; Bowler, R.A.A.; Endsley, R.; Gonzalez, V.; Inami, H.; et al. Normal, dust-obscured galaxies in the epoch of reionization. Nature 2021, 597, 489–492. [Google Scholar] [CrossRef]
- Bouwens, R.J.; Smit, R.; Schouws, S.; Stefanon, M.; Bowler, R.; Endsley, R.; Gonzalez, V.; Inami, H.; Stark, D.; Oesch, P.; et al. Reionization Era Bright Emission Line Survey: Selection and Characterization of Luminous Interstellar Medium Reservoirs in the z>6.5 Universe. arXiv 2021, arXiv:2106.13719. [Google Scholar]
- Ilbert, O.; Arnouts, S.; Le Floc’h, E.; Aussel, H.; Bethermin, M.; Capak, P.; Hsieh, B.C.; Kajisawa, M.; Karim, A.; Le Fèvre, O.; et al. Evolution of the specific star formation rate function at z < 1.4 Dissecting the mass-SFR plane in COSMOS and GOODS. Astron. Astrophys. 2015, 579, A2. [Google Scholar] [CrossRef] [Green Version]
- Bouwens, R.J.; Illingworth, G.D.; Oesch, P.A.; Franx, M.; Labbé, I.; Trenti, M.; van Dokkum, P.; Carollo, C.M.; González, V.; Smit, R.; et al. UV-continuum Slopes at z∼4–7from the HUDF09+ERS+CANDELS Observations: Discovery of a Well-defined UV Color-Magnitude Relationship for z >= 4 Star-forming Galaxies. Astrophys. J. 2012, 754, 83. [Google Scholar] [CrossRef] [Green Version]
- Tasca, L.A.M.; Le Fèvre, O.; Hathi, N.P.; Schaerer, D.; Ilbert, O.; Zamorani, G.; Lemaux, B.C.; Cassata, P.; Garilli, B.; Le Brun, V.; et al. The evolving star formation rate: M* relation and sSFR since z ∼ 5 from the VUDS spectroscopic survey. Astron. Astrophys. 2015, 581, A54. [Google Scholar] [CrossRef] [Green Version]
- Davidzon, I.; Ilbert, O.; Faisst, A.L.; Sparre, M.; Capak, P.L. An Alternate Approach to Measure Specific Star Formation Rates at 2∖lt z∖lt 7. Astrophys. J. 2018, 852, 107. [Google Scholar] [CrossRef] [Green Version]
- Stark, D.P.; Schenker, M.A.; Ellis, R.; Robertson, B.; McLure, R.; Dunlop, J. Keck Spectroscopy of 3 < z < 7 Faint Lyman Break Galaxies: The Importance of Nebular Emission in Understanding the Specific Star Formation Rate and Stellar Mass Density. Astrophys. J. 2013, 763, 129. [Google Scholar] [CrossRef] [Green Version]
- de Barros, S.; Schaerer, D.; Stark, D.P. Properties of z∼3–6Lyman break galaxies. II. Impact of nebular emission at high redshift. Astron. Astrophys. 2014, 563, A81. [Google Scholar] [CrossRef] [Green Version]
- Faisst, A.L.; Capak, P.L.; Emami, N.; Tacchella, S.; Larson, K.L. The Recent Burstiness of Star Formation in Galaxies at z∼4.5 from Hα Measurements. Astrophys. J. 2019, 884, 133. [Google Scholar] [CrossRef] [Green Version]
- Bouché, N.; Dekel, A.; Genzel, R.; Genel, S.; Cresci, G.; Förster Schreiber, N.M.; Shapiro, K.L.; Davies, R.I.; Tacconi, L. The Impact of Cold Gas Accretion Above a Mass Floor on Galaxy Scaling Relations. Astrophys. J. 2010, 718, 1001–1018. [Google Scholar] [CrossRef]
- Lilly, S.J.; Carollo, C.M.; Pipino, A.; Renzini, A.; Peng, Y. Gas Regulation of Galaxies: The Evolution of the Cosmic Specific Star Formation Rate, the Metallicity-Mass-Star-formation Rate Relation, and the Stellar Content of Halos. Astrophys. J. 2013, 772, 119. [Google Scholar] [CrossRef] [Green Version]
- Dekel, A.; Burkert, A. Wet disc contraction to galactic blue nuggets and quenching to red nuggets. Mon. Not. R. Astron. Soc. 2014, 438, 1870–1879. [Google Scholar] [CrossRef] [Green Version]
- Sommovigo, L.; Ferrara, A.; Pallottini, A.; Dayal, P.; Bouwens, R.J.; Smit, R.; da Cunha, E.; De Looze, I.; Bowler, R.A.A.; Hodge, J.; et al. The REBELS ALMA Survey: Cosmic dust temperature evolution out to z 7. Mon. Not. R. Astron. Soc. 2022. [Google Scholar] [CrossRef]
- Dessauges-Zavadsky, M.; Richard, J.; Combes, F.; Schaerer, D.; Rujopakarn, W.; Mayer, L.; Cava, A.; Boone, F.; Egami, E.; Kneib, J.P.; et al. Molecular clouds in the Cosmic Snake normal star-forming galaxy 8 billion years ago. Nat. Astron. 2019, 3, 1115–1121. [Google Scholar] [CrossRef]
- Robitaille, T.P.; Tollerud, E.J.; Greenfield, P.; Droettboom, M.; Bray, E.; Aldcroft, T.; Davis, M.; Ginsburg, A.; Price-Whelan, A.M.; et al.; Astropy Collaboration Astropy: A community Python package for astronomy. Astron. Astrophys. 2013, 558, A33. [Google Scholar] [CrossRef]
- Price-Whelan, A.M.; Sipocz, B.M.; Günther, H.M.; Lim, P.L.; Crawford, S.M.; Conseil, S.; Shupe, D.L.; Craig, M.W.; Dencheva, N.; et al.; Astropy Collaboration The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package. Astron. J. 2018, 156, 123. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faisst, A.L.; Yan, L.; Béthermin, M.; Cassata, P.; Dessauges-Zavadsky, M.; Fudamoto, Y.; Ginolfi, M.; Gruppioni, C.; Jones, G.; Khusanova, Y.; et al. ALPINE: A Large Survey to Understand Teenage Galaxies. Universe 2022, 8, 314. https://doi.org/10.3390/universe8060314
Faisst AL, Yan L, Béthermin M, Cassata P, Dessauges-Zavadsky M, Fudamoto Y, Ginolfi M, Gruppioni C, Jones G, Khusanova Y, et al. ALPINE: A Large Survey to Understand Teenage Galaxies. Universe. 2022; 8(6):314. https://doi.org/10.3390/universe8060314
Chicago/Turabian StyleFaisst, Andreas L., Lin Yan, Matthieu Béthermin, Paolo Cassata, Miroslava Dessauges-Zavadsky, Yoshinobu Fudamoto, Michele Ginolfi, Carlotta Gruppioni, Gareth Jones, Yana Khusanova, and et al. 2022. "ALPINE: A Large Survey to Understand Teenage Galaxies" Universe 8, no. 6: 314. https://doi.org/10.3390/universe8060314
APA StyleFaisst, A. L., Yan, L., Béthermin, M., Cassata, P., Dessauges-Zavadsky, M., Fudamoto, Y., Ginolfi, M., Gruppioni, C., Jones, G., Khusanova, Y., LeFèvre, O., Pozzi, F., Romano, M., Silverman, J., & Vanderhoof, B. (2022). ALPINE: A Large Survey to Understand Teenage Galaxies. Universe, 8(6), 314. https://doi.org/10.3390/universe8060314