Solar Energetic Particle Events and Forbush Decreases Driven by the Same Solar Sources
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Characteristics of Solar Flare Events
3.2. Characteristics of Associated Forbush Decreases
3.3. Relationships between SEP, FD, and GA Parameters
3.4. Implementation for Space Weather Forecasting
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | |
2 |
References
- Forbush, S.E. Three Unusual Cosmic-Ray Increases Possibly Due to Charged Particles from the Sun. Phys. Rev. 1946, 70, 771–772. [Google Scholar] [CrossRef]
- Dorman, L.I.; Miroshnichenko, L.I. Solar Cosmic Rays; Fizmatgiz: Moscow, Russia, 1968. [Google Scholar]
- Shea, M.A.; Smart, D.F. A Summary of Major Solar Proton Events. Sol. Phys. 1990, 127, 297–320. [Google Scholar] [CrossRef]
- Duggal, S.P. Relativistic solar cosmic rays. Rev. Geophys. Space Phys. 1979, 17, 1021–1058. [Google Scholar] [CrossRef]
- Gosling, J.T. The solar flare myth. J. Geophys. Res. Space Phys. 1993, 98, 18937–18950. [Google Scholar] [CrossRef]
- Reames, D.V. Solar energetic particles: A paradigm shift. Rev. Geophys. 1995, 33, 585–589. [Google Scholar] [CrossRef]
- Zhang, J.; Temmer, M.; Gopalswamy, N.; Malandraki, O.; Nitta, N.V.; Patsourakos, S.; Shen, F.; Vršnak, B.; Wang, Y.; Webb, D.; et al. Earth-affecting solar transients: A review of progresses in solar cycle 24. Prog. Earth Planet. Sci. 2021, 8, 56. [Google Scholar] [CrossRef] [PubMed]
- Kahler, S.W. The correlation between solar energetic particle peak intensities and speeds of coronal mass ejections: Effects of ambient particle intensities and energy spectra. J. Geophys. Res. Space Phys. 2001, 106, 20947–20956. [Google Scholar] [CrossRef]
- Bazilevskaya, G.A.; Sladkova, A.I.; Svirzhevskaya, A.K. Features of the solar X-ray bursts related to solar energetic particle events. Adv. Space Res. 2006, 37, 1421–1425. [Google Scholar] [CrossRef]
- Cliver, E.W.; Ling, A.G.; Belov, A.; Yashiro, S. Size distributions of solar flares and solar energetic particle events. Astrophys. J. Lett. 2012, 756, L29. [Google Scholar] [CrossRef]
- Miteva, R.; Klein, K.L.; Malandraki, O.; Dorrian, G. Solar Energetic Particle Events in the 23rd Solar Cycle: Interplanetary Magnetic Field Configuration and Statistical Relationship with Flares and CMEs. Sol. Phys. 2013, 282, 579–613. [Google Scholar] [CrossRef] [Green Version]
- Dierckxsens, M.; Tziotziou, K.; Dalla, S.; Patsou, I.; Marsh, M.S.; Crosby, N.B.; Malandraki, O.; Tsiropoula, G. Relationship between Solar Energetic Particles and Properties of Flares and CMEs: Statistical Analysis of Solar Cycle 23 Events. Sol. Phys. 2015, 290, 841–874. [Google Scholar] [CrossRef] [Green Version]
- Gopalswamy, N.; Mäkelä, P.; Akiyama, S.; Yashiro, S.; Xie, H.; Thakur, N.; Kahler, S.W. Large Solar Energetic Particle Events Associated with Filament Eruptions Outside of Active Regions. Astrophys. J. Lett. 2015, 806, 8. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, A.; Sandberg, I.; Anastasiadis, A.; Kouloumvakos, A.; Georgoulis, M.K.; Tziotziou, K.; Tsiropoula, G.; Jiggens, P.; Hilgers, A. Solar flares, coronal mass ejections and solar energetic particle event characteristics. J. Space Weather. Space Clim. 2016, 6, A42. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.G.; von Rosenvinge, T.T.; Cane, H.V. 25 MeV solar proton events in Cycle 24 and previous cycles. Adv. Space Res. 2017, 60, 755–767. [Google Scholar] [CrossRef] [Green Version]
- Belov, A.V. Flares, ejections, proton events. Geomagn. Aeron. 2017, 57, 727–737. [Google Scholar] [CrossRef]
- Belov, A.V.; Eroshenko, E.A.; Kryakunova, O.N.; Kurt, V.G.; Yanke, V.G. Ground level enhancements of solar cosmic rays during the last three solar cycles. Geomagn. Aeron. 2010, 50, 21–33. [Google Scholar] [CrossRef]
- Reames, D.V.; Cliver, E.W.; Kahler, S.W. Abundance Enhancements in Impulsive Solar Energetic-Particle Events with Associated Coronal Mass Ejections. Sol. Phys. 2014, 289, 3817–3841. [Google Scholar] [CrossRef] [Green Version]
- Paassilta, M.; Raukunen, O.; Vainio, R.; Valtonen, E.; Papaioannou, A.; Siipola, R.; Riihonen, E.; Dierckxsens, M.; Crosby, N.; Malandraki, O.; et al. Catalogue of 55–80 MeV solar proton events extending through solar cycles 23 and 24. J. Space Weather Space Clim. 2017, 7, A14. [Google Scholar] [CrossRef]
- Vlasova, N.A.; Logachev, Y.I.; Bazilevskaya, G.A.; Ginzburg, E.A.; Daibog, E.I.; Ishkov, V.N.; Kalegaev, V.V.; Lazutin, L.L.; Nguyen, M.D.; Surova, G.M.; et al. Catalogs of Solar Proton Events as a Tool for Studying Space Weather. Cosm. Res. 2022, 60, 151–164. [Google Scholar] [CrossRef]
- Forbush, S.E. On the Effects in Cosmic-Ray Intensity Observed During the Recent Magnetic Storm. Phys. Rev. 1937, 51, 1108–1109. [Google Scholar] [CrossRef]
- Lockwood, J.A. Forbush Decreases in the Cosmic Radiation. Space Sci. Rev. 1971, 12, 658–715. [Google Scholar] [CrossRef]
- Cane, H.V. Coronal Mass Ejections and Forbush Decreases. Space Sci. Rev. 2000, 93, 55–77. [Google Scholar] [CrossRef]
- Belov, A.V.; Eroshenko, E.A.; Oleneva, V.A.; Struminsky, A.B.; Yanke, V.G. What determines the magnitude of forbush decreases? Adv. Space Res. 2001, 27, 625–630. [Google Scholar] [CrossRef]
- Belov, A.V. Forbush effects and their connection with solar, interplanetary and geomagnetic phenomena. Proc. Int. Astron. Union 2009, S257, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Richardson, I.G.; Cane, H.V. Galactic Cosmic Ray Intensity Response to Interplanetary Coronal Mass Ejections/Magnetic Clouds in 1995–2009. Sol. Phys. 2011, 270, 609–627. [Google Scholar] [CrossRef]
- Belov, A.; Abunin, A.; Abunina, M.; Eroshenko, E.; Oleneva, V.; Yanke, V.; Papaioannou, A.; Mavromichalaki, H.; Gopalswamy, N.; Yashiro, S. Coronal Mass Ejections and Non-recurrent Forbush Decreases. Sol. Phys. 2014, 289, 3949–3960. [Google Scholar] [CrossRef]
- Masías-Meza, J.J.; Dasso, S.; Démoulin, P.; Rodriguez, L.; Janvier, M. Superposed epoch study of ICME sub-structures near Earth and their effects on Galactic cosmic rays. Astron. Astrophys. 2016, 592, A118. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, A.; Belov, A.; Abunina, M.; Eroshenko, E.; Abunin, A.; Anastasiadis, A.; Patsourakos, S.; Mavromichalaki, H. Interplanetary Coronal Mass Ejections as the Driver of Non-recurrent Forbush Decreases. Astrophys. J. Lett. 2020, 890, 101. [Google Scholar] [CrossRef]
- Abunina, M.A.; Belov, A.V.; Shlyk, N.S.; Eroshenko, E.A.; Abunin, A.A.; Oleneva, V.A.; Pryamushkina, I.I.; Yanke, V.G. Forbush Effects Created by Coronal Mass Ejections with Magnetic Clouds. Geomagn. Aeron. 2021, 61, 678–687. [Google Scholar] [CrossRef]
- Melkumyan, A.A.; Belov, A.V.; Abunina, M.A.; Shlyk, N.C.; Abunin, A.A.; Oleneva, V.A.; Yanke, V.G. Similarities and Differences between Forbush Decreases Associated with Streams from Coronal Holes, Filament Ejections, and Ejections from Active Regions. Geomagn. Aeron. 2022, 62, 159–177. [Google Scholar] [CrossRef]
- Belov, A.; Eroshenko, E.; Oleneva, V.; Yanke, V. Ground level enhancements of the solar cosmic rays and Forbush decreases in 23rd solar cycle. In Proceedings of the 31st International Cosmic Ray Conference, Lodz, Poland, 7–15 July 2009; Volume 1004. [Google Scholar]
- Belov, A.; Eroshenko, E.; Yanke, V.; Oleneva, V.; Abunin, A.; Abunina, M.; Papaioannou, A.; Mavromichalaki, H. The Global Survey Method Applied to Ground-level Cosmic Ray Measurements. Sol. Phys. 2018, 293, 68. [Google Scholar] [CrossRef]
- Belov, A.; Garcia, H.; Kurt, V.; Mavromichalaki, H.; Gerontidou, M. Proton Enhancements and Their Relation to the X-ray Flares During the Three Last Solar Cycles. Sol. Phys. 2005, 229, 135–159. [Google Scholar] [CrossRef]
- Belov, A.; Kurt, V.; Mavromichalaki, H.; Gerontidou, M. Peak-Size Distributions of Proton Fluxes and Associated Soft X-ray Flares. Sol. Phys. 2007, 246, 457–470. [Google Scholar] [CrossRef]
- Belov, A.V.; Abunina, M.A.; Abunin, A.A.; Eroshenko, E.A.; Oleneva, V.A.; Yanke, V.G. Cosmic-ray vector anisotropy and local characteristics of the interplanetary medium. Geomagn. Aeron. 2017, 57, 389–397. [Google Scholar] [CrossRef]
- Matzka, J.; Stolle, C.; Yamazaki, Y.; Bronkalla, O.; Morschhauser, A. The Geomagnetic Kp Index and Derived Indices of Geomagnetic Activity. Space Weather 2021, 19, e02641. [Google Scholar] [CrossRef]
- Huttunen, K.E.J.; Schwenn, R.; Bothmer, V.; Koskinen, H.E.J. Properties and geoeffectiveness of magnetic clouds in the rising, maximum and early declining phases of solar cycle 23. Ann. Geophys. 2005, 23, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Lynch, B.J.; Zurbuchen, T.H.; Fisk, L.A.; Antiochos, S.K. Internal structure of magnetic clouds: Plasma and composition. J. Geophys. Res. (Space Phys.) 2003, 108, 1239. [Google Scholar] [CrossRef]
- Lynch, B.J.; Gruesbeck, J.R.; Zurbuchen, T.H.; Antiochos, S.K. Solar cycle-dependent helicity transport by magnetic clouds. J. Geophys. Res. (Space Phys.) 2005, 110, A08107. [Google Scholar] [CrossRef] [Green Version]
- Marubashi, K.; Lepping, R.P. Long-duration magnetic clouds: A comparison of analyses using torus- and cylinder-shaped flux rope models. Ann. Geophys. 2007, 25, 2453–2477. [Google Scholar] [CrossRef]
- Yermolaev, Y.I.; Nikolaeva, N.S.; Lodkina, I.G.; Yermolaev, M.Y. Catalog of large-scale solar wind phenomena during 1976–2000. Cosm. Res. 2009, 47, 81–94. [Google Scholar] [CrossRef]
- Richardson, I.G.; Cane, H.V. Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996–2009): Catalog and Summary of Properties. Sol. Phys. 2010, 264, 189–237. [Google Scholar] [CrossRef]
- Gopalswamy, N.; Xie, H.; Mäkelä, P.; Akiyama, S.; Yashiro, S.; Kaiser, M.L.; Howard, R.A.; Bougeret, J.L. Interplanetary Shocks Lacking Type II Radio Bursts. Astrophys. J. Lett. 2010, 710, 1111–1126. [Google Scholar] [CrossRef]
- Kim, R.S.; Gopalswamy, N.; Cho, K.S.; Moon, Y.J.; Yashiro, S. Propagation Characteristics of CMEs Associated with Magnetic Clouds and Ejecta. Sol. Phys. 2013, 284, 77–88. [Google Scholar] [CrossRef]
- Burlaga, L.; Sittler, E.; Mariani, F.; Schwenn, R. Magnetic loop behind an interplanetary shock: Voyager, Helios, and IMP 8 observations. J. Geophys. Res. Space Phys. 1981, 86, 6673–6684. [Google Scholar] [CrossRef]
- Burlaga, L.F.; Behannon, K.W. Magnetic Clouds—Voyager Observations Between 2AU and 4AU. Sol. Phys. 1982, 81, 181–192. [Google Scholar] [CrossRef]
- Klein, L.W.; Burlaga, L.F. Interplanetary magnetic clouds at 1 AU. J. Geophys. Res. Space Phys. 1982, 87, 613–624. [Google Scholar] [CrossRef] [Green Version]
- Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L. Coronal mass ejections and large geomagnetic storms. Geophys. Res. Lett. 1990, 17, 901–904. [Google Scholar] [CrossRef]
- Papailiou, M.; Mavromichalaki, H.; Belov, A.; Eroshenko, E.; Yanke, V. The Asymptotic Longitudinal Cosmic Ray Intensity Distribution as a Precursor of Forbush Decreases. Sol. Phys. 2012, 280, 641–650. [Google Scholar] [CrossRef]
- Belov, A.; Shlyk, N.; Abunina, M.; Abunin, A.; Papaioannou, A. Estimating the Transit Speed and Time of Arrival of Interplanetary Coronal Mass Ejections Using CME and Solar Flare Data. Universe 2022, 8, 327. [Google Scholar] [CrossRef]
- Lavasa, E.; Giannopoulos, G.; Papaioannou, A.; Anastasiadis, A.; Daglis, I.A.; Aran, A.; Pacheco, D.; Sanahuja, B. Assessing the Predictability of Solar Energetic Particles with the Use of Machine Learning Techniques. Sol. Phys. 2021, 296, 107. [Google Scholar] [CrossRef]
- Papaioannou, A.; Vainio, R.; Raukunen, O.; Jiggens, P.; Aran, A.; Dierckxsens, M.; Mallios, S.A.; Paassilta, M.; Anastasiadis, A. The probabilistic solar particle event forecasting (PROSPER) model. J. Space Weather. Space Clim. 2022, 12, 24. [Google Scholar] [CrossRef]
Parameters | GLE Group | Group | Group | Weak Group | NoSEP Group | |
---|---|---|---|---|---|---|
No. of events | 10 | 29 | 39 | 62 | 9641 | |
Mean | (2.6 ± 0.5) × 10 | (1.4 ± 0.2) × 10 | (9.1 ± 1.8) × 10 | (4.9 ± 0.8) × 10 | (5.4 ± 0.1) × 10 | |
(W/m) | Max | 5.7 × 10 | 5.0 × 10 | 5.3 × 10 | 3.2 × 10 | 4.70 × 10 |
Min | 1 × 10 | 1.9 × 10 | 1.2 × 10 | 2.2 × 10 | 1.0 × 10 | |
Mean | 87.4 ± 25 | 104.1 ± 17 | 66.5 ± 8.7 | 67.3 ± 8.9 | 25.8 ± 0.3 | |
(min) | Max | 240 | 328 | 202 | 318 | 941 |
Min | 20 | 10 | 1 | 7 | 0 | |
Mean | 38.7 ± 15 | 35.4 ± 6.6 | 23 ± 3.8 | 17.4 ± 2.68 | 8.7 ± 0.2 | |
(min) | Max | 173 | 146 | 116 | 109 | 604 |
Min | 11 | 3 | 0 | 0 | 0 | |
Mean | 5422.2 ± 3043 | 421.14 ± 194 | 81.45 ± 34.58 | 0.39 ± 0.03 | - | |
(pfu) | Max | 31,700 | 4500 | 1300 | 0.95 | - |
Min | 55 | 1.1 | 1 | 0.1 | - | |
Mean | 10.7 ± 2.8 | 11.7 ± 1.4 | 13.90 ± 1.50 | 9.02 ± 0.8 | - | |
(min) | Max | 32 | 36 | 39 | 37 | - |
Min | 2 | 2 | 3 | 2 | - | |
Mean | 156.3 ± 63.7 | 1.93 ± 0.33 | 0.22 ± 0.02 | 0.01 | - | |
(pfu) | Max | 623 | 7.33 | 0.5 | 0.08 | - |
Min | 7.48 | 0.5 | 0.1 | 0 | - | |
|| | Mean | 16.5 ± 3.4 | 14.2 ± 1.5 | 12.3 ± 1.2 | 16.9 ± 1.0 | 15.5 ± 0.1 |
() | Max | 35 | 38 | 29 | 37 | 67 |
Min | 2 | 0 | 0 | 0 | 0 | |
Mean | 19.9 ± 3.2 | 16.3 ± 2 | 18.5 ± 1.8 | 15.9 ± 1.5 | 15.1 ± 0.1 | |
() | Max | 35 | 34 | 34 | 35 | 35 |
Min | 2 | −4 | −4 | −4 | −4 | |
Mean | 1795 ± 214 (6) | 1566 ± 157 (12) | 1169 ± 114 (19) | 743 ± 87 (14) | 566 ± 24 (108) | |
(km/s) | Max | 2547 | 2861 | 2411 | 1271 | 1376 |
Min | 938 | 785 | 558 | 224 | 136 | |
Mean | 156 ± 59 | 50.5 ± 16 | 16.6 ± 4 | 10.2 ± 4 | 0.6 ± 0.04 | |
Max | 657.4 | 393.8 | 106 | 251 | 218 | |
Min | 12.1 | 1.9 | 0.02 | 0.03 | 0 | |
Mean | 1.29 ± 0.16 | 1.71 ± 0.14 | 1.92 ± 0.13 | 1.14 ± 0.07 | - | |
Max | 2.24 | 3.17 | 4 | 1.98 | - | |
Min | 0.81 | 0.04 | 0.33 | 0 | - |
Parameters | GLE Group | Group | Group | Weak Group | Control Group (No SEP) | |
---|---|---|---|---|---|---|
No. of events | 9 | 20 | 26 | 55 | 91 | |
Mean | 9.77 ± 1.73 | 4.29 ± 0.67 | 5.29 ± 0.71 | 3.16 ± 0.29 | 1.84 ± 0.18 | |
(% ) | Max | 20.4 | 9.8 | 14.4 | 9.6 | 9.4 |
Min | 4.7 | 0.9 | 0.8 | 0.4 | 0.3 | |
Mean | 3.89 ± 0.44 | 2.34 ± 0.20 | 2.16 ± 0.20 | 1.73 ± 0.08 | 1.53 ± 0.07 | |
(% ) | Max | 5.61 | 4.17 | 5.06 | 4.13 | 4.32 |
Min | 1.44 | 0.9 | 0.93 | 0.69 | 0.62 | |
Mean | 7.85 ± 0.43 | 6.57 ± 0.35 | 6.53 ± 0.35 | 5.39 ± 0.22 | 4.78 ± 0.17 | |
Max | 9 | 9 | 9− | 8+ | 8+ | |
Min | 5 | 3− | 3 | 2 | 1 | |
Mean | 235.22 ± 39.61 | 136.00 ± 22.03 | 136.58 ± 17.86 | 76.45 ± 7.76 | 58.00 ± 5.26 | |
Max | 400 | 400 | 300 | 236 | 236 | |
Min | 48 | 12 | 15 | 7 | 4 | |
Mean | −220.3 ± 37.5 | −114.2 ± 19.1 | −119.6 ± 17.1 | −78.5 ± 8.0 | −57.8 ± 4.8 | |
(nT) | Max | −383 | −307 | −387 | −255 | −235 |
Min | −88 | −8 | −11 | −1 | 3 | |
Mean | 35.13 ± 6.33 | 22.82 ± 3.11 | 24.63 ± 2.08 | 18.68 ± 1.21 | 14.21 ± 0.66 | |
(nT) | Max | 62 | 50.1 | 48.2 | 39.5 | 34.1 |
Min | 17.5 | 11.1 | 7.9 | 6 | 5.2 | |
Mean | 1036.9 ± 151.3 | 698.9 ± 48.9 | 644.5 ± 32.1 | 562.9 ± 16.0 | 492.9 ± 13.3 | |
(km/s) | Max | 1876 | 1024 | 1053 | 840 | 922 |
Min | 669 | 436 | 410 | 367 | 300 |
Parameter | Group | ||||
---|---|---|---|---|---|
GLE | Weak | Control (No SEP) | |||
Probability, % | |||||
< 3% | 0 | 50 | 30.5 | 56 | 82.5 |
3% < 10% | 67 | 50 | 58 | 44 | 17.5 |
10% | 33 | 0 | 11.5 | 0 | 0 |
< 5− | 0 | 10 | 19.5 | 32.5 | 45 |
= 5−…6+ | 11 | 40 | 19 | 34.5 | 41 |
= 7−…8+ | 56 | 40 | 50 | 33 | 14 |
= 9−…9 | 33 | 10 | 11.5 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belov, A.; Shlyk, N.; Abunina, M.; Belova, E.; Abunin, A.; Papaioannou, A. Solar Energetic Particle Events and Forbush Decreases Driven by the Same Solar Sources. Universe 2022, 8, 403. https://doi.org/10.3390/universe8080403
Belov A, Shlyk N, Abunina M, Belova E, Abunin A, Papaioannou A. Solar Energetic Particle Events and Forbush Decreases Driven by the Same Solar Sources. Universe. 2022; 8(8):403. https://doi.org/10.3390/universe8080403
Chicago/Turabian StyleBelov, Anatoly, Nataly Shlyk, Maria Abunina, Elena Belova, Artem Abunin, and Athanasios Papaioannou. 2022. "Solar Energetic Particle Events and Forbush Decreases Driven by the Same Solar Sources" Universe 8, no. 8: 403. https://doi.org/10.3390/universe8080403
APA StyleBelov, A., Shlyk, N., Abunina, M., Belova, E., Abunin, A., & Papaioannou, A. (2022). Solar Energetic Particle Events and Forbush Decreases Driven by the Same Solar Sources. Universe, 8(8), 403. https://doi.org/10.3390/universe8080403