Searches for Lepton Flavor Violation in Tau Decays at Belle II
Abstract
:1. Introduction
2. Belle II Experiment at SuperKEKB
2.1. Luminosity Upgrade of SuperKEKB
2.2. Detector Upgrade of Belle II
- Vertexing:In Belle, the beam pipe was at 15 mm [50], the innermost layer of a 4-layer silicon vertex detector [51] was at 20 mm and the outermost layer of the vertex detector was at a radius of 88 mm. In Belle II, the beam pipe is at 10 mm, the inner two layers of the PXD, consisting of silicon pixels, are closer to the IP at 14 mm and 22 mm, respectively, and the outermost layer of the four layers of the SVD, consisting of silicon strips, goes to a larger radius of 140 mm. The PXD is based on the Depleted Field Effect Transistor (DEPFET) technology, which allows for thin sensors with 50 m thickness. The readout of the new silicon strip detector is based on the APV25 chip, which has a much shorter shaping time to accommodate for higher background rates in Belle II than the VAITA chip-based readout used at Belle. As a result of these upgrades, considerably better performance is expected in Belle II than Belle. For example, the vertex resolution at Belle II is improved by the excellent spatial resolution of the two innermost pixel detector layers.
- Tracking:The large volume CDC at Belle II, with 56 layers organized in 9 super-layers, has smaller drift cells than in Belle. CDC starts just outside the expanded silicon strip detector, and extends to a larger radius of 1130 mm in Belle II as compared to 880 mm in Belle. The measured spatial resolution of the CDC is about 100 m, while the relative precision of the measurement for particles with an incident angle of is around . The angular resolution achieved between tracks is ∼4.5 mrad. The efficiency to reconstruct decays in Belle II is also improved because the silicon strip detector occupies a larger volume.
- Particle Identification:Belle II has two completely new, more compact particle identification devices of the Cherenkov imaging type: TOP in the barrel and ARICH in the endcap regions. Both detectors are equipped with very fast read-out electronics, leading to very good kaon versus pion separation in the kinematic limits of the experiment. The two Cherenkov detectors are designed to differentiate between K and particles over the entire momentum range, and also differentiates among , , and e below 1 GeV/c.
- Calorimetry:The ECL is made of CsI(Tl) scintillation crystals of size 6 cm × 6 cm each with high light output, a short radiation length, and good mechanical properties, covering the range of 12 155 in the polar angle, e.g., 90% of solid angle coverage in the center-of-mass system. The ECL is divided into two parts: the barrel and the endcap. While the barrel part consists of 6624 crystals, the endcap part consists of 2112 crystals. The new electronics of the ECL are of the wave-form-sampling type, which has particular relevance in missing-energy studies by reducing the noise due to pile up considerably. The ECL is able to detect neutral particles in a wide energy range, from 20 MeV up to 4 GeV, with a high resolution of = 4% at 100 MeV, and angular resolution of 13 mrad (3 mrad) at low (high) energies. This gives a mass resolution for reconstructing of about 4.5 MeV/c [52].
- and Muon Detection:The and muon detector (KLM) at Belle was based on glass-electrode resistive plate chambers (RPC). Since larger backgrounds are expected in the high luminosity environment at Belle II, the upgraded KLM system consists of RPC only in some parts of the barrel. The two innermost layers in the barrel and the entire endcap section of KLM at Belle II consist of layers of scintillator strips with wavelength shifting fibers, read out by silicon photomultiplier (SiPMs) as light sensors [53]. Although the high neutron background can cause damage to the SiPMs, the upgraded KLM has been demonstrated to operate reliably during irradiation tests by appropriately setting the discrimination thresholds.
2.3. Daq Upgrade of Belle II
3. Search Strategies
3.1. Event Topology
3.2. Signal Characteristics
3.3. Background Suppression
3.4. Upper Limit Estimation
3.4.1. Number of -Pairs Produced
3.4.2. Efficiency of Signal Reconstruction
3.4.3. Upper Limit on the Number of Signal Events
3.5. Systematic Uncertainties
4. Current Status and Future Prospects
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lee, B.W.; Shrock, R.E. Natural Suppression of Symmetry Violation in Gauge Theories: Muon-Lepton and Electron Lepton Number Nonconservation. Phys. Rev. D 1977, 16, 1444. [Google Scholar] [CrossRef]
- Petcov, S.T. The Processes μ→e+γ,μ→e+e¯,ν′→ν+γ in the Weinberg-Salam Model with Neutrino Mixing. Sov. J. Nucl. Phys. 1977, 25, 340, Erratum in Sov. J. Nucl. Phys. 1977, 25, 698; Yad. Fiz. 1977, 25, 1336. [Google Scholar]
- Pham, X.Y. Lepton flavor changing in neutrinoless tau decays. Eur. Phys. J. C 1999, 8, 513–516. [Google Scholar] [CrossRef]
- Hernández-Tomé, G.; López Castro, G.; Roig, P. Flavor violating leptonic decays of τ and μ leptons in the Standard Model with massive neutrinos. Eur. Phys. J. C 2019, 79, 84, Erratum in Eur. Phys. J. C. 2020, 80, 438. [Google Scholar] [CrossRef]
- Blackstone, P.; Fael, M.; Passemar, E. τ→μμμ at a rate of one out of 1014 tau decays? Eur. Phys. J. C 2020, 80, 506. [Google Scholar] [CrossRef]
- Cvetic, G.; Dib, C.; Kim, C.S.; Kim, J.D. On lepton flavor violation in tau decays. Phys. Rev. D 2002, 66, 034008, Erratum in Phys. Rev. D. 2003, 68, 059901. [Google Scholar] [CrossRef]
- Ellis, J.R.; Gomez, M.E.; Leontaris, G.K.; Lola, S.; Nanopoulos, D.V. Charged lepton flavor violation in the light of the Super-Kamiokande data. Eur. Phys. J. C 2000, 14, 319–334. [Google Scholar] [CrossRef]
- Ellis, J.R.; Hisano, J.; Raidal, M.; Shimizu, Y. A New parametrization of the seesaw mechanism and applications in supersymmetric models. Phys. Rev. D 2002, 66, 115013. [Google Scholar] [CrossRef]
- Dedes, A.; Ellis, J.R.; Raidal, M. Higgs mediated Bs,d0→μτ, eτ and τ→3μ, eμμ decays in supersymmetric seesaw models. Phys. Lett. B 2002, 549, 159–169. [Google Scholar] [CrossRef]
- Brignole, A.; Rossi, A. Lepton flavor violating decays of supersymmetric Higgs bosons. Phys. Lett. B 2003, 566, 217–225. [Google Scholar] [CrossRef]
- Masiero, A.; Vempati, S.K.; Vives, O. Seesaw and lepton flavor violation in SUSY SO(10). Nucl. Phys. B 2003, 649, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Hisano, J.; Nagai, M.; Paradisi, P.; Shimizu, Y. Waiting for mu —> e gamma from the MEG experiment. J. High Energy Phys. 2009, 12, 030. [Google Scholar] [CrossRef]
- Fukuyama, T.; Kikuchi, T.; Okada, N. Lepton flavor violating processes and muon g-2 in minimal supersymmetric SO(10) model. Phys. Rev. D 2003, 68, 033012. [Google Scholar] [CrossRef]
- Choudhury, S.R.; Cornell, A.S.; Deandrea, A.; Gaur, N.; Goyal, A. Lepton flavour violation in the little Higgs model. Phys. Rev. D 2007, 75, 055011. [Google Scholar] [CrossRef]
- Blanke, M.; Buras, A.J.; Duling, B.; Poschenrieder, A.; Tarantino, C. Charged Lepton Flavour Violation and (g-2)(mu) in the Littlest Higgs Model with T-Parity: A Clear Distinction from Supersymmetry. J. High Energy Phys. 2007, 5, 013. [Google Scholar] [CrossRef]
- Davidson, S.; Bailey, D.C.; Campbell, B.A. Model independent constraints on leptoquarks from rare processes. Z. Phys. C 1994, 61, 613–644. [Google Scholar] [CrossRef]
- Yue, C.X.; Zhang, Y.M.; Liu, L.J. Nonuniversal gauge bosons Z-prime and lepton flavor violation tau decays. Phys. Lett. B 2002, 547, 252–256. [Google Scholar] [CrossRef]
- Akeroyd, A.G.; Aoki, M.; Sugiyama, H. Lepton Flavour Violating Decays τ→ℓ¯ℓℓ and μ→eγ in the Higgs Triplet Model. Phys. Rev. D 2009, 79, 113010. [Google Scholar] [CrossRef]
- Harnik, R.; Kopp, J.; Zupan, J. Flavor Violating Higgs Decays. J. High Energy Phys. 2013, 3, 26. [Google Scholar] [CrossRef]
- Celis, A.; Cirigliano, V.; Passemar, E. Lepton flavor violation in the Higgs sector and the role of hadronic τ-lepton decays. Phys. Rev. D 2014, 89, 013008. [Google Scholar] [CrossRef]
- Omura, Y.; Senaha, E.; Tobe, K. Lepton-flavor-violating Higgs decay h→μτ and muon anomalous magnetic moment in a general two Higgs doublet model. J. High Energy Phys. 2015, 5, 28. [Google Scholar] [CrossRef] [Green Version]
- Goudelis, A.; Lebedev, O.; Park, J.H. Higgs-induced lepton flavor violation. Phys. Lett. B 2012, 707, 369–374. [Google Scholar] [CrossRef]
- Black, D.; Han, T.; He, H.J.; Sher, M. τ–μ flavor violation as a probe of the scale of new physics. Phys. Rev. D 2002, 66, 053002. [Google Scholar] [CrossRef]
- Babu, K.S.; Kolda, C. Higgs mediated τ→3μ in the supersymmetric seesaw model. Phys. Rev. Lett. 2002, 89, 241802. [Google Scholar] [CrossRef]
- Sher, M. τ→μη in supersymmetric models. Phys. Rev. D 2002, 66, 057301. [Google Scholar] [CrossRef]
- Brignole, A.; Rossi, A. Anatomy and phenomenology of mu-tau lepton flavor violation in the MSSM. Nucl. Phys. B 2004, 701, 3–53. [Google Scholar] [CrossRef]
- Goto, T.; Okada, Y.; Shindou, T.; Tanaka, M. Patterns of flavor signals in supersymmetric models. Phys. Rev. D 2008, 77, 095010. [Google Scholar] [CrossRef]
- Baldini, A.M.; et al. [MEG Collaboration] Search for the lepton flavour violating decay μ+→e+γ with the full dataset of the MEG experiment. Eur. Phys. J. C 2016, 76, 434. [Google Scholar] [CrossRef]
- Bellgardt, U.; et al. [SINDRUM Collaboration] Search for the Decay mu+ —>e+e+e-. Nucl. Phys. B 1988, 299, 1–6. [Google Scholar] [CrossRef]
- Lopez Castro, G.; Quintero, N. Lepton number violating four-body tau lepton decays. Phys. Rev. D 2012, 85, 076006, Erratum in Phys. Rev. D. 2012, 86, 079904. [Google Scholar] [CrossRef]
- Gonzalez-Garcia, M.C.; Valle, J.W.F. Enhanced lepton flavor violation with massless neutrinos: A Study of muon and tau decays. Mod. Phys. Lett. A 1992, 7, 477–488. [Google Scholar] [CrossRef] [Green Version]
- Ilakovac, A. Lepton flavor violation in the standard model extended by heavy singlet Dirac neutrinos. Phys. Rev. D 2000, 62, 036010. [Google Scholar] [CrossRef]
- Arganda, E.; Herrero, M.J.; Portoles, J. Lepton flavour violating semileptonic tau decays in constrained MSSM-seesaw scenarios. J. High Energy Phys. 2008, 6, 79. [Google Scholar] [CrossRef]
- Li, W.J.; Yang, Y.D.; Zhang, X.D. τ-→μ-π0(η,η′) decays in new physics scenarios beyond the standard model. Phys. Rev. D 2006, 73, 073005. [Google Scholar] [CrossRef]
- Pacheco, I.; Roig, P. Lepton flavor violation in the Littlest Higgs Model with T parity realizing an inverse seesaw. J. High Energy Phys. 2022, 2, 54. [Google Scholar] [CrossRef]
- Aaij, R.; et al. [LHCb coolaboration] Searches for violation of lepton flavour and baryon number in tau lepton decays at LHCb. Phys. Lett. B 2013, 724, 36–45. [Google Scholar] [CrossRef]
- Fuentes-Martin, J.; Portoles, J.; Ruiz-Femenia, P. Instanton-mediated baryon number violation in non-universal gauge extended models. J. High Energy Phys. 2015, 1, 134. [Google Scholar] [CrossRef]
- Hou, W.S.; Nagashima, M.; Soddu, A. Baryon number violation involving higher generations. Phys. Rev. D 2005, 72, 095001. [Google Scholar] [CrossRef]
- Banerjee, S.; Pietrzyk, B.; Roney, J.M.; Was, Z. Tau and muon pair production cross-sections in electron-positron annihilations at s=10.58 GeV. Phys. Rev. D 2008, 77, 054012. [Google Scholar] [CrossRef]
- Aggarwal, L.; et al. [Belle II collaboration] Snowmass White Paper: Belle II physics reach and plans for the next decade and beyond. arXiv 2022, arXiv:2207.06307. [Google Scholar]
- Akai, K.; Furukawa, K.; Koiso, H. SuperKEKB Collider. Nucl. Instrum. Meth. A 2018, 907, 188–199. [Google Scholar] [CrossRef]
- Wu, W.; Summers, D. Luminosity and Crab Waist Collision Studies. arXiv 2015, arXiv:1505.06482. [Google Scholar]
- Suetsugu, Y.; Shibata, K.; Ishibashi, T.; Kanazawa, K.; Shirai, M.; Terui, S.; Hisamatsu, H. First commissioning of the SuperKEKB vacuum system. Phys. Rev. Accel. Beams 2016, 19, 121001. [Google Scholar] [CrossRef]
- Ohnishi, Y.; Abe, T.; Adachi, T.; Akai, K.; Arimoto, Y.; Ebihara, K.; Egawa, K.; Flanagan, J.; Fukuma, H.; Funakoshi, Y.; et al. Accelerator design at SuperKEKB. Prog. Theor. Exp. Phys. 2013, 2013, 03A011. [Google Scholar] [CrossRef]
- Bona, M.; et al. [SuperB collaboration] SuperB: A High-Luminosity Asymmetric e+ e- Super Flavor Factory. Conceptual Design Report. arXiv 2007, arXiv:0709.0451. [Google Scholar]
- Ohnishi, Y. Highlights from SuperKEKB Commissioning for early stage of Nano-Beam Scheme and Crab Waist Scheme. PoS 2021, ICHEP2020, 695. [Google Scholar] [CrossRef]
- Abe, T.; et al. [Belle II collaboration] Belle II Technical Design Report. arXiv 2010, arXiv:1011.0352. [Google Scholar]
- Altmannshofer, W.; et al. [Belle II collaboration] The Belle II Physics Book. Prog. Theor. Exp. Phys. 2019, 2019, 123C01, Erratum in PTEP 2020, 2020, 029201. [Google Scholar] [CrossRef]
- Abashian, A.; et al. [Belle collaboration] The Belle Detector. Nucl. Instrum. Meth. A 2002, 479, 117–232. [Google Scholar] [CrossRef]
- Abe, R.; et al. [Belle collaboration] The new beampipe for the Belle experiment. Nucl. Instrum. Meth. A 2004, 535, 558–561. [Google Scholar] [CrossRef]
- Kibayashi, A. Status of the Belle silicon vertex detector. Nucl. Instrum. Meth. A 2006, 569, 5–7. [Google Scholar] [CrossRef]
- Bevan, A.J.; et al. [BABAR and Belle collaborations] The Physics of the B Factories. Eur. Phys. J. C 2014, 74, 3026. [Google Scholar] [CrossRef]
- Balagura, V.; Danilov, M.; Dolgoshein, B.; Klemin, S.; Mizuk, R.; Pakhlov, P.; Popova, E.; Rusinov, V.; Tarkovsky, E.; Tikhomirov, I. Study of scintillator strip with wavelength shifting fiber and silicon photomultiplier. Nucl. Instrum. Meth. A 2006, 564, 590–596. [Google Scholar] [CrossRef]
- Yamada, S.; Itoh, R.; Nakamura, K.; Nakao, M.; Suzuki, S.Y.; Konno, T.; Higuchi, T.; Liu, Z.; Zhao, J. Data Acquisition System for the Belle II Experiment. IEEE Trans. Nucl. Sci. 2015, 62, 1175–1180. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Cheon, B.; Won, E.; Gao, X.; Macchiarulo, L.; Nishimura, K.; Varner, G. Level 1 trigger system for the Belle II experiment. IEEE Trans. Nucl. Sci. 2011, 58, 1807–1815. [Google Scholar] [CrossRef]
- Zhou, Q.D.; Yamada, S.; Robbe, R.; Charlet, D.; Itoh, R.; Nakao, M.; Suzuki, S.Y.; Kunigo, T.; Jules, E.; Plaige, E.; et al. PCI-Express Based High-Speed Readout for the Belle II DAQ Upgrade. IEEE Trans. Nucl. Sci. 2021, 68, 1818–1825. [Google Scholar] [CrossRef]
- Jadach, S.; Ward, B.F.L.; Was, Z. The Precision Monte Carlo event generator K K for two fermion final states in e+ e- collisions. Comput. Phys. Commun. 2000, 130, 260–325. [Google Scholar] [CrossRef]
- Ward, B.F.L.; Jadach, S.; Was, Z. Precision calculation for e+e-—> 2f: The KK MC project. Nucl. Phys. B Proc. Suppl. 2003, 116, 73–77. [Google Scholar] [CrossRef]
- Arbuzov, A.; Jadach, S.; Wąs, Z.; Ward, B.F.L.; Yost, S.A. The Monte Carlo Program KKMC, for the Lepton or Quark Pair Production at LEP/SLC Energies—Updates of electroweak calculations. Comput. Phys. Commun. 2021, 260, 107734. [Google Scholar] [CrossRef]
- Jadach, S.; Was, Z.; Decker, R.; Kuhn, J.H. The tau decay library TAUOLA: Version 2.4. Comput. Phys. Commun. 1993, 76, 361–380. [Google Scholar] [CrossRef]
- Chrzaszcz, M.; Przedzinski, T.; Was, Z.; Zaremba, J. TAUOLA of τ lepton decays—Framework for hadronic currents, matrix elements and anomalous decays. Comput. Phys. Commun. 2018, 232, 220–236. [Google Scholar] [CrossRef]
- Barberio, E.; Was, Z. PHOTOS: A Universal Monte Carlo for QED radiative corrections. Version 2.0. Comput. Phys. Commun. 1994, 79, 291–308. [Google Scholar] [CrossRef]
- Davidson, N.; Przedzinski, T.; Was, Z. PHOTOS interface in C++: Technical and Physics Documentation. Comput. Phys. Commun. 2016, 199, 86–101. [Google Scholar] [CrossRef]
- Brandt, S.; Peyrou, C.; Sosnowski, R.; Wroblewski, A. The Principal axis of jets. An Attempt to analyze high-energy collisions as two-body processes. Phys. Lett. 1964, 12, 57–61. [Google Scholar] [CrossRef]
- Farhi, E. A QCD Test for Jets. Phys. Rev. Lett. 1977, 39, 1587–1588. [Google Scholar] [CrossRef]
- Antropov, S.; Banerjee, S.; Was, Z.; Zaremba, J. TAUOLA update for decay channels with e+e- pairs in the final state. arXiv 2019, arXiv:1912.11376. [Google Scholar]
- Banerjee, S.; Biswas, D.; Przedzinski, T.; Was, Z. Monte Carlo Event Generator updates, for τ pair events at Belle II energies. In Proceedings of the 16th International Workshop on Tau Lepton Physics, Bloomington, IN, USA, 27 September–1 October 2021. [Google Scholar]
- Fabre, M. The Dimuon Mass Resolution of the L3 Experiment and its Dependence on the Muon Spectrometer Alignment. Ph.D. Thesis, ETH, Zurich, Switzerland, 1992. [Google Scholar]
- Aubert, B.; et al. [BABAR collaboration] Searches for Lepton Flavor Violation in the Decays τ+→e+γ and τ+→μ+γ. Phys. Rev. Lett. 2010, 104, 021802. [Google Scholar] [CrossRef]
- Abdesselam, A.; et al. [Belle collaboration] Search for lepton-flavor-violating tau-lepton decays to ℓγ at Belle. J. High Energy Phys. 2021, 10, 19. [Google Scholar] [CrossRef]
- Hayasaka, K.; et al. [Belle collaboration] New Search for τ→μγ and τ→eγ Decays at Belle. Phys. Lett. B 2008, 666, 16–22. [Google Scholar] [CrossRef]
- Miyazaki, Y.; et al. [Belle collaboration] Search for Lepton-Flavor-Violating tau Decays into a Lepton and a Vector Meson. Phys. Lett. B 2011, 699, 251–257. [Google Scholar] [CrossRef]
- Miyazaki, Y.; et al. [Belle collaboration] Search for Lepton-Flavor-Violating tau Decays into Lepton and f0(980) Meson. Phys. Lett. B 2009, 672, 317–322. [Google Scholar] [CrossRef]
- Fox, G.C.; Wolfram, S. Observables for the Analysis of Event Shapes in e+e- Annihilation and Other Processes. Phys. Rev. Lett. 1978, 41, 1581. [Google Scholar] [CrossRef]
- Zyla P.A.; et al. [PDG collaboration] Review of Particle Physics. Prog. Theor. Exp. Phys. 2020, 2020, 083C01. [Google Scholar] [CrossRef]
- Lees, J.P.; et al. [BABAR collaboration] Limits on tau Lepton-Flavor Violating Decays in three charged leptons. Phys. Rev. D 2010, 81, 111101. [Google Scholar] [CrossRef]
- Miyazaki, Y.; et al. [Belle collaboration] Search for lepton flavor violating tau- decays into ℓ-η, ℓ-η′ and ℓ-π0. Phys. Lett. B 2007, 648, 341–350. [Google Scholar] [CrossRef]
- Hayasaka, K.; et al. [Belle collaboration] Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced τ+τ- Pairs. Phys. Lett. B 2010, 687, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Helene, O. Upper Limit of Peak Area. Nucl. Instrum. Meth. 1983, 212, 319. [Google Scholar] [CrossRef]
- Narsky, I.V. Estimation of upper limits using a Poisson statistic. Nucl. Instrum. Meth. A 2000, 450, 444–455. [Google Scholar] [CrossRef]
- Feldman, G.J.; Cousins, R.D. A Unified approach to the classical statistical analysis of small signals. Phys. Rev. D 1998, 57, 3873–3889. [Google Scholar] [CrossRef]
- Cousins, R.D.; Highland, V.L. Incorporating systematic uncertainties into an upper limit. Nucl. Instrum. Meth. A 1992, 320, 331–335. [Google Scholar] [CrossRef]
- Conrad, J.; Botner, O.; Hallgren, A.; Perez de los Heros, C. Including systematic uncertainties in confidence interval construction for Poisson statistics. Phys. Rev. D 2003, 67, 012002. [Google Scholar] [CrossRef]
- Junk, T. Confidence level computation for combining searches with small statistics. Nucl. Instrum. Meth. A 1999, 434, 435–443. [Google Scholar] [CrossRef]
- Read, A.L. Presentation of search results: The CL(s) technique. J. Phys. G 2002, 28, 2693–2704. [Google Scholar] [CrossRef]
- Cowan, G.; Cranmer, K.; Gross, E.; Vitells, O. Asymptotic formulae for likelihood-based tests of new physics. Eur. Phys. J. C 2013, 71, 1554, Erratum in Eur. Phys. J. C. 2013, 73, 2501. [Google Scholar] [CrossRef]
- Neyman, J. Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability. Phil. Trans. Roy. Soc. Lond. A 1937, 236, 333–380. [Google Scholar] [CrossRef]
- Moneta, L.; Belasco, K.; Cranmer, K.S.; Kreiss, S.; Lazzaro, A.; Piparo, D.; Schott, G.; Verkerke, W.; Wolf, M. The RooStats Project. PoS 2010, ACAT2010, 057. [Google Scholar] [CrossRef] [Green Version]
- Cranmer, K.; Lewis, G.; Moneta, L.; Shibata, A.; Verkerke, W. HistFactory: A Tool for Creating Statistical Models for Use with RooFit and RooStats 2012. CERN-OPEN-2012-016. Available online: https://inspirehep.net/literature/1236448 (accessed on 17 August 2022).
- Cranmer, K.; Kraml, S.; Prosper, H.B.; Bechtle, P.; Bernlochner, F.U.; Bloch, I.M.; Canonero, E.; Chrzaszcz, M.; Coccaro, A.; Conrad, J.; et al. Publishing statistical models: Getting the most out of particle physics experiments. SciPost Phys. 2022, 12, 037. [Google Scholar] [CrossRef]
- Caldwell, A.; Kollar, D.; Kroninger, K. BAT: The Bayesian Analysis Toolkit. Comput. Phys. Commun. 2009, 180, 2197–2209. [Google Scholar] [CrossRef]
- Amhis, Y.S.; et al. [HFLAV collaboration] Averages of b-hadron, c-hadron, and τ-lepton properties as of 2018. Eur. Phys. J. C 2021, 81, 226. [Google Scholar] [CrossRef]
- Raidal, M.; Van der Schaaf, A.; Bigi, I.; Mangano, M.L.; Semertzidis, Y.K.; Abel, S.; Albino, S.; Antusch, S.; Arganda, E.; Bajc, B.; et al. Flavour physics of leptons and dipole moments. Eur. Phys. J. C 2008, 57, 13–182. [Google Scholar] [CrossRef]
- Edwards, K.W.; et al. [CLEO collaboration] Search for neutrinoless tau decays: τ→eγ and τ→μγ. Phys. Rev. D 1997, 55, 3919–3923. [Google Scholar] [CrossRef]
- Ahmed, S.; et al. [CLEO collaboration] Update of the search for the neutrinoless decay tau —> muon gamma. Phys. Rev. D 2000, 61, 071101. [Google Scholar] [CrossRef]
- Aubert, B.; et al. [BABAR collaboration] Search for Lepton Flavor Violating Decays τ±→ℓ±π0, ℓ±η, ℓ±η′. Phys. Rev. Lett. 2007, 98, 061803. [Google Scholar] [CrossRef] [PubMed]
- Bonvicini, G.; et al. [CLEO collaboration] Search for neutrinoless tau decays involving pi0 or eta mesons. Phys. Rev. Lett. 1997, 79, 1221–1224. [Google Scholar] [CrossRef]
- Miyazaki, Y.; et al. [Belle collaboration] Search for Lepton Flavor Violating tau- Decays into ℓ-KS0 and ℓ-KS0KS0. Phys. Lett. B 2010, 692, 4–9. [Google Scholar] [CrossRef]
- Aubert, B.; et al. [BABAR collaboration] Search for Lepton Flavor Violating Decays τ-→ℓ-KS0 with the BABAR Experiment. Phys. Rev. D 2009, 79, 012004. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; et al. [CLEO collaboration] Search for neutrinoless tau decays involving the K0(S) meson. Phys. Rev. D 2002, 66, 071101. [Google Scholar] [CrossRef]
- Aubert, B.; et al. [BABAR collaboration] Improved limits on lepton flavor violating tau decays to ℓ- ϕ, ℓ- ρ, ℓ- K*0 and ℓ- K¯*0. Phys. Rev. Lett. 2009, 103, 021801. [Google Scholar] [CrossRef]
- Bliss, D.W.; et al. [CLEO collaboration] New limits for neutrinoless tau decays. Phys. Rev. D 1998, 57, 5903–5907. [Google Scholar] [CrossRef]
- Aubert, B.; et al. [BABAR collaboration] Search for lepton flavor violating decays τ±→ℓ±ω(ℓ=e,μ). Phys. Rev. Lett. 2008, 100, 071802. [Google Scholar] [CrossRef]
- Aaij, R.; et al. [LHCb collaboration] Search for the lepton flavour violating decay τ- → μ- μ+μ-. J. High Energy Phys. 2015, 2, 121. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; et al. [CMS collaboration] Search for the lepton flavor violating decay τ→ 3μ in proton-proton collisions at s= 13 TeV. J. High Energy Phys. 2021, 1, 163. [Google Scholar] [CrossRef]
- Aad, G.; et al. [ATLAS collaboration] Probing lepton flavour violation via neutrinoless τ→3μ decays with the ATLAS detector. Eur. Phys. J. C 2016, 76, 232. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, Y.; et al. [Belle collaboration] Search for Lepton-Flavor-Violating and Lepton-Number-Violating τ→ℓhh′ Decay Modes. Phys. Lett. B 2013, 719, 346–353. [Google Scholar] [CrossRef]
- Aubert, B.; et al. [BABAR collaboration] Search for lepton-flavor and lepton-number violation in the decay τ-→ℓ∓h±h′-. Phys. Rev. Lett. 2005, 95, 191801. [Google Scholar] [CrossRef]
- Miyazaki, Y.; et al. [Belle collaboration] Search for lepton and baryon number violating τ- decays into Λ¯π- and Λπ-. Phys. Lett. B 2006, 632, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, D.; et al. [Belle collaboration] Search for lepton-number- and baryon-number-violating tau decays at Belle. Phys. Rev. D 2020, 102, 111101. [Google Scholar] [CrossRef]
- Banerjee, S.; Roney, J.M. Snowmass 2021 White Paper on Upgrading SuperKEKB with a Polarized Electron Beam: Discovery Potential and Proposed Implementation. arXiv 2022, arXiv:2205.12847. [Google Scholar]
- Hitlin, D.G.; et al. [SuperB collaboration] New Physics at the Super Flavor Factory. In Proceedings of the 6th superB Workshop, Valencia, Spain, 7–15 January 2008. [Google Scholar]
- Matsuzaki, A.; Sanda, A.I. Analysis of lepton flavor violating τ±→μ±μ±μ∓ decays. Phys. Rev. D 2008, 77, 073003. [Google Scholar] [CrossRef]
- Dassinger, B.M.; Feldmann, T.; Mannel, T.; Turczyk, S. Model-independent analysis of lepton flavour violating tau decays. newblock J. High Energy Phys. 2007, 10, 039. [Google Scholar] [CrossRef]
- Hayes, K.G.; et al. [Mark II collaboration] Experimental Upper Limits on Branching Fractions for Unexpected Decay Modes of the Tau Lepton. Phys. Rev. D 1982, 25, 2869. [Google Scholar] [CrossRef]
- Albrecht, H.; et al. [ARGUS collaboration] Search for neutrinoless tau decays. Z. Phys. C 1992, 55, 179–190. [Google Scholar]
- Bean, A.; et al. [CLEO collaboration] A Search for τ-→γμ-: A Test of lepton number conservation. Phys. Rev. Lett. 1993, 70, 138–142. [Google Scholar] [CrossRef]
- Abreu, P.; et al. [DELPHI collaboration] Upper limits on the branching ratios τ→μγ and τ→eγ. Phys. Lett. B 1995, 359, 411–421. [Google Scholar] [CrossRef]
- Abe, K.; et al. [Belle collaboration] An Upper bound on the decay τ→μγ from Belle. Phys. Rev. Lett. 2004, 92, 171802. [Google Scholar] [CrossRef]
- Aubert, B.; et al. [BABAR collaboration] Search for lepton flavor violation in the decay τ→μγ. Phys. Rev. Lett. 2005, 95, 041802. [Google Scholar] [CrossRef]
- Bowcock, T.J.V.; et al. [CLEO collaboration] Search for Neutrinoless Decays of the τ Lepton. Phys. Rev. D 1990, 41, 805. [Google Scholar] [CrossRef]
- Bartelt, J.E.; et al. [CLEO collaboration] Search for neutrinoless decays of the tau lepton. Phys. Rev. Lett. 1994, 73, 1890–1894. [Google Scholar] [CrossRef]
- Yusa, Y.; et al. [Belle collaboration] Search for neutrinoless decays τ→ 3l. Phys. Lett. B 2004, 589, 103–110. [Google Scholar] [CrossRef]
- Aubert, B.; et al. [BABAR collaboration] Search for lepton flavor violation in the decay τ-→ℓ-ℓ+ℓ-. Phys. Rev. Lett. 2004, 92, 121801. [Google Scholar] [CrossRef]
- Aubert, B.; et al. [BABAR collaboration] Improved limits on the lepton-flavor violating decays τ-→ℓ-ℓ+ℓ-. Phys. Rev. Lett. 2007, 99, 251803. [Google Scholar] [CrossRef]
- Miyazaki, Y.; et al. [Belle collaboration] Search for Lepton Flavor Violating tau Decays into Three Leptons. Phys. Lett. B 2008, 660, 154–160. [Google Scholar] [CrossRef]
- Husek, T.; Monsalvez-Pozo, K.; Portoles, J. Lepton-flavour violation in hadronic tau decays and μ-τ conversion in nuclei. JHEP 2021, 1, 059. [Google Scholar] [CrossRef]
- Cirigliano, V.; Fuyuto, K.; Lee, C.; Mereghetti, E.; Yan, B. Charged Lepton Flavor Violation at the EIC. J. High Energy Phys. 2021, 3, 256. [Google Scholar] [CrossRef]
- Banerjee, S.; Cirigliano, V.; Dam, M.; Deshpande, A.; Fiorini, L.; Fuyuto, K.; Gal, C.; Husek, T.; Mereghetti, E.; Monsálvez-Pozo, K.; et al. Snowmass 2021 White Paper: Charged lepton flavor violation in the tau sector. arXiv 2022, arXiv:2203.14919. [Google Scholar]
# of ’s | LFV Decays | Generic -Pair | Other Backgrounds |
---|---|---|---|
Signal-side | 0 | 1–2 | 0 |
Tag-side | 1–2 | 1–2 | 0 |
—off | |||
—off | |||
—off | |||
—off | |||
—off |
1c | Observed Limits | Expected Limits | ||||
---|---|---|---|---|---|---|
Experiment | Luminosity | UL (obs) | Experiment | Luminosity | UL (exp) | |
Belle [70] | 988 | 5.6 | Belle II [40] | 50 | 9.0 | |
BABAR [69] | 516 | 3.3 | ||||
CLEO [94] | 4.68 | 2.7 | ||||
Belle [70] | 988 | 4.2 | Belle II [40] | 50 | 6.9 | |
BABAR [69] | 516 | 4.4 | ||||
CLEO [95] | 13.8 | 1.1 | ||||
Belle [77] | 401 | 8.0 | Belle II [40] | 50 | 7.3 | |
BABAR [96] | 339 | 1.3 | ||||
CLEO [97] | 4.68 | 3.7 | ||||
Belle [77] | 401 | 1.2 | Belle II [40] | 50 | 7.1 | |
BABAR [96] | 339 | 1.1 | ||||
CLEO [97] | 4.68 | 4.0 | ||||
Belle [98] | 671 | 2.6 | Belle II [40] | 50 | 4.0 | |
BABAR [99] | 469 | 3.3 | ||||
CLEO [100] | 13.9 | 9.1 | ||||
Belle [98] | 671 | 2.3 | Belle II [40] | 50 | 4.0 | |
BABAR [99] | 469 | 4.0 | ||||
CLEO [100] | 13.9 | 9.5 | ||||
Belle [77] | 401 | 9.2 | Belle II [40] | 50 | 1.2 | |
BABAR [96] | 339 | 1.6 | ||||
CLEO [97] | 4.68 | 8.2 | ||||
Belle [77] | 401 | 6.5 | Belle II [40] | 50 | 8.0 | |
BABAR [96] | 339 | 1.5 | ||||
CLEO [97] | 4.68 | 9.6 | ||||
Experiment | Luminosity | UL (obs) | Experiment | Luminosity | UL (exp) | |
Belle [77] | 401 | 1.6 | Belle II [40] | 50 | 1.2 | |
BABAR [96] | 339 | 2.4 | ||||
Belle [77] | 401 | 1.3 | Belle II [40] | 50 | 1.2 | |
BABAR [96] | 339 | 1.4 | ||||
Belle [73] | 671 | 6.8 | Belle II [40] | 50 | 9.5 | |
Belle [73] | 671 | 6.4 | Belle II [40] | 50 | 9.1 | |
Belle [72] | 854 | 1.8 | Belle II [40] | 50 | 3.8 | |
BABAR [101] | 451 | 4.6 | ||||
CLEO [102] | 4.79 | 2.0 | ||||
Belle [72] | 854 | 1.2 | Belle II [40] | 50 | 5.5 | |
BABAR [101] | 451 | 2.6 | ||||
CLEO [102] | 4.79 | 6.3 | ||||
Belle [72] | 854 | 4.8 | Belle II [40] | 50 | 1.0 | |
BABAR [103] | 384 | 1.1 | ||||
Belle [72] | 854 | 4.7 | Belle II [40] | 50 | 1.4 | |
BABAR [103] | 384 | 1.0 | ||||
Belle [72] | 854 | 3.2 | Belle II [40] | 50 | 6.7 | |
BABAR [101] | 451 | 5.9 | ||||
CLEO [102] | 4.79 | 5.1 | ||||
Belle [72] | 854 | 7.2 | Belle II [40] | 50 | 9.3 | |
BABAR [101] | 451 | 1.7 | ||||
CLEO [102] | 4.79 | 7.5 | ||||
Belle [72] | 854 | 3.4 | Belle II [40] | 50 | 6.2 | |
BABAR [101] | 451 | 4.6 | ||||
CLEO [102] | 4.79 | 7.4 | ||||
Belle [72] | 854 | 7.0 | Belle II [40] | 50 | 8.5 | |
BABAR [101] | 451 | 7.3 | ||||
CLEO [102] | 4.79 | 7.5 | ||||
Belle [72] | 854 | 3.1 | Belle II [40] | 50 | 7.4 | |
BABAR [101] | 451 | 3.1 | ||||
CLEO [102] | 4.79 | 6.9 | ||||
Belle [72] | 854 | 8.4 | Belle II [40] | 50 | 8.4 | |
BABAR [101] | 451 | 1.9 | ||||
CLEO [102] | 4.79 | 7.0 | ||||
Belle [78] | 782 | 2.7 | Belle II [40] | 50 | 4.7 | |
BABAR [76] | 468 | 2.9 | ||||
CLEO [102] | 4.79 | 2.9 | ||||
Belle [78] | 782 | 1.8 | Belle II [40] | 50 | 2.9 | |
BABAR [76] | 468 | 2.2 | ||||
CLEO [102] | 4.79 | 1.7 | ||||
Belle [78] | 782 | 2.7 | Belle II [40] | 50 | 4.5 | |
BABAR [76] | 468 | 3.2 | ||||
CLEO [102] | 4.79 | 1.8 | ||||
Experiment | Luminosity | UL (obs) | Experiment | Luminosity | UL (exp) | |
Belle [78] | 782 | 2.1 | Belle II [40] | 50 | 3.6 | |
BABAR [76] | 468 | 3.3 | ||||
LHCb [104] | 3 | 4.6 | ||||
CMS [105] | 33 | 8.0 | ||||
ATLAS [106] | 20 | 3.8 | ||||
CLEO [102] | 4.79 | 1.9 | ||||
Belle [78] | 782 | 1.7 | Belle II [40] | 50 | 2.6 | |
BABAR [76] | 468 | 2.6 | ||||
CLEO [102] | 4.79 | 1.5 | ||||
Belle [78] | 782 | 1.5 | Belle II [40] | 50 | 2.3 | |
BABAR [76] | 468 | 1.8 | ||||
CLEO [102] | 4.79 | 1.5 | ||||
Belle [107] | 854 | 2.3 | Belle II [40] | 50 | 5.8 | |
BABAR [108] | 221 | 1.2 | ||||
CLEO [102] | 4.79 | 2.2 | ||||
Belle [107] | 854 | 2.1 | Belle II [40] | 50 | 5.6 | |
BABAR [108] | 221 | 2.9 | ||||
CLEO [102] | 4.79 | 8.2 | ||||
Belle [107] | 854 | 3.7 | Belle II [40] | 50 | 7.1 | |
BABAR [108] | 221 | 3.2 | ||||
CLEO [102] | 4.79 | 6.4 | ||||
Belle [107] | 854 | 8.6 | Belle II [40] | 50 | 1.2 | |
BABAR [108] | 221 | 2.6 | ||||
CLEO [102] | 4.79 | 7.5 | ||||
Belle [107] | 854 | 3.1 | Belle II [40] | 50 | 7.8 | |
BABAR [108] | 221 | 1.7 | ||||
CLEO [102] | 4.79 | 3.8 | ||||
Belle [107] | 854 | 4.5 | Belle II [40] | 50 | 1.2 | |
BABAR [108] | 221 | 3.2 | ||||
CLEO [102] | 4.79 | 7.4 | ||||
Belle [107] | 854 | 3.4 | Belle II [40] | 50 | 6.5 | |
BABAR [108] | 221 | 1.4 | ||||
CLEO [102] | 4.79 | 6.0 | ||||
Belle [107] | 854 | 4.4 | Belle II [40] | 50 | 1.1 | |
BABAR [108] | 221 | 2.5 | ||||
CLEO [102] | 4.79 | 1.5 | ||||
Belle [98] | 671 | 7.1 | Belle II [40] | 50 | 9.7 | |
CLEO [100] | 13.9 | 2.2 | ||||
Belle [98] | 671 | 8.0 | Belle II [40] | 50 | 1.1 | |
CLEO [100] | 13.9 | 3.4 | ||||
Belle [107] | 854 | 2.0 | Belle II [40] | 50 | 4.6 | |
BABAR [108] | 221 | 2.7 | ||||
CLEO [102] | 4.79 | 1.9 | ||||
Belle [107] | 854 | 3.9 | Belle II [40] | 50 | 4.5 | |
BABAR [108] | 221 | 7.0 | ||||
CLEO [102] | 4.79 | 3.4 | ||||
Experiment | Luminosity | UL (obs) | Experiment | Luminosity | UL (exp) | |
Belle [107] | 854 | 3.2 | Belle II [40] | 50 | 7.7 | |
BABAR [108] | 221 | 1.8 | ||||
CLEO [102] | 4.79 | 2.1 | ||||
Belle [107] | 854 | 4.8 | Belle II [40] | 50 | 1.2 | |
BABAR [108] | 221 | 2.2 | ||||
CLEO [102] | 4.79 | 7.0 | ||||
Belle [107] | 854 | 3.3 | Belle II [40] | 50 | 5.8 | |
BABAR [108] | 221 | 1.5 | ||||
CLEO [102] | 4.79 | 3.8 | ||||
Belle [107] | 854 | 4.7 | Belle II [40] | 50 | 9.7 | |
BABAR [108] | 221 | 4.8 | ||||
CLEO [102] | 4.79 | 6.0 | ||||
Belle [109] | 154 | 1.4 | Belle II [40] | 50 | 5.5 | |
Belle [109] | 154 | 7.2 | Belle II [40] | 50 | 5.4 | |
Belle [110] | 921 | 3.0 | Belle II [40] | 50 | 4.0 | |
Belle [110] | 921 | 2.0 | Belle II [40] | 50 | 4.4 | |
Belle [110] | 921 | 1.8 | Belle II [40] | 50 | 4.4 | |
Belle [110] | 921 | 1.8 | Belle II [40] | 50 | 7.4 | |
LHCb [36] | 1 | 3.3 | ||||
Belle [110] | 921 | 3.0 | Belle II [40] | 50 | 3.6 | |
Belle [110] | 921 | 4.0 | Belle II [40] | 50 | 8.3 | |
LHCb [36] | 1 | 4.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banerjee, S. Searches for Lepton Flavor Violation in Tau Decays at Belle II. Universe 2022, 8, 480. https://doi.org/10.3390/universe8090480
Banerjee S. Searches for Lepton Flavor Violation in Tau Decays at Belle II. Universe. 2022; 8(9):480. https://doi.org/10.3390/universe8090480
Chicago/Turabian StyleBanerjee, Swagato. 2022. "Searches for Lepton Flavor Violation in Tau Decays at Belle II" Universe 8, no. 9: 480. https://doi.org/10.3390/universe8090480
APA StyleBanerjee, S. (2022). Searches for Lepton Flavor Violation in Tau Decays at Belle II. Universe, 8(9), 480. https://doi.org/10.3390/universe8090480