Towards In-Situ Geochemical Analysis of Planetary Rocks and Soils by Laser Ablation/Ionisation Time-of-Flight Mass Spectrometry
Abstract
:1. Introduction
2. Space Prototype Instrumentation Designed for In-Situ Chemical (Element, Isotope) Analysis
3. Laser Mass Spectrometer (LMS)
4. Geochemical Analysis with LMS
4.1. Meteoritic Samples
4.1.1. Allende
4.1.2. Lunar Meteorite Sayh al Uhaymir 169 (SaU169)
4.2. Sedimentary Rocks
4.2.1. A mineralogical Inclusions in Calcite Carbonate
4.2.2. Micro-Sized Inclusions in Aragonite Crystal
4.2.3. Micro-Sized Inclusions in Silica Chert
4.3. Apatite Crystal in Igneous Rocks
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- MacPherson, G.J.; Thiemens, M.H. Cosmochemistry: Understanding the solar system through analysis of extraterrestrial materials. Proc. Natl. Acad. Sci. USA 2011, 108, 19130–19134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bishop, J.L.; Bell, J.F.I.; Moersch, J.E. Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar] [CrossRef]
- Pieters, C.M.; Englert, P.A.J. Remote Geochemical Analysis: Elemental and Mineralogical Composition; Cambridge University Press: Cambridge, UK, 1993; Volume 4. [Google Scholar]
- Kim, K.J.; Hasebe, N. Nuclear Planetology: Especially Concerning the Moon and Mars. Res. Astron. Astrophys. 2012, 12, 1313–1380. [Google Scholar] [CrossRef]
- Prettyman, T.H. Remote chemical sensing using nuclear spectroscopy. In Encyklopedia of the Solar System; Academic Press: New York, NY, USA, 2006; Volume 2, pp. 765–786. [Google Scholar]
- Ashley, J.W.; Golombek, M.P.; Christensen, P.R.; Squyres, S.W.; McCoy, T.J.; Schroder, C.; Fleischer, I.; Johnson, J.R.; Herkenhoff, K.E.; Parker, T.J. Evidence for mechanical and chemical alteration of iron-nickel meteorites on Mars: Process insights for Meridiani Planum. J. Geophys. Res.-Planet 2011, 116, E00f20. [Google Scholar] [CrossRef] [Green Version]
- Adler, I.; Trombka, J.I.; Gorenste, P. Remote Chemical-Analysis during Apollo-15 Mission. Anal. Chem. 1972, 44, A28. [Google Scholar] [CrossRef]
- Adler, I.; Trombka, J.I. Orbital Chemistry—Lunar-Surface Analysis from X-Ray and Gamma-Ray Remote-Sensing Experiments. Phys. Chem. Earth 1977, 10, 17–43. [Google Scholar] [CrossRef]
- Grande, M.; Browning, R.; Waltham, N.; Parker, D.; Dunkin, S.K.; Kent, B.; Kellett, B.; Perry, C.H.; Swinyard, B.; Perry, A.; et al. The D-CIXS X-ray mapping spectrometer on SMART-1. Planet Space Sci. 2003, 51, 427–433. [Google Scholar] [CrossRef]
- Foing, B.H.; Racca, G.D.; Marini, A.; Heather, D.J.; Koschny, D.; Grande, M.; Huovelin, J.; Keller, H.U.; Nathues, A.; Josset, J.L.; et al. SMART-1 mission to the moon: Technology and science goals. Adv. Space Res. 2003, 31, 2323–2333. [Google Scholar] [CrossRef]
- Sun, H.X.; Dai, S.W. Mission objectives and payloads for the first lunar exploration of China. Acta Astronaut. 2005, 57, 561–565. [Google Scholar] [CrossRef]
- Shirai, K.; Okada, T.; Yamamoto, Y.; Arai, T.; Ogawa, K.; Shiraishi, H.; Iwasaki, M.; Arakawa, M.; Grande, M.; Kato, M. Instrumentation and performance evaluation of the XRS on SELENE orbiter. Earth Planets Space 2008, 60, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Karouji, Y.; Hasebe, N.; Shibamura, E.; Kobayashi, M.N.; Okudaira, O.; Yamashita, N.; Kobayashi, S.; Hareyama, M.; Miyachi, T.; Kodaira, S.; et al. Elemental mapping of the moon by the selene GRS observation. Meteorit. Planet. Sci. 2008, 43, A70. [Google Scholar]
- Grande, M.; Maddison, B.J.; Howe, C.J.; Kellett, B.J.; Sreekumar, P.; Huovelin, J.; Crawford, I.A.; Duston, C.L.; Smith, D.; Anand, M.; et al. The C1XS X-ray Spectrometer on Chandrayaan-1. Planet Space Sci. 2009, 57, 717–724. [Google Scholar] [CrossRef] [Green Version]
- Trombka, J.I.; Nittler, L.R.; Starr, R.D.; Evans, L.G.; McCoy, T.J.; Boynton, W.V.; Burbine, T.H.; Bruckner, J.; Gorenstein, P.; Squyres, S.W.; et al. The NEAR-Shoemaker x-ray/gamma-ray spectrometer experiment: Overview and lessons learned. Meteorit. Planet. Sci. 2001, 36, 1605–1616. [Google Scholar] [CrossRef]
- Evans, L.G.; Starr, R.D.; Bruckner, J.; Reedy, R.C.; Boynton, W.V.; Trombka, J.I.; Goldstein, J.O.; Masarik, J.; Nittler, L.R.; McCoy, T.J. Elemental composition from gamma-ray spectroscopy of the NEAR-Shoemaker landing site on 433 Eros. Meteorit. Planet. Sci. 2001, 36, 1639–1660. [Google Scholar] [CrossRef]
- McClanahan, T.P.; Trombka, J.I.; Nittler, L.R.; Boynton, W.V.; Bruckner, J.; Squyres, S.W.; Evans, L.G.; Bhangoo, J.S.; Clark, P.E.; Floyd, S.R.; et al. Spectral analysis and compositing techniques for the Near Earth Asteroid Rendezvous (NEAR Shoemaker), X-ray and Gamma-Ray Spectrometers (XGRS). Nucl. Instrum. Methods A 2001, 471, 179–183. [Google Scholar] [CrossRef]
- Yano, H.; Kubota, T.; Miyamoto, H.; Okada, T.; Scheeres, D.; Takagi, Y.; Yoshida, K.; Abe, M.; Abe, S.; Barnouin-Jha, O.; et al. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa. Science 2006, 312, 1350–1353. [Google Scholar] [CrossRef] [PubMed]
- Russell, C.T.; Capaccioni, F.; Coradini, A.; Christensen, U.; De Sanctis, M.C.; Feldman, W.C.; Jaumann, R.; Keller, H.U.; Konopliv, A.; McCord, T.B.; et al. Dawn discovery mission to vesta and ceres: Present status. Adv. Space Res. 2006, 38, 2043–2048. [Google Scholar] [CrossRef]
- Saunders, R.S.; Arvidson, R.E.; Badhwar, G.D.; Boynton, W.V.; Christensen, P.R.; Cucinotta, F.A.; Feldman, W.C.; Gibbs, R.G.; Kloss, C.; Landano, M.R.; et al. 2001 Mars Odyssey mission summary. Space Sci. Rev. 2004, 110, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, E.A.; Evans, L.G.; Nittler, L.R.; Starr, R.D.; Sprague, A.L.; Lawrence, D.J.; Mccoy, T.J.; Stockstill-Cahill, K.R.; Goldsten, J.O.; Peplowski, P.N.; et al. Analysis of MESSENGER Gamma-Ray Spectrometer data from the Mercury flybys. Planet Space Sci. 2011, 59, 1829–1841. [Google Scholar] [CrossRef]
- Peplowski, P.N.; Blewett, D.T.; Denevi, B.W.; Evans, L.G.; Lawrence, D.J.; Nittler, L.R.; Rhodes, E.A.; Selby, C.M.; Solomon, S.C. Mapping iron abundances on the surface of Mercury: Predicted spatial resolution of the MESSENGER Gamma-Ray Spectrometer. Planet Space Sci. 2011, 59, 1654–1658. [Google Scholar] [CrossRef]
- Peplowski, P.N.; Hamara, D.K.; Lawrence, D.J.; McCoy, T.J.; Boynton, W.V.; Evans, L.G.; Rhodes, E.A.; Solomon, S.C.; Nittler, L.R.; Sprague, A.L. Abundances of Radioactive Elements on the Surface of Mercury: First Results from the Messenger Gamma-Ray Spectrometer. Meteorit. Planet. Sci. 2011, 46, A185. [Google Scholar]
- Patterson, J.H.; Franzgrote, E.J.; Turkevich, A.L.; Anderson, W.A.; Economou, T.E.; Griffin, H.E.; Grotch, S.L.; Sowinski, K.P. Alpha-Scattering Experiment on Surveyor 7—Comparison with Surveyors 5 and 6. J. Geophys. Res. 1969, 74, 6120. [Google Scholar] [CrossRef]
- Turkevich, A.L.; Franzgrote, E.J.; Patterson, J.H. Chemical Composition of Lunar Surface in Mare Tranquillitatis. Science 1969, 165, 277. [Google Scholar] [CrossRef] [PubMed]
- Clark, B.C.; Baird, A.K.; Rose, H.J.; Toulmin, P.; Christian, R.P.; Kelliher, W.C.; Castro, A.J.; Rowe, C.D.; Keil, K.; Huss, G.R. Viking X-ray-Fluorescence Experiment—Analytical Methods and Early Results. J. Geophys. Res. 1977, 82, 4577–4594. [Google Scholar] [CrossRef]
- Rieder, R.; Economou, T.; Wanke, H.; Turkevich, A.; Crisp, J.; Bruckner, J.; Dreibus, G.; McSween, H.Y. The chemical composition of Martian soil and rocks returned by the mobile alpha proton x-ray spectrometer: Preliminary results from the x-ray mode. Science 1997, 278, 1771–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gellert, R.; Rieder, R.; Bruckner, J.; Clark, B.C.; Dreibus, G.; Klingelhofer, G.; Lugmair, G.; Ming, D.W.; Wanke, H.; Yen, A.; et al. Alpha particle X-ray spectrometer (APXS): Results from Gusev crater and calibration report. J. Geophys. Res.-Planet 2006, 111, E02s05. [Google Scholar] [CrossRef]
- Maurice, S.; Wiens, R.C.; Saccoccio, M.; Barraclough, B.; Gasnault, O.; Forni, O.; Mangold, N.; Baratoux, D.; Bender, S.; Berger, G.; et al. The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Science Objectives and Mast Unit Description. Space Sci. Rev. 2012, 170, 95–166. [Google Scholar] [CrossRef]
- Ollila, A.M.; Newsom, H.E.; Clark, B.; Wiens, R.C.; Cousin, A.; Blank, J.G.; Mangold, N.; Sautter, V.; Maurice, S.; Clegg, S.M.; et al. Trace element geochemistry ( Li, Ba, Sr, and Rb) using Curiosity’s ChemCam: Early results for Gale crater from Bradbury Landing Site to Rocknest. J. Geophys. Res.-Planet 2014, 119, 255–285. [Google Scholar] [CrossRef] [Green Version]
- Payre, V.; Fabre, C.; Cousin, A.; Sautter, V.; Wiens, R.C.; Forni, O.; Gasnault, O.; Mangold, N.; Meslin, P.Y.; Lasue, J.; et al. Alkali trace elements in Gale crater, Mars, with ChemCam: Calibration update and geological implications. J. Geophys. Res.-Planet 2017, 122, 650–679. [Google Scholar] [CrossRef]
- Mccord, T.B.; Johnson, T.V.; Adams, J.B. Asteroid Vesta—Spectral Reflectivity and Compositional Implications. Science 1970, 168, 1445–1447. [Google Scholar] [CrossRef]
- Demeo, F.E.; Binzel, R.P.; Slivan, S.M.; Bus, S.J. An extension of the Bus asteroid taxonomy into the near-infrared. Icarus 2009, 202, 160–180. [Google Scholar] [CrossRef] [Green Version]
- Mustard, J.F.; Cooper, C.D. Joint analysis of ISM and TES spectra: The utility of multiple wavelength regimes for Martian surface studies. J. Geophys. Res.-Planet 2005, 110, E05012. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.; Ehlmann, B.L. Phyllosilicate and hydrated silica detections in the knobby terrains of Acidalia Planitia, northern plains, Mars. Geophys. Res. Lett. 2014, 41, 1890–1898. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.V.; Klingelhofer, G.; Schroder, C.; Fleischer, I.; Ming, D.W.; Yen, A.S.; Gellert, R.; Arvidson, R.E.; Rodionov, D.S.; Crumpler, L.S.; et al. Iron mineralogy and aqueous alteration from Husband Hill through Home Plate at Gusev Crater, Mars: Results from the Mossbauer instrument on the Spirit Mars Exploration Rover. J. Geophys. Res.-Planet 2008, 113, E12s42. [Google Scholar] [CrossRef]
- Snyder, G.A.; Taylor, L.A.; Neal, C.R. A chemical model for generating the sources of mare basalts-combined equilibrium and fractional crystalisation of the lunar magmasphere. Geochim. Cosmochim. Acta 1992, 56, 3809–3823. [Google Scholar] [CrossRef]
- Le Corre, L.; Reddy, V.; Schmedemann, N.; Becker, K.J.; O’Brien, D.P.; Yamashita, N.; Peplowski, P.N.; Prettyman, T.H.; Li, J.Y.; Cloutis, E.A.; et al. Olivine or impact melt: Nature of the "Orange" material on Vesta from Dawn. Icarus 2013, 226, 1568–1594. [Google Scholar] [CrossRef] [Green Version]
- Shearer, C.K.; Papike, J.J.; Spilde, M.N. Trace-element partitioning between immiscible lunar melts: An example from naturally occurring lunar melt inclusions. Am. Mineral. 2001, 86, 238–246. [Google Scholar] [CrossRef]
- Milliken, R.E.; Fischer, W.W.; Hurowitz, J.A. Missing salts on early Mars. Geophys. Res. Lett. 2009, 36, L11202. [Google Scholar] [CrossRef] [Green Version]
- Schroder, S.; Pavlov, S.G.; Rauschenbach, I.; Jessberger, E.K.; Hubers, H.W. Detection and identification of salts and frozen salt solutions combining laser-induced breakdown spectroscopy and multivariate analysis methods: A study for future martian exploration. Icarus 2013, 223, 61–73. [Google Scholar] [CrossRef]
- Meslin, P.Y.; Gasnault, O.; Forni, O.; Schroder, S.; Cousin, A.; Berger, G.; Clegg, S.M.; Lasue, J.; Maurice, S.; Sautter, V.; et al. Soil Diversity and Hydration as Observed by ChemCam at Gale Crater, Mars. Science 2013, 341, 1238670. [Google Scholar] [CrossRef] [Green Version]
- Grotzinger, J.P.; Crisp, J.; Vasavada, A.R.; Anderson, R.C.; Baker, C.J.; Barry, R.; Blake, D.F.; Conrad, P.; Edgett, K.S.; Ferdowski, B.; et al. Mars Science Laboratory Mission and Science Investigation. Space Sci. Rev. 2012, 170, 5–56. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering, and Medicine. Origins, Worlds, and Life: A Decadal Strategy for Planetary Science and Astrobiology 2023–2032 (2022); The National Academies Press: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Putirka, K.D. (Ed.) Introduction to Minerals, Inclusions and Volcanic Processes; Walter de Gruyter GmbH & Co KG: Berlin, Germany, 2008; Volume 69, pp. 1–8. [Google Scholar]
- Milani, L.; Bolhar, R.; Frei, D.; Harlov, D.E.; Samuel, V.O. Light rare earth element systematics as a tool for investigating the petrogenesis of phoscorite-carbonatite associations, as exemplified by the Phalaborwa Complex, South Africa. Miner. Depos. 2017, 52, 1105–1125. [Google Scholar] [CrossRef]
- Peplowski, P.N.; Klima, R.L.; Lawrence, D.J.; Ernst, C.M.; Denevi, B.W.; Frank, E.A.; Goldsten, J.O.; Murchie, S.L.; Nittler, L.R.; Solomon, S.C. Remote sensing evidence for an ancient carbon-bearing crust on Mercury. Nat. Geosci. 2016, 9, 273. [Google Scholar] [CrossRef]
- Watson, E.B. Apatite and Phosphorus in Mantle Source Regions—An Experimental-Study of Apatite-Melt Equilibria at Pressures to 25-Kbar. Earth Planet Sci. Lett. 1980, 51, 322–335. [Google Scholar] [CrossRef]
- Rubatto, D. Zircon: The Metamorphic Mineral. Petrochronol. Methods Appl. 2017, 83, 261–295. [Google Scholar] [CrossRef]
- Arevalo, R.; Selliez, L.; Briois, C.; Carrasco, N.; Thirkell, L.; Cherville, B.; Colin, F.; Gaubicher, B.; Farcy, B.; Li, X.; et al. An Orbitrap-based laser desorption/ablation mass spectrometer designed for spaceflight. Rapid Commun. Mass Spectrom. 2018, 32, 1875–1886. [Google Scholar] [CrossRef]
- Willhite, L.; Ni, Z.Q.; Arevalo, R.; Bardyn, A.; Gundersen, C.; Minasola, N.; Southard, A.; Briois, C.; Thirkell, L.; Colin, F.; et al. CORALS: A Laser Desorption/Ablation Orbitrap Mass Spectrometer for In Situ Exploration of Europa. Aerosp. Conf. Proc. 2021, 1–13. [Google Scholar] [CrossRef]
- Briois, C.; Thissen, R.; Thirkell, L.; Aradj, K.; Bouabdellah, A.; Boukrara, A.; Carrasco, N.; Chalumeau, G.; Chapelon, O.; Colin, F.; et al. Orbitrap mass analyser for in situ characterisation of planetary environments: Performance evaluation of a laboratory prototype. Planet Space Sci. 2016, 131, 33–45. [Google Scholar] [CrossRef]
- Arevalo, R.; Ni, Z.Q.; Danell, R.M. Mass spectrometry and planetary exploration: A brief review and future projection. J. Mass Spectrom. 2020, 55, e4454. [Google Scholar] [CrossRef] [Green Version]
- Brinckerhoff, W.B.; Managadze, G.G.; McEntire, R.W.; Cheng, A.F.; Green, W.J. Laser time-of-flight mass spectrometry for space. Rev. Sci. Instrum. 2000, 71, 536–545. [Google Scholar] [CrossRef] [Green Version]
- Managadze, G.G.; Wurz, P.; Sagdeev, R.Z.; Chumikov, A.E.; Tuley, M.; Yakovleva, M.; Managadze, N.G.; Bondarenko, A.L. Study of the main geochemical characteristics of Phobos’ regolith using laser time-of-flight mass spectrometry. Solar Syst. Res. 2010, 44, 376–384. [Google Scholar] [CrossRef]
- Rohner, U.; Whitby, J.A.; Wurz, P. A miniature laser ablation time-of-flight mass spectrometer for in situ planetary exploration. Meas. Sci. Technol. 2003, 14, 2159–2164. [Google Scholar] [CrossRef]
- Riedo, A.; Bieler, A.; Neuland, M.; Tulej, M.; Wurz, P. Performance evaluation of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations in planetary space research. J. Mass Spectrom. 2013, 48, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Tulej, M.; Riedo, A.; Neuland, M.B.; Meyer, S.; Wurz, P.; Thomas, N.; Grimaudo, V.; Moreno-Garcia, P.; Broekmann, P.; Neubeck, A.; et al. CAMAM: A Miniature Laser Ablation Ionisation Mass Spectrometer and Microscope-Camera System for In Situ Investigation of the Composition and Morphology of Extraterrestrial Materials. Geostand. Geoanal. Res. 2014, 38, 441–466. [Google Scholar] [CrossRef]
- Sinha, M.P.; Wadsworth, M. Miniature focal plane mass spectrometer with 1000-pixel modified-CCD detector array for direct ion measurement. Rev. Sci. Instrum. 2005, 76, 025103. [Google Scholar] [CrossRef]
- Cohen, B.A.; Miller, J.S.; Li, Z.H.; Swindle, T.D.; French, R.A. The Potassium-Argon Laser Experiment (KArLE): In Situ Geochronology for Planetary Robotic Missions. Geostand. Geoanal. Res. 2014, 38, 421–439. [Google Scholar] [CrossRef] [Green Version]
- Cho, Y.; Cohen, B.A. Dating igneous rocks using the Potassium-Argon Laser Experiment (KArLE) instrument: A case study for similar to 380Ma basaltic rocks. Rapid Commun. Mass Spectrom. 2018, 32, 1755–1765. [Google Scholar] [CrossRef] [Green Version]
- Anderson, F.S.; Nowicki, K.; Whitaker, T.; Mahoney, J.; Young, D.; Miller, G.; Waite, H.; Norman, M.; Boyce, J.; Taylor, J. A Laser Desorption Resonance Ionization Mass Spectrometer for Rb-Sr Geochronology: Sr Isotope Results. In Proceedings of the 2012 Ieee Aerospace Conference, Big Sky, MT, USA, 3–10 March 2012. [Google Scholar]
- Anderson, F.S.; Levine, J.; Whitaker, T. Dating a Martian meteorite with 20 Myr precision using a prototype in-situ dating instrument. Planet Space Sci. 2020, 191, 105007. [Google Scholar] [CrossRef]
- Balaram, V.; Sawant, S.S. Indicator Minerals, Pathfinder Elements, and Portable Analytical Instruments in Mineral Exploration Studies. Minerals 2022, 12, 394. [Google Scholar] [CrossRef]
- Balaram, V. Current Advances in Miniaturization of Analytical Instruments—Applications in Cosmochemistry, Geochemistry, Exploration and Environmental Sciences. Spectroscopy 2016, 31, 40–44. [Google Scholar]
- Hornung, K.; Kissel, J.; Fischer, H.; Mellado, E.M.; Kulikov, O.; Hilchenbach, M.; Kruger, H.; Engrand, C.; Langevin, Y.; Rossi, M.; et al. Collecting cometary dust particles on metal blacks with the COSIMA instrument onboard ROSETTA. Planet Space Sci. 2014, 103, 309–317. [Google Scholar] [CrossRef]
- Franzke, J.; Miclea, M. Sample analysis with miniaturized plasmas. Appl. Spectrosc. 2006, 60, 80a–90a. [Google Scholar] [CrossRef] [PubMed]
- Franzke, J.; Kunze, K.; Miclea, M.; Niemax, K. Microplasmas for analytical spectrometry. J. Anal. Atom. Spectrom. 2003, 18, 802–807. [Google Scholar] [CrossRef]
- Farcy, B.J.; Arevalo, R.D.; Taghioskoui, M.; McDonough, W.F.; Benna, M.; Brinckerhoff, W.B. A prospective microwave plasma source for in situ spaceflight applications. J. Anal. Atom. Spectrom. 2020, 35, 2740–2747. [Google Scholar] [CrossRef]
- Tulej, M.; Wiesendanger, R.; Riedo, A.; Knopp, G.; Wurz, P. Mass spectrometric analysis of the Mg plasma produced by double-pulse femtosecond laser irradiation. J. Anal. Atom. Spectrom. 2018, 33, 1292–1303. [Google Scholar] [CrossRef]
- Wiesendanger, R.; Tulej, M.; Riedo, A.; Frey, S.; Shea, H.; Wurz, P. Improved detection sensitivity for heavy trace elements using a miniature laser ablation ionisation mass spectrometer. J. Anal. Atom. Spectrom. 2017, 32, 2182–2188. [Google Scholar] [CrossRef]
- Riedo, A.; Grimaudo, V.; Lopez, A.C.; Tulej, M.; Wurz, P.; Broekmann, P. Novel 2D binning approach for advanced LIMS depth profiling analysis. J. Anal. Atom. Spectrom. 2019, 34, 1564–1570. [Google Scholar] [CrossRef] [Green Version]
- Riedo, A.; Lukmanov, R.; Grimaudo, V.; Koning, C.; Ligterink, N.F.W.; Tulej, M.; Wurz, P. Improved plasma stoichiometry recorded by laser ablation ionization mass spectrometry using a double-pulse femtosecond laser ablation ion source. Rapid Commun. Mass Spectrom. 2021, 35, e9094. [Google Scholar] [CrossRef]
- Neuland, M.B.; Meyer, S.; Mezger, K.; Riedo, A.; Tulej, M.; Wurz, P. Probing the Allende meteorite with a miniature laser-ablation mass analyser for space application. Planet Space Sci. 2014, 101, 196–209. [Google Scholar] [CrossRef]
- Frey, S.; Wiesendanger, R.; Tulej, M.; Neuland, M.; Riedo, A.; Grimaudo, V.; Moreno-Garcia, P.; Lopez, A.C.; Mohos, M.; Hofmann, B.; et al. Chemical analysis of a lunar meteorite by laser ablation mass spectrometry. Planet Space Sci. 2020, 182, 104816. [Google Scholar] [CrossRef]
- Grimaudo, V.; Moreno-Garcia, P.; Lopez, A.C.; Riedo, A.; Wiesendanger, R.; Tulej, M.; Gruber, C.; Lortscher, E.; Wurz, P.; Broekmann, P. Depth Profiling and Cross-Sectional Laser Ablation Ionization Mass Spectrometry Studies of Through-Silicon-Vias. Anal. Chem. 2018, 90, 5179–5186. [Google Scholar] [CrossRef]
- Grimaudo, V.; Moreno-Garcia, P.; Riedo, A.; Meyer, S.; Tulej, M.; Neuland, M.B.; Mohos, M.; Gutz, C.; Waldvogek, S.R.; Wurz, P.; et al. Toward Three-Dimensional Chemical Imaging of Ternary Cu-Sn-Pb Alloys Using Femtosecond Laser Ablation/Ionization Mass Spectrometry. Anal. Chem. 2017, 89, 1632–1641. [Google Scholar] [CrossRef]
- Grimaudo, V.; Moreno-Garcia, P.; Riedo, A.; Neuland, M.B.; Tulej, M.; Broekmann, P.; Wurz, P. High-Resolution Chemical Depth Profiling of Solid Material Using a Miniature Laser Ablation/Ionization Mass Spectrometer. Anal. Chem. 2015, 87, 2037–2041. [Google Scholar] [CrossRef] [PubMed]
- Grimaudo, V.; Tulej, M.; Riedo, A.; Lukmanov, R.; Ligterink, N.F.W.; de Koning, C.; Wurz, P. UV post-ionization laser ablation ionization mass spectrometry for improved nm-depth profiling resolution on Cr/Ni reference standard. Rapid Commun. Mass Spectrom. 2020, 34, e8803. [Google Scholar] [CrossRef] [PubMed]
- Neubeck, A.; Tulej, M.; Ivarsson, M.; Broman, C.; Riedo, A.; McMahon, S.; Wurz, P.; Bengtson, S. Mineralogical determination in situ of a highly heterogeneous material using a miniaturized laser ablation mass spectrometer with high spatial resolution. Int. J. Astrobiol. 2016, 15, 133–146. [Google Scholar] [CrossRef] [Green Version]
- Tulej, M.; Lukmanov, R.; Grimaudo, V.; Riedo, A.; de Koning, C.; Ligterink, N.; Neubeck, A.; Ivarsson, M.; McMahon, S.; Wurz, P. Determination of microscopic mineralogy of inclusion in an amygdaloidal pillow basalt by fs-LIMS. J. Anal. At. Spectrom. 2021, 36, 80–91. [Google Scholar] [CrossRef]
- Riedo, A.; de Koning, C.; Stevens, A.H.; Cockell, C.S.; McDonald, A.; Lopez, A.C.; Grimaudo, V.; Tulej, M.; Wurz, P.; Ehrenfreund, P. The Detection of Elemental Signatures of Microbes in Martian Mudstone Analogs Using High Spatial Resolution Laser Ablation Ionization Mass Spectrometry. Astrobiology 2020, 20, 1224–1235. [Google Scholar] [CrossRef]
- Wiesendanger, R.; Wacey, D.; Tulej, M.; Neubeck, A.; Ivarsson, M.; Grimaudo, V.; Moreno-Garcia, P.; Cedeno-Lopez, A.; Riedo, A.; Wurz, P. Chemical and optical identification of micrometer-sized 1.9 billion-year-old fossils by combining a miniature laser ablation ionization mass spectrometry system with an optical microscope. Astrobiology 2018, 18, 1071–1080. [Google Scholar] [CrossRef]
- Meyer, S.; Riedo, A.; Neuland, M.B.; Tulej, M.; Wurz, P. Fully automatic and precise data analysis developed for time-of-flight mass spectrometry. J. Mass Spectrom. 2017, 52, 580–590. [Google Scholar] [CrossRef] [Green Version]
- Wiesendanger, R.A.; Tulej, M.; Grimaudo, V.; Cedeno-Lopez, A.C.; Lukmanov, R.; Riedo, A.; Wurz, P. A method for improvement of mass resolution and isotope accuracy for laser ablation time-of-flight mass spectrometers. J. Chemometr. 2019, 33, e3081. [Google Scholar] [CrossRef] [Green Version]
- Tulej, M.; Neubeck, A.; Riedo, A.; Lukmanov, R.; Grimaudo, V.; Ligterink, N.F.W.; Ivarsson, M.; Bach, W.; de Koning, C.; Wurz, P. Isotope abundance ratio measurements using femtosecond laser ablation ionization mass spectrometry. J. Mass Spectrom. 2020, 55, e4660. [Google Scholar] [CrossRef]
- Tulej, M.; Ligterink, N.F.W.; de Koning, C.; Grimaudo, V.; Lukmanov, R.; Keresztes Schmidt, P.; Riedo, A.; Wurz, P. Current Progress in Femtosecond Laser Ablation/Ionisation Time-of-Flight Mass Spectrometry. Appl. Sci. 2021, 11, 2562. [Google Scholar] [CrossRef]
- Riedo, A.; Neuland, M.; Meyer, S.; Tulej, M.; Wurz, P. Coupling of LMS with a fs-laser ablation ion source: Elemental and isotope composition measurements. J. Anal. Atom. Spectrom. 2013, 28, 1256–1269. [Google Scholar] [CrossRef] [Green Version]
- Neuland, M.B.; Grimaudo, V.; Mezger, K.; Moreno-Garcia, P.; Riedo, A.; Tulej, M.; Wurz, P. Quantitative measurement of the chemical composition of geological standards with a miniature laser ablation/ionization mass spectrometer designed for in situ application in space research. Meas. Sci. Technol. 2016, 27, 035904. [Google Scholar] [CrossRef]
- Tulej, M.; Iakovleva, M.; Leya, I.; Wurz, P. A miniature mass analyser for in-situ elemental analysis of planetary material-performance studies. Anal. Bioanal. Chem. 2011, 399, 2185–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedo, A.; Tulej, M.; Rohner, U.; Wurz, P. High-speed microstrip multi-anode multichannel plate detector system. Rev. Sci. Instrum. 2017, 88, 045114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riedo, A.; Meyer, S.; Heredia, B.; Neuland, M.B.; Bieler, A.; Tulej, M.; Leya, I.; Iakovleva, M.; Mezger, K.; Wurz, P. Highly accurate isotope composition measurements by a miniature laser ablation mass spectrometer designed for in situ investigations on planetary surfaces. Planet Space Sci. 2013, 87, 1–13. [Google Scholar] [CrossRef]
- Riedo, A.; Grimaudo, V.; Aerts, J.W.; Lukmanov, R.; Tulej, M.; Broekmann, P.; Lindner, R.; Wurz, P.; Ehrenfreund, P. Laser Ablation Ionization Mass Spectrometry: A Space Prototype System for In Situ Sulphur Isotope Fractionation Analysis on Planetary Surfaces. Front. Astron. Space 2021, 8, 726373. [Google Scholar] [CrossRef]
- Lopez, D.M.; Grimaudo, V.; Prone, G.; Flisch, A.; Riedo, A.; Zboray, R.; Luthi, T.; Mayor, M.; Fussenegger, M.; Broekmann, P.; et al. Automated, 3-D and Sub-Micron Accurate Ablation-Volume Determination by Inverse Molding and X-Ray Computed Tomography. Adv. Sci. 2022, 9, 2200136. [Google Scholar] [CrossRef]
- Lopez, A.C.; Grimaudo, V.; Riedo, A.; Tulej, M.; Wiesendanger, R.; Lukmanov, R.; Moreno-Garcia, P.; Lortscher, E.; Wurz, P.; Broekmann, P. Three-Dimensional Composition Analysis of SnAg Solder Bumps Using Ultraviolet Femtosecond Laser Ablation Ionization Mass Spectrometry. Anal. Chem. 2020, 92, 1355–1362. [Google Scholar] [CrossRef]
- Grimaudo, V.; Moreno-Garcia, P.; Riedo, A.; Lopez, A.C.; Tulej, M.; Wiesendanger, R.; Wurz, P.; Broekmann, P. Review-Laser Ablation Ionization Mass Spectrometry (LIMS) for Analysis of Electrodeposited Cu Interconnects. J. Electrochem. Soc. 2018, 166, D3190–D3199. [Google Scholar] [CrossRef] [Green Version]
- Azov, V.A.; Mueller, L.; Makarov, A.A. Laser ionization mass spectrometry at 55: Quo Vadis? Mass Spectrom. Rev. 2020, 21669, 1–52. [Google Scholar] [CrossRef]
- Sauer, S.; Freiwald, A.; Maier, T.; Kube, M.; Reinhardt, R.; Kostrzewa, M.; Geider, K. Classification and Identification of Bacteria by Mass Spectrometry and Computational Analysis. PLoS ONE 2008, 3, e2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behrmann, J.; Etmann, C.; Boskamp, T.; Casadonte, R.; Kriegsmann, J.; Maass, P. Deep learning for tumor classification in imaging mass spectrometry. Bioinformatics 2018, 34, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Lukmanov, R. Characterization of Bio-Organic and Inorganic Chemistries Using Laser-Based Mass Spectrometry. Ph. D. Thesis, University Bern, Bern, Switzerland, 2021. [Google Scholar]
- Lukmanov, R.A.; Tulej, M.; Ligterink, N.F.W.; De Koning, C.; Riedo, A.; Grimaudo, V.; Neubeck, A.; Wacey, D.; Wurz, P. Chemical identification of microfossils from the 1.88-Ga Gunflint chert: Towards empirical biosignatures using laser ablation ionization mass spectrometer. J. Chemometr. 2021, 35, e3370. [Google Scholar] [CrossRef]
- Lukmanov, R.A.; Riedo, A.; Wacey, D.; Ligterink, N.F.W.; Grimaudo, V.; Tulej, M.; de Koning, C.; Neubeck, A.; Wurz, P. On Topological Analysis of fs-LIMS Data. Implications for in Situ Planetary Mass Spectrometry. Front. Artif. Intell. 2021, 4, 668163. [Google Scholar] [CrossRef]
- Neuland, M.B.; Mezger, K.; Riedo, A.; Tulej, M.; Wurz, P. The chemical composition and homogeneity of the Allende matrix. Planet Space Sci. 2021, 204, 105251. [Google Scholar] [CrossRef]
- Gnos, E.; Hofmann, B.A.; Al-Kathiri, A.; Lorenzetti, S.; Villa, I.; Eugster, O.; Jull, A.J.T.; Eikenberg, J.; Spettel, B.; Krähenbühl, U. Lunar meteorite SaU 169; An extremely KREEP-rich rock In Proceedings of the 66th Annual Meteoritical Society Meeting, Munster, Germany, 28 July–1 August 2003.
- Ferry, J.M.; Watson, E.B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 2007, 154, 429–437. [Google Scholar] [CrossRef]
- Tulej, M.; Neubeck, A.; Ivarsson, M.; Riedo, A.; Neuland, M.B.; Meyer, S.; Wurz, P. Chemical Composition of Micrometer-Sized Filaments in an Aragonite Host by a Miniature Laser Ablation/Ionization Mass Spectrometer. Astrobiology 2015, 15, 669–682. [Google Scholar] [CrossRef]
- Buettner, K.M.; Valentine, A.M. Bioinorganic Chemistry of Titanium. Chem. Rev. 2012, 112, 1863–1881. [Google Scholar] [CrossRef]
- Lukmanov, R.A.; Tulej, M.; Wiesendanger, R.; Riedo, A.; Grimaudo, V.; Ligterink, N.F.W.; de Koning, C.; Neubeck, A.; Wacey, D.; Wurz, P. Multiwavelength Ablation/Ionization and Mass Spectrometric Analysis of 1.88 Ga Gunflint Chert. Astrobiology 2022, 22, 369–386. [Google Scholar] [CrossRef]
- Allen, C.C.; Westall, F.; Schelble, R.T. Importance of a Martian Hematite Site for Astrobiology. Astrobiology 2001, 1, 111–123. [Google Scholar] [CrossRef] [PubMed]
- Belousova, E.A.; Griffin, W.L.; O’Reilly, S.Y.; Fisher, N.I. Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type. J. Geochem. Explor. 2002, 76, 45–69. [Google Scholar] [CrossRef]
- Bergman, S.C.; Ritter, C.J.; Zamierowski, E.E.; Cothern, C.R. Use of Zonal Centrifugation in Delineating Trace-Element Distributions in Sewage Sludges from the Dayton, Ohio, Area. J. Environ. Qual. 1979, 8, 416–422. [Google Scholar] [CrossRef]
- Boudreau, A.E.; Mathez, E.A.; Mccallum, I.S. Halogen Geochemistry of the Stillwater and Bushveld Complexes—Evidence for Transport of the Platinum-Group Elements by Cl-Rich Fluids. J. Petrol. 1986, 27, 967–986. [Google Scholar] [CrossRef]
- Sha, L.K.; Chappell, B.W. Apatite chemical composition, determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry, as a probe into granite petrogenesis. Geochim. Cosmochim. Acta 1999, 63, 3861–3881. [Google Scholar] [CrossRef]
- Wu, F.Y.; Yang, Y.H.; Li, Q.L.; Mitchell, R.H.; Dawson, J.B.; Brandl, G.; Yuhara, M. In situ determination of U-Pb ages and Sr-Nd-Hf isotopic constraints on the petrogenesis of the Phalaborwa carbonatite Complex, South Africa. Lithos 2011, 127, 309–322. [Google Scholar] [CrossRef]
- Dawson, J.B.; Hinton, R.W. Trace-element content and partitioning in calcite, dolomite and apatite in carbonatite, Phalaborwa, South Africa. Mineral. Mag. 2003, 67, 921–930. [Google Scholar] [CrossRef]
- Giebel, R.J.; Gauert, C.D.K.; Marks, M.A.W.; Costin, G.; Markl, G. Multi-stage formation of REE minerals in the Palabora Carbonatite Complex, South Africa. Am. Mineral. 2017, 102, 1218–1233. [Google Scholar] [CrossRef]
- Decree, S.; Cawthorn, G.; Deloule, E.; Mercadier, J.; Frimmel, H.; Baele, J.M. Unravelling the processes controlling apatite formation in the Phalaborwa Complex (South Africa) based on combined cathodoluminescence, LA-ICPMS and in-situ O and Sr isotope analyses. Contrib. Mineral. Petrol. 2020, 175, 34. [Google Scholar] [CrossRef]
- Gargano, A.; Sharp, Z.; Shearer, C.; Simon, J.I.; Halliday, A.; Buckley, W. The Cl isotope composition and halogen contents of Apollo-return samples. Proc. Natl. Acad. Sci. USA 2020, 117, 23418–23425. [Google Scholar] [CrossRef]
- Liu, X.; Wei, H.Z.; Li, Y.C.; Williams-Jones, A.E.; Lu, J.J.; Jiang, S.Y.; Dong, G.; Ma, J.; Eastoe, C.J. Chlorine isotope mantle heterogeneity: Constraints from theoretical first-principles calculations. Chem. Geol. 2021, 572, 120193. [Google Scholar] [CrossRef]
- Barnes, J.D.; Sharp, Z.D. Chlorine Isotope Geochemistry. Non-Tradit. Stable Isot. 2017, 82, 345–377. [Google Scholar] [CrossRef]
- Tartese, R.; Anand, M.; Joy, K.H.; Franchi, I.A. H and Cl isotope systematics of apatite in brecciated lunar meteorites Northwest Africa 4472, Northwest Africa 773, Sayh al Uhaymir 169, and Kalahari 009. Meteorit. Planet. Sci. 2014, 49, 2266–2289. [Google Scholar] [CrossRef]
- Sharp, Z.D.; Shearer, C.K.; McKeegan, K.D.; Barnes, J.D.; Wang, Y.Q. The Chlorine Isotope Composition of the Moon and Implications for an Anhydrous Mantle. Science 2010, 329, 1050–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyce, J.W.; Treiman, A.H.; Guan, Y.B.; Ma, C.; Eiler, J.M.; Gross, J.; Greenwood, J.P.; Stolper, E.M. The chlorine isotope fingerprint of the lunar magma ocean. Sci. Adv. 2015, 1, e1500380. [Google Scholar] [CrossRef] [Green Version]
- Treiman, A.H.; Boyce, J.W.; Gross, J.; Guan, Y.B.; Eiler, J.M.; Stolper, E.M. Phosphate-halogen metasomatism of lunar granulite 79215: Impact-induced fractionation of volatiles and incompatible elements. Am. Mineral. 2014, 99, 1860–1870. [Google Scholar] [CrossRef]
- Potts, N.J.; Barnes, J.J.; Tartese, R.; Franchi, I.A.; Anand, M. Chlorine isotopic compositions of apatite in Apollo 14 rocks: Evidence for widespread vapor-phase metasomatism on the lunar nearside similar to 4 billion years ago. Geochim. Cosmochim. Acta 2018, 230, 46–59. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Hsu, W.B.; Guan, Y.B. An extremely heavy chlorine reservoir in the Moon: Insights from the apatite in lunar meteorites. Sci. Rep. 2019, 9, 5727. [Google Scholar] [CrossRef] [Green Version]
- Sharp, Z.; Williams, J.; Shearer, C.; Agee, C.; McKeegan, K. The chlorine isotope composition of Martian meteorites 2. Implications for the early solar system and the formation of Mars. Meteorit. Planet. Sci. 2016, 51, 2111–2126. [Google Scholar] [CrossRef] [Green Version]
- Boyce, J.W.; Liu, Y.; Rossman, G.R.; Guan, Y.B.; Eiler, J.M.; Stolper, E.M.; Taylor, L.A. Lunar apatite with terrestrial volatile abundances. Nature 2010, 466, 466–469. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, L.H.; Olsen, E. Composition of Metal in Type Iii Carbonaceous Chondrites and Its Relevance to Source-Assignment of Lunar Metal. Earth Planet Sci. Lett. 1973, 18, 379–384. [Google Scholar] [CrossRef]
- Reed, G.W.; Jovanovi, S.; Fuchs, L.H. Fluorine and Other Trace Elements in Lunar Plagioclase Concentrates. Earth Planet Sci. Lett. 1971, 11, 354–358. [Google Scholar] [CrossRef]
- Reed, G.W.; Jovanovi, S.; Fuchs, L.H. Trace Elements and Accessory Minerals in Lunar Samples. Science 1970, 167, 501–503. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, L.H. Orthopyroxene-Plagioclase Fragments in Lunar Soil from Apollo-12. Science 1970, 169, 866–868. [Google Scholar] [CrossRef] [PubMed]
- Sommerauer, J.; Katzlehnert, K. Trapped Phosphate Melt Inclusions in Silicate-Carbonate-Hydroxyapatite from Comb-Layer Alvikites from the Kaiserstuhl Carbonatite Complex (Sw-Germany). Contrib. Mineral. Petrol. 1985, 91, 354–359. [Google Scholar] [CrossRef]
- Piccoli, P.; Candela, P. Apatite in Felsic Rocks—A Model for the Estimation of Initial Halogen Concentrations in the Bishop Tuff (Long Valley) and Tuolumne Intrusive Suite (Sierra-Nevada Batholith) Magmas. Am. J. Sci. 1994, 294, 92–135. [Google Scholar] [CrossRef]
- Piccoli, P.M.; Candela, P.A. Apatite in igneous systems. Rev. Mineral. Geochem. 2002, 48, 255–292. [Google Scholar] [CrossRef]
- John, T.; Layne, G.D.; Haase, K.M.; Barnes, J.D. Chlorine isotope evidence for crustal recycling into the Earth’s mantle. Earth Planet Sci. Lett. 2010, 298, 175–182. [Google Scholar] [CrossRef]
- Kusebauch, C.; John, T.; Barnes, J.D.; Klugel, A.; Austrheim, H.O. Halogen Element and Stable Chlorine Isotope Fractionation Caused by Fluid-Rock Interaction (Bamble Sector, SE Norway). J. Petrol. 2015, 56, 299–324. [Google Scholar] [CrossRef] [Green Version]
- Kusebauch, C.; John, T.; Whitehouse, M.J.; Klemme, S.; Putnis, A. Distribution of halogens between fluid and apatite during fluid-mediated replacement processes. Geochim. Cosmochim. Acta 2015, 170, 225–246. [Google Scholar] [CrossRef] [Green Version]
- Bellucci, J.J.; Whitehouse, M.J.; John, T.; Nemchin, A.A.; Snape, J.F.; Bland, P.A.; Benedix, G.K. Halogen and Cl isotopic systematics in Martian phosphates: Implications for the Cl cycle and surface halogen reservoirs on Mars. Earth Planet Sci. Lett. 2017, 458, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Sch’auble, E.A.; Rossman, G.R.; Taylor, H.P. Theoretical estimates of equilibrium chlorine-isotope fractionations. Geochim. Cosmochim. Acta 2003, 67, 3267–3281. [Google Scholar] [CrossRef]
- Sharp, Z.D.; Barnes, J.D.; Fischer, T.P.; Halick, M. An experimental determination of chlorine isotope fractionation in acid systems and applications to volcanic fumaroles. Geochim. Cosmochim. Acta 2010, 74, 264–273. [Google Scholar] [CrossRef]
- Pan, Y.M.; Fleet, M.E. Compositions of the apatite-group minerals: Substitution mechanisms and controlling factors. Rev. Mineral. Geochem. 2002, 48, 13–49. [Google Scholar] [CrossRef]
- Penel, G.; Leroy, G.; Rey, C.; Bres, E. MicroRaman spectral study of the PO4 and CO3 vibrational modes in synthetic and biological apatites. Calcif. Tissue Int. 1998, 63, 475–481. [Google Scholar] [CrossRef]
- Antonakos, A.; Liarokapis, E.; Leventouri, T. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 2007, 28, 3043–3054. [Google Scholar] [CrossRef]
- Pan, L.C.; Hu, R.Z.; Wang, X.S.; Bi, X.W.; Zhu, J.J.; Li, C.S. Apatite trace element and halogen compositions as petrogenetic-metallogenic indicators: Examples from four granite plutons in the Sanjiang region, SW China. Lithos 2016, 254, 118–130. [Google Scholar] [CrossRef]
- Groves, D.I.; Vielreicher, N.M. The Phalabowra (Palabora) carbonatite-hosted magnetite-copper sulfide deposit, South Africa: An end member of the iron-oxide copper-gold-rare earth element deposit group? Min. Depos. 2001, 36, 189–194. [Google Scholar] [CrossRef]
- Pan, Y.; Fleet, M.E. Composition of the apatite-group minerals: Substitution mechanism and controlling factors. In Phosphates: Geochemical, Geobiological and Material Importance; Kohn, M.J., Rakovan, J., Hughes, J.M., Eds.; Mineralogical Society of America: Washington, DC, USA; Volume 48.
- Rasmussen, K.L.; Mortensen, J.K. Magmatic petrogenesis and the evolution of (F:Cl:OH) fluid composition in barren and tungsten skarn-associated plutons using apatite and biotite compositions: Case studies from the northern Canadian Cordillera. Ore Geol. Rev. 2013, 50, 118–142. [Google Scholar] [CrossRef]
- Tartese, R.; Anand, M.; Barnes, J.J.; Starkey, N.A.; Franchi, I.A.; Sano, Y. The abundance, distribution, and isotopic composition of Hydrogen in the Moon as revealed by basaltic lunar samples: Implications for the volatile inventory of the Moon. Geochim. Cosmochim. Acta 2013, 122, 58–74. [Google Scholar] [CrossRef]
- Barnes, J.J.; Franchi, I.A.; Anand, M.; Tartese, R.; Starkey, N.A.; Koike, M.; Sano, Y.; Russell, S.S. Accurate and precise measurements of the D/H ratio and hydroxyl content in lunar apatites using NanoSIMS. Chem. Geol. 2013, 337, 48–55. [Google Scholar] [CrossRef]
- Candela, P.A. Toward a Thermodynamic Model for the Halogens in Magmatic Systems—An Application to Melt Vapor Apatite Equilibria. Chem. Geol. 1986, 57, 289–301. [Google Scholar] [CrossRef]
- Jolliff, B.L.; Papike, J.J.; Shearer, C.K. Inter-Crystal and Intra-Crystal Ree Variations in Apatite from the Ingersoll, Bob Pegmatite, Black Hills, South-Dakota. Geochim. Cosmochim. Acta 1989, 53, 429–441. [Google Scholar] [CrossRef]
- Coulson, I.M.; Chambers, A.D. Patterns of zonation in rare-earth-bearing minerals in nepheline syenites of the north Qoroq Center, South Greenland. Can. Mineral. 1996, 34, 1163–1178. [Google Scholar]
- Eriksson, K.A. Sedimentation Patterns in the Barberton Mountain Land, South-Africa, and the Pilbara Block, Australia—Evidence for Archean Rifted Continental Margins. Tectonophysics 1982, 81, 179–193. [Google Scholar] [CrossRef]
- Giebel, R.J.; Marks, M.A.W.; Gauert, C.D.K.; Marid, G. A model for the formation of carbonatite-phoscorite assemblages based on the compositional variations of mica and apatite from the Palabora Carbonatite Complex, South Africa. Lithos 2019, 324, 89–104. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tulej, M.; Schmidt, P.K.; Gruchola, S.; de Koning, C.P.; Kipfer, K.A.; Boeren, N.J.; Ligterink, N.F.W.; Riedo, A.; Wurz, P. Towards In-Situ Geochemical Analysis of Planetary Rocks and Soils by Laser Ablation/Ionisation Time-of-Flight Mass Spectrometry. Universe 2022, 8, 410. https://doi.org/10.3390/universe8080410
Tulej M, Schmidt PK, Gruchola S, de Koning CP, Kipfer KA, Boeren NJ, Ligterink NFW, Riedo A, Wurz P. Towards In-Situ Geochemical Analysis of Planetary Rocks and Soils by Laser Ablation/Ionisation Time-of-Flight Mass Spectrometry. Universe. 2022; 8(8):410. https://doi.org/10.3390/universe8080410
Chicago/Turabian StyleTulej, Marek, Peter Keresztes Schmidt, Salome Gruchola, Coenraad P. de Koning, Kristina A. Kipfer, Nikita J. Boeren, Niels F. W. Ligterink, Andreas Riedo, and Peter Wurz. 2022. "Towards In-Situ Geochemical Analysis of Planetary Rocks and Soils by Laser Ablation/Ionisation Time-of-Flight Mass Spectrometry" Universe 8, no. 8: 410. https://doi.org/10.3390/universe8080410
APA StyleTulej, M., Schmidt, P. K., Gruchola, S., de Koning, C. P., Kipfer, K. A., Boeren, N. J., Ligterink, N. F. W., Riedo, A., & Wurz, P. (2022). Towards In-Situ Geochemical Analysis of Planetary Rocks and Soils by Laser Ablation/Ionisation Time-of-Flight Mass Spectrometry. Universe, 8(8), 410. https://doi.org/10.3390/universe8080410