Diffractive and Photon-Induced Production of Top Quark
Abstract
:1. Introduction
2. Monte Carlo Event Generators
3. Tagging Diffractive and Photon-Induced Processes
4. Diffractive and Photo-Production of Top Quark Pairs
4.1. Single-Diffraction and Photoproduction of Top Quark Pairs
4.2. Single-Diffraction Production of Single Top Quark
4.3. Double Pomeron Exchange Processes
4.4. Central Exclusive Production of Top Quarks
5. New Physics Searches with Photon-Induced Production of Top Quarks
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Donnachie, S.; Dosch, H.G.; Nachtmann, O.; Landshoff, P. Pomeron Physics and QCD; Cambridge University Press: Cambridge, UK, 2004; Volume 19. [Google Scholar]
- Collins, P.D.B.; Spiller, T.P. A model for diffractive top-quark production. J. Phys. Nucl. Phys. 1984, 10, 1667. [Google Scholar] [CrossRef]
- Collins, J.C.; Soper, D.E.; Sterman, G.F. Factorization of Hard Processes in QCD. Adv. Ser. Direct. High Energy Phys. 1989, 5, 1–91. [Google Scholar] [CrossRef]
- Ingelman, G.; Schlein, P.E. Jet Structure in High Mass Diffractive Scattering. Phys. Lett. B 1985, 152, 256–260. [Google Scholar] [CrossRef]
- Donnachie, A.; Landshoff, P.V. Hard diffraction: Production of high pT jets, W or Z, and Drell-Yan pairs. Nucl. Phys. B 1988, 303, 634–652. [Google Scholar] [CrossRef]
- Aktas, A.; Andreev, V.; Anthonis, T.; Antunovic, B.; Aplin, S.; Asmone, A.; Astvatsatourov, A.; Babaev, A.; Backovic, S.; Baghdasaryan, A.; et al. Measurement and QCD analysis of the diffractive deep-inelastic scattering cross-section at HERA. Eur. Phys. J. C 2006, 48, 715–748. [Google Scholar] [CrossRef]
- Harland-Lang, L.A.; Khoze, V.A.; Ryskin, M.G. Exclusive physics at the LHC with SuperChic 2. Eur. Phys. J. C 2016, 76, 9. [Google Scholar] [CrossRef]
- Harland-Lang, L.A.; Khoze, V.A.; Ryskin, M.G. Exclusive LHC physics with heavy ions: SuperChic 3. Eur. Phys. J. C 2019, 79, 39. [Google Scholar] [CrossRef]
- Khoze, V.A.; Martin, A.D.; Ryskin, M.G. Can the Higgs be seen in rapidity gap events at the Tevatron or the LHC? Eur. Phys. J. C 2000, 14, 525–534. [Google Scholar] [CrossRef]
- Harland-Lang, L.A.; Tasevsky, M.; Khoze, V.A.; Ryskin, M.G. A new approach to modelling elastic and inelastic photon-initiated production at the LHC: SuperChic 4. Eur. Phys. J. C 2020, 80, 925. [Google Scholar] [CrossRef]
- Han, T.; Valencia, G.; Willenbrock, S. Structure function approach to vector boson scattering in p p collisions. Phys. Rev. Lett. 1992, 69, 3274–3277. [Google Scholar] [CrossRef]
- Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O.; Shao, H.S.; Stelzer, T.; Torrielli, P.; Zaro, M. The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations. J. High Energy Phys. 2014, 7, 79. [Google Scholar] [CrossRef]
- Hirschi, V.; Mattelaer, O. Automated event generation for loop-induced processes. J. High Energy Phys. 2015, 10, 146. [Google Scholar] [CrossRef]
- Frederix, R.; Frixione, S.; Hirschi, V.; Pagani, D.; Shao, H.S.; Zaro, M. The automation of next-to-leading order electroweak calculations. J. High Energy Phys. 2018, 7, 185, Erratum in J. High Energy Phys. 2021, 11, 85. [Google Scholar] [CrossRef]
- Budnev, V.; Ginzburg, I.; Meledin, G.; Serbo, V. The two-photon particle production mechanism. Physical problems. Applications. Equivalent photon approximation. Phys. Rep. 1975, 15, 181–282. [Google Scholar] [CrossRef]
- Manohar, A.V.; Nason, P.; Salam, G.P.; Zanderighi, G. The Photon Content of the Proton. J. High Energy Phys. 2017, 12, 46. [Google Scholar] [CrossRef]
- Shao, H.S.; d’Enterria, D. Gamma-UPC: Automated generation of exclusive photon-photon processes in ultraperipheral proton and nuclear collisions with varying form factors. J. High Energy Phys. 2022, 9, 248. [Google Scholar] [CrossRef]
- Boonekamp, M.; Dechambre, A.; Juranek, V.; Kepka, O.; Rangel, M.; Royon, C.; Staszewski, R. FPMC: A Generator for forward physics. arXiv 2011, arXiv:1102.2531. [Google Scholar]
- Corcella, G.; Knowles, I.G.; Marchesini, G.; Moretti, S.; Odagiri, K.; Richardson, P.; Seymour, M.H.; Webber, B.R. HERWIG 6.5 release note. arXiv 2002, arXiv:hep-ph/0210213v2. [Google Scholar]
- Baldenegro, C.; Bellora, A.; Fichet, S.; von Gersdorff, G.; Pitt, M.; Royon, C. Searching for anomalous top quark interactions with proton tagging and timing detectors at the LHC. J. High Energy Phys. 2022, 8, 21. [Google Scholar] [CrossRef]
- Bierlich, C.; Chakraborty, S.; Desai, N.; Gellersen, L.; Helenius, I.; Ilten, P.; Lönnblad, L.; Mrenna, S.; Prestel, S.; Preuss, C.T.; et al. A comprehensive guide to the physics and usage of PYTHIA 8.3. Scipost Phys. Codebases 2022, 8, 1–287. [Google Scholar] [CrossRef]
- Rasmussen, C.O. Hard Diffraction in Pythia 8. EPJ Web Conf. 2016, 120, 02002. [Google Scholar] [CrossRef]
- Helenius, I. Photon-photon and photon-hadron processes in Pythia 8. CERN Proc. 2018, 1, 119. [Google Scholar] [CrossRef]
- Helenius, I.; Rasmussen, C.O. Hard diffraction in photoproduction with Pythia 8. Eur. Phys. J. C 2019, 79, 413. [Google Scholar] [CrossRef]
- The ATLAS Collaboration. Technical Design Report for the ATLAS Forward Proton Detector; CERN: Geneva, Switzerland, 2015. [Google Scholar]
- The CMS and TOTEM Collaborations. CMS-TOTEM Precision Proton Spectrometer; CERN: Geneva, Switzerland, 2014. [Google Scholar]
- Amaldi, U.; Biancastelli, R.; Bosio, C.; Matthiae, G.; Allaby, J.V.; Bartel, W.; Block, M.M.; Cocconi, G.; Diddens, A.N.; Dobinson, R.W.; et al. Measurements of the proton proton total cross-sections by means of Coulomb scattering at the Cern intersecting storage rings. Phys. Lett. B 1973, 43, 231–236. [Google Scholar] [CrossRef]
- The CMS Collaboration. Development of the CMS detector for the CERN LHC Run 3. arXiv 2023, arXiv:2309.05466. [Google Scholar]
- CMS and TOTEM Collaborations. Proton reconstruction with the CMS-TOTEM Precision Proton Spectrometer. arXiv 2022, arXiv:2210.05854.
- Černý, K.; Sýkora, T.; Taševský, M.; Žlebčík, R. Performance studies of Time-of-Flight detectors at LHC. J. Instrum. 2021, 16, P01030. [Google Scholar] [CrossRef]
- Pasechnik, R.; Taševský, M. Multi-dimensional hadron structure through the lens of gluon Wigner distribution. arXiv 2023, arXiv:2310.10793. [Google Scholar]
- Czakon, M.; Mitov, A. Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders. Comput. Phys. Commun. 2014, 185, 2930. [Google Scholar] [CrossRef]
- Kidonakis, N.; Guzzi, M.; Tonero, A. Top-quark cross sections and distributions at approximate N3LO. Phys. Rev. D 2023, 108, 054012. [Google Scholar] [CrossRef]
- Howarth, J. Elastic Potential: A proposal to discover elastic production of top quarks at the Large Hadron Collider. arXiv 2020, arXiv:2008.04249. [Google Scholar]
- The ATLAS Collaboration. Measurements of differential cross sections of top quark pair production in association with jets in pp collisions at = 13 TeV using the ATLAS detector. J. High Energy Phys. 2018, 10, 159. [Google Scholar] [CrossRef]
- Gonçalves, V.P.; Martins, D.E.; Rangel, M.S.; Tasevsky, M. Top quark pair production in the exclusive processes at the LHC. Phys. Rev. D 2020, 102, 074014. [Google Scholar] [CrossRef]
- Martins, D.E.; Tasevsky, M.; Goncalves, V.P. Challenging exclusive top quark pair production at low and high luminosity LHC. Phys. Rev. D 2022, 105, 114002. [Google Scholar] [CrossRef]
- de Favereau de Jeneret, J.; Lemaitre, V.; Liu, Y.; Ovyn, S.; Pierzchala, T.; Piotrzkowski, K.; Rouby, X.; Schul, N.; Vander Donckt, M. High energy photon interactions at the LHC. arXiv 2009, arXiv:0908.2020. [Google Scholar]
- Fayazbakhsh, S.; Monfared, S.T.; Mohammadi Najafabadi, M. Top quark anomalous electromagnetic couplings in photon-photon scattering at the LHC. Phys. Rev. D 2015, 92, 014006. [Google Scholar] [CrossRef]
- d’Enterria, D.; Lansberg, J.P. Study of Higgs boson production and its b anti-b decay in gamma-gamma processes in proton-nucleus collisions at the LHC. Phys. Rev. D 2010, 81, 014004. [Google Scholar] [CrossRef]
- uszczak, M.; Forthomme, L.; Schäfer, W.; Szczurek, A. Production of pairs via γγ fusion with photon transverse momenta and proton dissociation. J. High Energy Phys. 2019, 2, 100. [Google Scholar] [CrossRef]
- The CMS and TOTEM Collaborations. Search for central exclusive production of top quark pairs in proton-proton collisions at = 13 TeV with tagged protons. arXiv 2023, arXiv:2310.11231. [Google Scholar]
- The CMS Collaboration. Identification of heavy-flavour jets with the CMS detector in pp collisions at 13 TeV. J. Instrum. 2018, 13, P05011. [Google Scholar] [CrossRef]
- The CMS collaboration. The CMS Precision Proton Spectrometer at the HL-LHC—Expression of Interest. arXiv 2021, arXiv:2103.02752. [Google Scholar]
- Pitt, M. Physics at the HL-LHC with Proton Tagging. Acta Phys. Pol. Proc. Suppl. 2023, 16, A7–A12. [Google Scholar] [CrossRef]
- Deile, M.; Taševský, M. High Luminosity Forward Physics; World Scientific: Singapore, 2023; Chapter 18; pp. 271–279. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O.S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al. Search for single top-quark production via flavour-changing neutral currents at 8 TeV with the ATLAS detector. Eur. Phys. J. C 2016, 76, 55, Erratum in Eur. Phys. J. C 2022, 82, 70. [Google Scholar] [CrossRef] [PubMed]
- Goldouzian, R.; Clerbaux, B. Photon initiated single top quark production via flavor-changing neutral currents at the LHC. Phys. Rev. D 2017, 95, 054014. [Google Scholar] [CrossRef]
Generator | |||||
---|---|---|---|---|---|
Superchic v4 | ✔ | ✔ | — | — | — |
MadGraph/gamma-UPC | ✔ | — | — | ✔ | — |
FPMC | ✔ | ✔ | ✔ | ✔ | ✔ |
Pythia8 | ✔ | — | — | ✔ | ✔ |
MadGraph/gamma-UPC | — | — | ✔ | ✔ | — |
FPMC | ✔ | — | ✔ | — | ✔ |
Pythia8 | — | — | ✔ | — | ✔ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitt, M. Diffractive and Photon-Induced Production of Top Quark. Universe 2023, 9, 483. https://doi.org/10.3390/universe9110483
Pitt M. Diffractive and Photon-Induced Production of Top Quark. Universe. 2023; 9(11):483. https://doi.org/10.3390/universe9110483
Chicago/Turabian StylePitt, Michael. 2023. "Diffractive and Photon-Induced Production of Top Quark" Universe 9, no. 11: 483. https://doi.org/10.3390/universe9110483
APA StylePitt, M. (2023). Diffractive and Photon-Induced Production of Top Quark. Universe, 9(11), 483. https://doi.org/10.3390/universe9110483