Mass of Cosmological Perturbations in the Hybrid and Dressed Metric Formalisms of Loop Quantum Cosmology for the Starobinsky and Exponential Potentials
Abstract
:1. Introduction
2. The Mass
3. The Starobinsky Potential
3.1. Starobinsky Potential in the Hybrid Formalism
3.2. Starobinsky Potential in the Dressed Metric Formalism
4. Exponential Potentials
4.1. Exponential Potentials in the Hybrid Formalism
4.2. Exponentials Potential in the Dressed Metric Formalism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | For the sake of brevity, we will refer to the mass term in the dynamical equations of the perturbations as the mass, although strictly speaking it corresponds to a square mass. Given the well-delimited context of our discussion, this terminology should not lead to any misunderstanding. |
2 | It is clear why the Hamiltonian appears in these brackets in the hybrid formalism while the corresponding Hamiltonian is in the dressed metric case. The hybrid formalism rests on a purely canonical formulation, for which the background dynamics is dictated by . On the other hand, the dressed metric approach first dresses the background metric with quantum corrections and then lifts the resulting dynamics to the truncated phase space that describes the perturbations (see the original formulation of the dressed metric formalism in Ref. [18]). The dynamical evolution of this dressed metric is ruled by the effective Hamiltonian, . See also Ref. [52] for an alternative viewpoint on the differences and relation between these two formalisms. |
3 | In a similar way, it is possible to show that, if we allowed the amplitude of the hyperbolic cosine contribution to be negative and we wanted that the interval with positive mass includes the zero value of the potential, we would have to restrict the study to parameters such that . |
4 | The positivity of the mass does not even guarantee by itself the validity of the WKB approximation, at the lowest non-trivial adiabatic order. See, e.g., Ref. [75]. |
5 | Since the evolution of the perturbations is a one-to-one map, one can equivalently impose conditions to select a vacuum at any other time. For instance, it has been suggested that they can be imposed on the asymptotic past. The physical principles supporting the choice of those conditions should admit a neat relation with the presence of quantum geometry effects. On the other hand, our analysis of the behavior of the mass of the perturbations can be generalized to times other than the bounce. For a quadratic potential, a discussion of this mass in the asymptotic past was carried out in Ref. [77], adopting an alternative regularization of the Hamiltonian constraint in homogeneous LQC. |
6 | In fact, suppression at these scales is found, e.g., for the vacuum put forward by Ashtekar and Gupt in the dressed metric formalism [78,79], although with superimposed oscillations in the spectrum that may produce some extra power on average. On the other hand, other proposals, like that of Ref. [80], do not display the desired suppression scale. |
References
- Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A status report. Class. Quantum Gravity 2004, 21, R53. [Google Scholar] [CrossRef]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ashtekar, A. New variables for classical and quantum gravity. Phys. Rev. Lett. 1986, 57, 2244. [Google Scholar] [CrossRef]
- Ashtekar, A. New Hamiltonian formulation of general relativity. Phys. Rev. D 1987, 36, 1587. [Google Scholar] [CrossRef]
- Ashtekar, A.; Singh, P. Loop quantum cosmology: A status report. Class. Quantum Gravity 2011, 28, 213001. [Google Scholar]
- Mena Marugán, G.A. A brief introduction to loop quantum cosmology. AIP Conf. Proc. 2009, 1130, 89–100. [Google Scholar]
- Ashtekar, A.; Pawłowski, T.; Singh, P. Quantum nature of the Big Bang: An analytical and numerical investigation. Phys. Rev. D 2006, 73, 124038. [Google Scholar] [CrossRef]
- Ashtekar, A.; Pawłowski, T.; Singh, P. Quantum nature of the big bang: Improved dynamics. Phys. Rev. D 2006, 74, 084003. [Google Scholar] [CrossRef]
- Martín-Benito, M.; Mena Marugán, G.A.; Olmedo, J. Further improvements in the understanding of isotropic loop quantum cosmology. Phys. Rev. D 2009, 80, 104015. [Google Scholar] [CrossRef]
- Fernández-Méndez, M.; Mena Marugán, G.A.; Olmedo, J. Hybrid quantization of an inflationary universe. Phys. Rev. D 2012, 86, 024003. [Google Scholar] [CrossRef]
- Fernández-Méndez, M.; Mena Marugán, G.A.; Olmedo, J. Hybrid quantization of an inflationary model: The flat case. Phys. Rev. D 2013, 88, 044013. [Google Scholar] [CrossRef]
- Fernández-Méndez, M.; Mena Marugán, G.A.; Olmedo, J. Effective dynamics of scalar perturbations in a flat Friedmann-Robertson-Walker spacetime in loop quantum cosmology. Phys. Rev. D 2014, 89, 044041. [Google Scholar] [CrossRef]
- Castelló Gomar, L.; Fernández-Méndez, M.; Mena Marugán, G.A.; Olmedo, J. Cosmological perturbations in hybrid loop quantum cosmology: Mukhanov–Sasaki variables. Phys. Rev. D 2014, 90, 064015. [Google Scholar]
- Castelló Gomar, L.; Martín-Benito, M.; Mena Marugán, G.A. Gauge-invariant perturbations in hybrid quantum cosmology. J. Cosmol. Astropart. Phys. 2015, 1506, 045. [Google Scholar]
- Benítez Martínez, F.; Olmedo, J. Primordial tensor modes of the early universe. Phys. Rev. D 2016, 93, 124008. [Google Scholar]
- Castelló Gomar, L.; Mena Marugán, G.A.; Martín de Blas, D.; Olmedo, J. Hybrid loop quantum cosmology and predictions for the cosmic microwave background. Phys. Rev. D 2017, 96, 103528. [Google Scholar]
- Agullo, I.; Ashtekar, A.; Nelson, W. A quantum gravity extension of the inflationary scenario. Phys. Rev. Lett. 2012, 109, 251301. [Google Scholar]
- Agullo, I.; Ashtekar, A.; Nelson, W. Extension of the quantum theory of cosmological perturbations to the Planck era. Phys. Rev. D 2013, 87, 043507. [Google Scholar] [CrossRef] [Green Version]
- Agullo, I.; Ashtekar, A.; Nelson, W. The pre-inflationary dynamics of Loop Quantum Cosmology: Confronting quantum gravity with observations. Class. Quantum Gravity 2013, 30, 085014. [Google Scholar] [CrossRef]
- Agullo, I.; Morris, N.A. Detailed analysis of the predictions of loop quantum cosmology for the primordial power spectra. Phys. Rev. D 2015, 92, 124040. [Google Scholar]
- Zhu, T.; Wang, A.; Kirsten, K.; Cleaver, G.; Sheng, Q. Pre-inflationary universe in loop quantum cosmology. Phys. Rev. D 2017, 96, 083520. [Google Scholar] [CrossRef]
- Zhu, T.; Wang, A.; Kirsten, K.; Cleaver, G.; Sheng, Q. Universal features of quantum bounce in loop quantum cosmology. Phys. Lett. B 2017, 773, 196–202. [Google Scholar]
- Li, B.-F.; Olmedo, J.; Singh, P.; Wang, A. Primordial scalar power spectrum from the hybrid approach in loop cosmologies. Phys. Rev. D 2020, 102, 126025. [Google Scholar]
- Li, B.-F.; Singh, P.; Wang, A. Phenomenological implications of modified loop cosmologies: An overview. Front. Astron. Space Sci. 2021, 8, 701417. [Google Scholar]
- Ashtekar, A.; Gupt, B.; Jeong, D.; Sreenath, V. Alleviating the tension in CMB using Planck-scale physics. Phys. Rev. Lett. 2020, 125, 051302. [Google Scholar]
- Ashtekar, A.; Gupt, B.; Sreenath, V. Cosmic tango between the very small and the very large: Addressing CMB anomalies through loop quantum cosmology. Front. Astron. Space Sci. 2021, 8, 685288. [Google Scholar]
- Agullo, I.; Kranas, D.; Sreenath, V. Large scale anomalies in the CMB and non-Gaussianity in bouncing cosmologies. Class. Quantum Gravity 2021, 38, 065010. [Google Scholar]
- Bojowald, M.; Calcagni, G.; Tsujikawa, S. Observational constraints on Loop Quantum Cosmology. Phys. Rev. Lett. 2011, 107, 211302. [Google Scholar]
- Cailleteau, T.; Linsefors, L.; Barreau, A. Anomaly-free perturbations with inverse-volume and holonomy corrections in loop quantum cosmology. Class. Quantum Gravity 2014, 31, 125011. [Google Scholar]
- Bolliet, B.; Grain, J.; Stahl, C.; Linsefors, L.; Barrau, A. Comparison of primordial tensor power spectra from the deformed algebra and dressed metric approaches in loop quantum cosmology. Phys. Rev. D 2015, 91, 084035. [Google Scholar]
- Wilson-Ewing, E. Testing loop quantum cosmology. C. R. Phys. 2017, 18, 207–225. [Google Scholar]
- Elizaga Navascués, B.; Mena Marugán, G.A. Hybrid loop quantum cosmology: An overview. Front. Astron. Space Sci. 2021, 8, 624824. [Google Scholar]
- Ashtekar, A.; Bojowald, M. Black hole evaporation: A paradigm. Class. Quantum Gravity 2005, 22, 3349. [Google Scholar] [CrossRef]
- Modesto, L. Loop quantum black hole. Class. Quantum Gravity 2006, 23, 5587. [Google Scholar] [CrossRef]
- Haggard, H.M.; Rovelli, C. Quantum-gravity effects outside the horizon spark black to white hole tunneling. Phys. Rev. D 2015, 92, 104020. [Google Scholar] [CrossRef]
- Corichi, A.; Singh, P. Loop quantum dynamics of Schwarzschild interior revisited. Class. Quantum Gravity 2016, 33, 055006. [Google Scholar] [CrossRef]
- Cortez, J.; Cuervo, W.; Morales-Técotl, H.A.; Ruelas, J.C. On effective loop quantum geometry of Schwarzschild interior. Phys. Rev. D 2017, 95, 064041. [Google Scholar] [CrossRef]
- Bianchi, E.; Christodoulou, M.; D’Ambrosio, F.; Haggard, H.M.; Rovelli, C. White holes as remnants: A surprising scenario for the end of a black hole. Class. Quantum Gravity 2018, 35, 225003. [Google Scholar]
- Bodendorfer, N.; Mele, F.M.; Münch, J. Effective quantum extended spacetime of polymer Schwarzschild black hole. Class. Quantum Gravity 2019, 36, 195015. [Google Scholar]
- Bojowald, M. Black-hole models in loop quantum gravity. Universe 2020, 6, 125. [Google Scholar] [CrossRef]
- Gambini, R.; Olmedo, J.; Pullin, J. Spherically symmetric loop quantum gravity: Analysis of improved dynamics. Class. Quantum Gravity 2020, 37, 205012. [Google Scholar]
- Kelly, J.G.; Santacruz, R.; Wilson-Ewing, E. Effective loop quantum gravity framework for vacuum spherically symmetric spacetimes. Phys. Rev. D 2020, 102, 106024. [Google Scholar] [CrossRef]
- Ashtekar, A.; Olmedo, J.; Singh, P. Quantum transfiguration of Kruskal black holes. Phys. Rev. Lett. 2018, 121, 241301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashtekar, A.; Olmedo, J.; Singh, P. Quantum extension of the Kruskal spacetime. Phys. Rev. D 2018, 98, 126003. [Google Scholar]
- Ashtekar, A.; Olmedo, J. Properties of a recent quantum extension of the Kruskal geometry. Int. J. Mod. Phys. D 2020, 29, 2050076. [Google Scholar]
- García-Quismondo, A.; Mena Marugán, G.A. Exploring alternatives to the Hamiltonian calculation of the Ashtekar-Olmedo-Singh black hole solution. Front. Astron. Space Sci. 2021, 8, 701723. [Google Scholar]
- García-Quismondo, A.; Mena Marugán, G.A. Two-time alternative to the Ashtekar-Olmedo-Singh black hole interior. Phys. Rev. D 2022, 106, 023532. [Google Scholar]
- García-Quismondo, A.; Elizaga Navascués, B.; Mena Marugán, G.A. Space of solutions of the Ashtekar-Olmedo-Singh effective black hole model. arXiv 2022, arXiv:2207.04677. [Google Scholar]
- Elizaga Navascués, B.; Martín de Blas, D.; Mena Marugán, G.A. The vacuum state of primordial fluctuations in hybrid loop quantum cosmology. Universe 2018, 4, 98. [Google Scholar]
- Elizaga Navascués, B.; Martín de Blas, D.; Mena Marugán, G.A. Time-dependent mass of cosmological perturbations in the hybrid and dressed metric approaches to loop quantum cosmology. Phys. Rev. D 2018, 97, 043523. [Google Scholar]
- Taveras, V. Corrections to the Friedmann equations from loop quantum gravity for a universe with a free scalar field. Phys. Rev. D 2008, 78, 064072. [Google Scholar] [CrossRef]
- Li, B.-F.; Singh, P. On a close relationship between the dressed metric and the hybrid approach to perturbations in effective loop quantum cosmology. arXiv 2022, arXiv:2206.12434. [Google Scholar]
- Elizaga Navascués, B.; Mena Marugán, G.A. Analytical investigation of pre-inflationary effects in the primordial power spectrum: From general relativity to hybrid loop quantum cosmology. J. Cosmol. Astropart. Phys. 2021, 2109, 030. [Google Scholar] [CrossRef]
- Starobinsky, A.A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Ade, A.R.; et al. [Planck Collaboration] Planck 2015 results. XX. Constraints on inflation. Astron. Astrophys. 2016, 594, A20. [Google Scholar]
- Akrami, Y.; et al. [Planck Collaboration] Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar]
- Bunch, T.S.; Davies, P. Quantum field theory in de Sitter space: Renormalization by point splitting. Proc. R. Soc. Lond. A 1978, 360, 117–134. [Google Scholar]
- Bonga, B.; Gupt, B. Inflation with the Starobinsky potential in loop quantum cosmology. Gen. Relativ. Gravit. 2016, 48, 71. [Google Scholar] [CrossRef]
- Bonga, B.; Gupt, B. Phenomenological investigation of a quantum gravity extension of inflation with the Starobinsky potential. Phys. Rev. D 2016, 93, 063513. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Copeland, E.J.; Louko, J. Inflation in Loop Quantum Cosmology. Phys. Rev. D 2019, 99, 063520. [Google Scholar] [CrossRef]
- Halliwell, J.J. Scalar fields in cosmology with an exponential potential. Phys. Lett. B 1987, 185, 341–344. [Google Scholar] [CrossRef]
- Lucchin, F.; Matarrese, S. Power-law inflation. Phys. Rev. D 1985, 32, 1316. [Google Scholar] [CrossRef]
- Ratra, B. Quantum mechanics of exponential-potential inflation. Phys. Rev. D 1989, 40, 3939. [Google Scholar] [CrossRef]
- Garay, L.J.; Halliwell, J.J.; Mena Marugán, G.A. Path-integral quantum cosmology: A class of exactly soluble scalar-field minisuperspace models with exponential potentials. Phys. Rev. D 1991, 43, 2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Immirzi, G. Real and complex connections for canonical gravity. Class. Quantum Gravity 1997, 14, L177. [Google Scholar] [CrossRef]
- Barrow, J.D. The premature recollapse problem in closed inflationary universes. Nucl. Phys. B 1988, 296, 697–709. [Google Scholar] [CrossRef]
- Barrow, J.D.; Cotsakis, S. Inflation and the conformal structure of higher order gravity theories. Phys. Lett. B 1988, 214, 515–518. [Google Scholar] [CrossRef]
- Maeda, K.i. Towards the Einstein-Hilbert action via conformal transformation. Phys. Rev. D 1989, 39, 3159. [Google Scholar] [CrossRef]
- Starobinsky, A.A.; Tsujikawa, S.; Yokoyama, J. Cosmological perturbations from multifield inflation in generalized Einstein theories. Nucl. Phys. B 2001, 610, 383–410. [Google Scholar] [CrossRef]
- Sasaki, M. Gauge invariant scalar perturbations in the new inflationary universe. Prog. Theor. Phys. 1983, 70, 394–411. [Google Scholar] [CrossRef]
- Kodama, H.; Sasaki, M. Cosmological perturbation theory. Prog. Theor. Phys. Suppl. 1984, 78, 1–166. [Google Scholar] [CrossRef]
- Mukhanov, V. Quantum theory of gauge-invariant cosmological perturbations. Sov. Phys. JETP 1988, 67, 1297. [Google Scholar]
- Parker, L. Quantized fields and particle creation in expanding universes. I. Phys. Rev. 1969, 183, 1057. [Google Scholar] [CrossRef]
- Lüders, C.; Roberts, J.E. Local quasiequivalence and adiabatic vacuum states. Commun. Math. Phys. 1990, 134, 29–63. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, T.; Wang, A. Non-adiabatic evolution of primordial perturbations and non-Gaussinity in hybrid approach of loop quantum cosmology. Phys. Rev. D 2018, 98, 103528. [Google Scholar] [CrossRef] [Green Version]
- Elizaga Navascués, B.; Mena Marugán, G.A.; Thiemann, T. Hamiltonian diagonalization in hybrid quantum cosmology. Class. Quantum Gravity 2019, 36, 185010. [Google Scholar] [CrossRef]
- García-Quismondo, A.; Mena Marugán, G.A.; Sánchez Pérez, G. The time-dependent mass of cosmological perturbations in loop quantum cosmology: Dapor-Liegener regularization. Class. Quantum Gravity 2020, 37, 195003. [Google Scholar] [CrossRef]
- Ashtekar, A.; Gupt, B. Quantum gravity in the sky: Interplay between fundamental theory and observations. Class. Quantum Gravity 2017, 34, 014002. [Google Scholar] [CrossRef]
- Ashtekar, A.; Gupt, B. Initial conditions for cosmological perturbations. Class. Quantum Gravity 2017, 34, 035004. [Google Scholar] [CrossRef]
- Martín de Blas, D.; Olmedo, J. Primordial power spectra for scalar perturbations in loop quantum cosmology. J. Cosmol. Astropart. Phys. 2016, 2016, 029. [Google Scholar] [CrossRef]
- Martín-Benito, M.; Neves, R.B.; Olmedo, J. Non-oscillatory power spectrum from states of low energy in kinetically dominated early universes. Front. Astron. Space Sci. 2021, 8, 702543. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iteanu, S.; Mena Marugán, G.A. Mass of Cosmological Perturbations in the Hybrid and Dressed Metric Formalisms of Loop Quantum Cosmology for the Starobinsky and Exponential Potentials. Universe 2022, 8, 463. https://doi.org/10.3390/universe8090463
Iteanu S, Mena Marugán GA. Mass of Cosmological Perturbations in the Hybrid and Dressed Metric Formalisms of Loop Quantum Cosmology for the Starobinsky and Exponential Potentials. Universe. 2022; 8(9):463. https://doi.org/10.3390/universe8090463
Chicago/Turabian StyleIteanu, Simon, and Guillermo A. Mena Marugán. 2022. "Mass of Cosmological Perturbations in the Hybrid and Dressed Metric Formalisms of Loop Quantum Cosmology for the Starobinsky and Exponential Potentials" Universe 8, no. 9: 463. https://doi.org/10.3390/universe8090463
APA StyleIteanu, S., & Mena Marugán, G. A. (2022). Mass of Cosmological Perturbations in the Hybrid and Dressed Metric Formalisms of Loop Quantum Cosmology for the Starobinsky and Exponential Potentials. Universe, 8(9), 463. https://doi.org/10.3390/universe8090463