Explaining the ‘Outliers’ Track in Black Hole X-ray Binaries with a BZ-Jet and Inner-Disk Coupling
Abstract
:1. Introduction
2. BZ-Jet in MAD State
3. Results
3.1. H1743-322
3.2. MAXI 1348-630
4. Discussion
4.1. Jet Power and Jet Efficiency
4.2. MAD in BHXBs
5. Summary and Outlook
- The BZ-jet in the MAD state and the inner-disk coupling show good consistency with the observed radio/X-ray correlation in both sources. This suggests that the BZ-jet might explain the ‘outlier’ tracks of both sources. While the accretion disk of H1743-322 could be in the MAD state, there is a lower possibility that MAD is achieved in MAXI J1348-630 due to its low jet production efficiency.
- The bolometric luminosity ratios of H1743-322 and MAXI J1348-630, i.e., and , respectively, are quite different, implying that the latter is in a relatively low state.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Corral-Santana, J.M.; Casares, J.; Muñoz-Darias, T.; Bauer, F.E.; Martínez-Pais, I.G.; Russell, D.M. BlackCAT: A catalogue of stellar-mass black holes in X-ray transients. Astron. Astrophys. 2016, 587, A61. [Google Scholar] [CrossRef] [Green Version]
- Fender, R.P.; Belloni, T.M.; Gallo, E. Towards a unified model for black hole X-ray binary jets. Mon. Not. R. Astron. Soc. 2004, 355, 1105–1118. [Google Scholar] [CrossRef] [Green Version]
- Fender, R.; Gallo, E. An Overview of Jets and Outflows in Stellar Mass Black Holes. Space Sci. Rev. 2014, 183, 323–337. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.C. Nuclear activity in nearby galaxies. Annu. Rev. Astron. Astrophys. 2008, 46, 475–539. [Google Scholar] [CrossRef]
- Su, R.; Liu, X.; Zhang, Z. Correlation analysis of radio properties and accretion-disk luminosity for low luminosity AGNs. Astrophys. Space Sci. 2017, 362, 3. [Google Scholar] [CrossRef] [Green Version]
- Coriat, M.; Corbel, S.; Prat, L.; Miller-Jones, J.C.A.; Cseh, D.; Tzioumis, A.K.; Brocksopp, C.; Rodriguez, J.; Fender, R.P.; Sivakoff, G.R. Radiatively efficient accreting black holes in the hard state: The case study of H1743-322. Mon. Not. R. Astron. Soc. 2011, 414, 677–690. [Google Scholar] [CrossRef] [Green Version]
- Corbel, S.; Coriat, M.; Brocksopp, C.; Tzioumis, A.K.; Fender, R.P.; Tomsick, J.A.; Buxton, M.M.; Bailyn, C.D. The ‘universal’ radio/X-ray flux correlation: The case study of the black hole GX 339-4. Mon. Not. R. Astron. Soc. 2013, 428, 2500–2515. [Google Scholar] [CrossRef] [Green Version]
- Jonker, P.G.; Miller-Jones, J.; Homan, J.; Gallo, E.; Rupen, M.; Tomsick, J.; Fender, R.P.; Kaaret, P.; Steeghs, D.T.H.; Torres, M.A.P.; et al. Following the 2008 outburst decay of the black hole candidate H 1743-322 in X-ray and radio. Mon. Not. R. Astron. Soc. 2010, 401, 1255–1263. [Google Scholar] [CrossRef] [Green Version]
- Plotkin, R.M.; Bright, J.; Miller-Jones, J.C.A.; Shaw, A.W.; Tomsick, J.A.; Russell, T.D.; Zhang, G.B.; Russell, D.M.; Fender, R.P.; Homan, J.; et al. Up and Down the Black Hole Radio/X-Ray Correlation: The 2017 Mini-outbursts from Swift J1753.5-0127. Astrophys. J. 2017, 848, 92. [Google Scholar] [CrossRef] [Green Version]
- Xie, F.G.; Yuan, F. Interpreting the radio/X-ray correlation of black hole X-ray binaries based on the accretion-jet model. Mon. Not. R. Astron. Soc. 2016, 456, 4377–4383. [Google Scholar] [CrossRef] [Green Version]
- Carotenuto, F.; Corbel, S.; Tremou, E.; Russell, T.D.; Tzioumis, A.; Fender, R.P.; Woudt, P.A.; Motta, S.E.; Miller-Jones, J.C.A.; Tetarenko, A.J.; et al. The hybrid radio/X-ray correlation of the black hole transient MAXI J1348-630. Mon. Not. R. Astron. Soc. 2021, 505, L58–L63. [Google Scholar] [CrossRef]
- Liu, X.; Chang, N.; Wang, X.; Yuan, Q. The Origin of Radio Emission in Black Hole X-ray Binaries. Galaxies 2021, 9, 78. [Google Scholar] [CrossRef]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79–L83. [Google Scholar] [CrossRef]
- Narayan, R.; Chael, A.; Chatterjee, K.; Ricarte, A.; Curd, B. Jets in magnetically arrested hot accretion flows: Geometry, power, and black hole spin-down. Mon. Not. R. Astron. Soc. 2022, 511, 3795–3813. [Google Scholar] [CrossRef]
- Ye, Y.C.; Wang, D.X.; Huang, C.Y.; Cao, X.F. A magnetic model for low/hard state of black hole binaries. Res. Astron. Astrophys. 2016, 16, 40. [Google Scholar] [CrossRef] [Green Version]
- Zdziarski, A.A.; Shapopi, J.N.S.; Pooley, G.G. The Persistent Radio Jet Coupled to Hard X-Rays in the Soft State of Cyg X-1. Astrophys. J. Lett. 2020, 894, L18. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F.; Maraschi, L.; Celotti, A.; Sbarrato, T. The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 2014, 515, 376–378. [Google Scholar] [CrossRef] [Green Version]
- Bisnovatyi-Kogan, G.S.; Ruzmaikin, A.A. The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field. Astrophys. Space Sci. 1974, 28, 45–59. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S.; Ruzmaikin, A.A. The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field. II: Self-consistent Stationary Picture. Astrophys. Space Sci. 1976, 42, 401–424. [Google Scholar] [CrossRef]
- Narayan, R.; Igumenshchev, I.V.; Abramowicz, M.A. Magnetically Arrested Disk: An Energetically Efficient Accretion Flow. Publ. Astron. Soc. Jpn. 2003, 55, L69–L72. [Google Scholar] [CrossRef] [Green Version]
- Igumenshchev, I.V. Magnetically Arrested Disks and the Origin of Poynting Jets: A Numerical Study. Astrophys. J. 2008, 677, 317–326. [Google Scholar] [CrossRef] [Green Version]
- McKinney, J.C.; Tchekhovskoy, A.; Blandford, R.D. General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc. 2012, 423, 3083–3117. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; McClintock, J.E. Observational evidence for a correlation between jet power and black hole spin. Mon. Not. R. Astron. Soc. 2012, 419, L69–L73. [Google Scholar] [CrossRef] [Green Version]
- Steiner, J.F.; McClintock, J.E.; Narayan, R. Jet Power and Black Hole Spin: Testing an Empirical Relationship and Using it to Predict the Spins of Six Black Holes. Astrophys. J. 2013, 762, 104. [Google Scholar] [CrossRef] [Green Version]
- Russell, D.M.; Gallo, E.; Fender, R.P. Observational constraints on the powering mechanism of transient relativistic jets. Mon. Not. R. Astron. Soc. 2013, 431, 405–414. [Google Scholar] [CrossRef] [Green Version]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Black Hole Spin and The Radio Loud/Quiet Dichotomy of Active Galactic Nuclei. Astrophys. J. 2010, 711, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Narayan, R. Hot Accretion Flows around Black Holes. Annu. Rev. Astron. Astrophys. 2014, 52, 529–588. [Google Scholar] [CrossRef] [Green Version]
- Davis, S.W.; Tchekhovskoy, A. Magnetohydrodynamics Simulations of Active Galactic Nucleus Disks and Jets. Annu. Rev. Astron. Astrophys. 2020, 58, 407–439. [Google Scholar] [CrossRef]
- Sikora, M.; Begelman, M.C. Magnetic Flux Paradigm for Radio Loudness of Active Galactic Nuclei. Astrophys. J. Lett. 2013, 764, L24. [Google Scholar] [CrossRef] [Green Version]
- Heinz, S.; Sunyaev, R.A. The non-linear dependence of flux on black hole mass and accretion rate in core-dominated jets. Mon. Not. R. Astron. Soc. 2003, 343, L59–L64. [Google Scholar] [CrossRef] [Green Version]
- Carotenuto, F.; Corbel, S.; Tremou, E.; Russell, T.D.; Tzioumis, A.; Fender, R.P.; Woudt, P.A.; Motta, S.E.; Miller-Jones, J.C.A.; Chauhan, J.; et al. The black hole transient MAXI J1348-630: Evolution of the compact and transient jets during its 2019/2020 outburst. Mon. Not. R. Astron. Soc. 2021, 504, 444–468. [Google Scholar] [CrossRef]
- Williams, D.R.A.; Motta, S.E.; Fender, R.; Bright, J.; Heywood, I.; Tremou, E.; Woudt, P.; Buckley, D.A.H.; Corbel, S.; Coriat, M.; et al. The 2018 outburst of BHXB H1743-322 as seen with MeerKAT. Mon. Not. R. Astron. Soc. 2020, 491, L29–L33. [Google Scholar] [CrossRef]
- Igumenshchev, I.V.; Narayan, R.; Abramowicz, M.A. Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. Astrophys. J. 2003, 592, 1042–1059. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; McKinney, J.C. Prograde and retrograde black holes: Whose jet is more powerful? Mon. Not. R. Astron. Soc. 2012, 423, L55–L59. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, H.; Yang, H. The Accretion Flow in M87 is Really MAD. Astrophys. J. 2022, 924, 124. [Google Scholar] [CrossRef]
- Xie, F.G.; Yuan, F. Radiative efficiency of hot accretion flows. Mon. Not. R. Astron. Soc. 2012, 427, 1580–1586. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Wu, M.; Bu, D. Numerical Simulation of Hot Accretion Flows. I. A Large Radial Dynamical Range and the Density Profile of Accretion Flow. Astrophys. J. 2012, 761, 129. [Google Scholar] [CrossRef]
- Zhang, S.N.; Cui, W.; Chen, W. Black Hole Spin in X-Ray Binaries: Observational Consequences. Astrophys. J. Lett. 1997, 482, L155–L158. [Google Scholar] [CrossRef] [Green Version]
- Espinasse, M.; Fender, R. Spectral differences between the jets in ‘radio-loud’ and ‘radio-quiet’ hard-state black hole binaries. Mon. Not. R. Astron. Soc. 2018, 473, 4122–4129. [Google Scholar] [CrossRef]
- Reynolds, C.S. Observational Constraints on Black Hole Spin. Annu. Rev. Astron. Astrophys. 2021, 59. [Google Scholar] [CrossRef]
- Heinz, S.; Grimm, H.J. Estimating the Kinetic Luminosity Function of Jets from Galactic X-Ray Binaries. Astrophys. J. 2005, 633, 384–391. [Google Scholar] [CrossRef] [Green Version]
- Islam, N.; Zdziarski, A.A. Correlations between radio and bolometric fluxes in GX 339-4 and H1743-322. Mon. Not. R. Astron. Soc. 2018, 481, 4513–4521. [Google Scholar] [CrossRef] [Green Version]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Xie, F.G.; Zdziarski, A.A. Radiative Properties of Magnetically Arrested Disks. Astrophys. J. 2019, 887, 167. [Google Scholar] [CrossRef] [Green Version]
- Kaluzienski, L.J.; Holt, S.S. Variable X-Ray Sources. Int. Astron. Union Circ. 1977, 3099, 3. [Google Scholar]
- Steiner, J.F.; McClintock, J.E. Modeling the Jet Kinematics of the Black Hole Microquasar XTE J1550-564: A Constraint on Spin-Orbit Alignment. Astrophys. J. 2012, 745, 136. [Google Scholar] [CrossRef] [Green Version]
- Jia, N.; Zhao, X.; Gou, L.; García, J.A.; Liao, Z.; Feng, Y.; Li, Y.; Wang, Y.; Li, H.; Wu, J. Detailed analysis on the reflection component for the black hole candidate MAXI J1348-630. Mon. Not. R. Astron. Soc. 2022, 511, 3125–3132. [Google Scholar] [CrossRef]
- Sikora, M.; Stawarz, Ł.; Lasota, J.P. Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications. Astrophys. J. 2007, 658, 815–828. [Google Scholar] [CrossRef] [Green Version]
- Yatabe, F.; Negoro, H.; Nakajima, M.; Sakamaki, A.; Maruyama, W.; Aoki, M.; Kobayashi, K.; Mihara, T.; Nakahira, S.; Takao, Y.; et al. MAXI/GSC discovery of a new X-ray transient MAXI J1348-630. Astron. Telegr. 2019, 12425, 1. [Google Scholar]
- Matsuoka, M.; Kawasaki, K.; Ueno, S.; Tomida, H.; Kohama, M.; Suzuki, M.; Adachi, Y.; Ishikawa, M.; Mihara, T.; Sugizaki, M.; et al. The MAXI Mission on the ISS: Science and Instruments for Monitoring All-Sky X-Ray Images. Publ. Astron. Soc. Jpn. 2009. [Google Scholar] [CrossRef]
- Chen, Y.P.; Ma, X.; Huang, Y.; Ge, M.Y.; Tao, L.; Qu, J.L.; Zhang, S.; Zhang, S.N.; HXMT Collaboration. Insight-HXMT observations of MAXI J1348-630. Astron. Telegr. 2019, 12470, 1. [Google Scholar]
- Russell, T.; Anderson, G.; Miller-Jones, J.; Degenaar, N.; Eijnden, J.v.d.; Sivakoff, G.R.; Tetarenko, A. ATCA detects the radio brightening of the X-ray transient MAXI J1348-630. Astron. Telegr. 2019, 12456, 1. [Google Scholar]
- Chauhan, J.; Miller-Jones, J.C.A.; Raja, W.; Allison, J.R.; Jacob, P.F.L.; Anderson, G.E.; Carotenuto, F.; Corbel, S.; Fender, R.; Hotan, A.; et al. Measuring the distance to the black hole candidate X-ray binary MAXI J1348-630 using H I absorption. Mon. Not. R. Astron. Soc. 2021, 501, L60–L64. [Google Scholar] [CrossRef]
- Tominaga, M.; Nakahira, S.; Shidatsu, M.; Oeda, M.; Ebisawa, K.; Sugawara, Y.; Negoro, H.; Kawai, N.; Sugizaki, M.; Ueda, Y.; et al. Discovery of the Black Hole X-Ray Binary Transient MAXI J1348-630. Astrophys. J. Lett. 2020, 899, L20. [Google Scholar] [CrossRef]
- Yang, Q.X.; Xie, F.G.; Yuan, F.; Zdziarski, A.A.; Gierliński, M.; Ho, L.C.; Yu, Z. Correlation between the photon index and X-ray luminosity of black hole X-ray binaries and active galactic nuclei: Observations and interpretation. Mon. Not. R. Astron. Soc. 2015, 447, 1692–1704. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.C. Radiatively Inefficient Accretion in Nearby Galaxies. Astrophys. J. 2009, 699, 626–637. [Google Scholar] [CrossRef]
- Migliari, S.; Fender, R.P. Jets in neutron star X-ray binaries: A comparison with black holes. Mon. Not. R. Astron. Soc. 2006, 366, 79–91. [Google Scholar] [CrossRef] [Green Version]
- Sądowski, A.; Narayan, R. Powerful radiative jets in supercritical accretion discs around non-spinning black holes. Mon. Not. R. Astron. Soc. 2015, 453, 3213–3221. [Google Scholar] [CrossRef] [Green Version]
- Shen, P.X.; Gu, W.M. Accretion disc-jet couplings in X-ray binaries. Mon. Not. R. Astron. Soc. 2020, 495, 2408–2415. [Google Scholar] [CrossRef]
- Liu, X.; Han, Z.; Zhang, Z. The physical fundamental plane of black hole activity: Revisited. Astrophys. Space Sci. 2016, 361, 9. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; Mahadevan, R.; Quataert, E. Advection-dominated accretion around black holes. In Theory of Black Hole Accretion Disks; Abramowicz, M.A., Björnsson, G., Pringle, J.E., Eds.; Cambridge University Press: Cambridge, UK, 1998; pp. 148–182. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, N.; Liu, X.; Xie, F.-G.; Cui, L.; Shan, H. Explaining the ‘Outliers’ Track in Black Hole X-ray Binaries with a BZ-Jet and Inner-Disk Coupling. Universe 2022, 8, 333. https://doi.org/10.3390/universe8060333
Chang N, Liu X, Xie F-G, Cui L, Shan H. Explaining the ‘Outliers’ Track in Black Hole X-ray Binaries with a BZ-Jet and Inner-Disk Coupling. Universe. 2022; 8(6):333. https://doi.org/10.3390/universe8060333
Chicago/Turabian StyleChang, Ning, Xiang Liu, Fu-Guo Xie, Lang Cui, and Hao Shan. 2022. "Explaining the ‘Outliers’ Track in Black Hole X-ray Binaries with a BZ-Jet and Inner-Disk Coupling" Universe 8, no. 6: 333. https://doi.org/10.3390/universe8060333
APA StyleChang, N., Liu, X., Xie, F. -G., Cui, L., & Shan, H. (2022). Explaining the ‘Outliers’ Track in Black Hole X-ray Binaries with a BZ-Jet and Inner-Disk Coupling. Universe, 8(6), 333. https://doi.org/10.3390/universe8060333