Hubble Tension: The Evidence of New Physics
Abstract
:1. Introduction
2. Tension
2.1. Constraints of from the CMB Measurements
2.2. Constrain from the Local Distance Ladder
3. Arbitration
3.1. Quasar Lensing
3.2. Megamaser
3.3. Gravitational Wave
3.4. Fast Radio Burst
3.5. Tip of the Red Giant Branch
4. Solutions for the Tension
4.1. Classification of Solutions to Tension
- (a)
- (1) Anharmonic oscillations [206];(2.1) Dissipative axion [212];(2.2) Axion interacting with a dilaton [213];(3) Power-law potential [214];(4) Rock ‘n’ roll [215];(6) Chain early dark energy [218];(8) Gradusted dark energy [221];(9.1) Exponential acoustic dark energy [223];(10) Early dark energy in attractors [224].
- (b)
- (3) Dark energy in extended parameter spaces [232];(5) Dynamical dark energy parameterizations with one free parameter [235];(7) Phantom crossing [239];(10) Transitional dark energy model [244];(11) Negative dark energy [245];(13.1) Tsallis holographic dark energy [253];(16) Phantom braneworld dark energy [261];(17) Frame-dependent dark energy [262];
- (c)
- Dark energy models with degrees of freedom and their extensions:(1.2) Modified emergent dark energy [270];
- (d)
- Models with extra relativistic degrees of freedom:(2) Neutrino asymmetries [276];(4.4) Decaying ‘Z’ [292];(4.5) Dynamical dark matter [293];(4.6) Degenerate decaying fermion dark matter [294];(5.2) Feebly interacting massive particles (FIMPs) decay into neutrinos [301];(6) Interacting dark radiation [301];(8) Cannibal dark matter [304];(12) Unparticles [311].
- (e)
- Models with extra interactions:(1) Interacting dark energy (IDE) [312];(1.2) Coupled scalar field [318];(1.6) IDE with sign-changing interaction [325];(1.7) Anisotropic stress in IDE [326];(1.8) Interaction in the anisotropic universe [327];(1.11) Interacting quintom dark energy [329];(4.2) Self-interacting sterile neutrino model [344];
- (f)
- Unified cosmologies:(1) Generalized Chaplygin gas model [347];(2) A new unified model [348];(3) (t)CDM model [349];
- (g)
- Modified gravity [352]:(5) Jordan–Brans–Dicke (JBD) gravity [365];(10) Unimodular gravity [380];(11) Scale-dependent scenario of gravity [381];
- (h)
- Inflationary models [384]:(3) Lorentzian quintessential inflation [389];(4) Harrison–Zel’dovich spectrum [390].
- (i)
- Modified recombination history [391]:(2) Time varying electron mass [394];(3) Axi–Higgs model [395];
- (j)
- Physics of the critical phenomena:(1) Double-CDM [398];(2) Ginzburg–Landau theory of phase transition [321];(3) Critically emergent dark energy [399].
- (k)
- Alternative proposals:(2) Bianchi type I spacetime [402];(4) CMB monopole temperature [406];(5) Super-CDM [409];(6) Heisenberg uncertainty [410](7) Diffusion [411];(8) Casimir cosmology [412];(9) Surface forces [413];(12) Rapid transition in the effective gravitational constant [418];(14) Milgromian dynamics [421];
- (i)
- Late time deformations of the Hubble expansion rate H(z):(1) Phantom dark energy [424];(2) Running vacuum model [425];(4) Vacuum phase transition [429];(5) Phase transition in dark energy [430].
- (ii)
- Deformations of the Hubble expansion rate H(z) with additional interactions/degrees of freedom:(2) Decaying dark matter [437].
- (iii)
- Deformations of the Hubble expansion rate H(z) with inhomogeneous or anisotropic modifications:(3) Inhomogeneous causal horizons [419].
- (iv)
- Late time modifications: Transition or recalibration of the SNe Ia absolute luminosity:(1) Gravity and evolution of the SNe Ia intrinsic luminosity [442];
- (v)
- Early time modifications of sound horizon:(4) Large primordial non-Gaussianities [409];(5) Heisenberg’s uncertainty principle [410];
5. Evidence of New Physics beyond the CDM
6. Conclusions and Future Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.H.; et al. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12 galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617–2652. [Google Scholar] [CrossRef]
- Scolnic, D.M.; Jones, D.O.; Rest, A.; Pan, Y.C.; Chornock, R.; Foley, R.J.; Huber, M.E.; Kessler, R.; Narayan, G.; Riess, A.G.; et al. The Complete Light-curve Sample of Spectroscopically Confirmed SNe Ia from Pan-STARRS1 and Cosmological Constraints from the Combined Pantheon Sample. Astroph. J. 2018, 859, 101. [Google Scholar] [CrossRef]
- Planck Collaboration. Planck 2018 results. VI. Cosmological parameters. Astron. Astrophys. 2020, 641, A6. [Google Scholar] [CrossRef]
- Benisty, D.; Staicova, D. Testing late-time cosmic acceleration with uncorrelated baryon acoustic oscillation dataset. Astron. Astrophys. 2021, 647, A38. [Google Scholar] [CrossRef]
- Hu, J.P.; Wang, F.Y.; Dai, Z.G. Measuring cosmological parameters with a luminosity-time correlation of gamma-ray bursts. Mon. Not. R. Astron. Soc. 2021, 507, 730–742. [Google Scholar] [CrossRef]
- DES Collaboration. The first Hubble diagram and cosmological constraints using superluminous supernovae. Mon. Not. R. Astron. Soc. 2021, 504, 2535–2549. [Google Scholar] [CrossRef]
- Brout, D.; Scolnic, D.; Popovic, B.; Riess, A.G.; Carr, A.; Zuntz, J.; Kessler, R.; Davis, T.M.; Hinton, S.; Jones, D.; et al. The Pantheon+ Analysis: Cosmological Constraints. Astroph. J. 2022, 938, 110. [Google Scholar] [CrossRef]
- DES Collaboration. Dark Energy Survey Year 3 results: Calibration of lens sample redshift distributions using clustering redshifts with BOSS/eBOSS. Mon. Not. R. Astron. Soc. 2022, 513, 5517–5539. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Nielson, V.; Sarracino, G.; Rinaldi, E.; Nagataki, S.; Capozziello, S.; Gnedin, O.Y.; Bargiacchi, G. Optical and X-ray GRB Fundamental Planes as cosmological distance indicators. Mon. Not. R. Astron. Soc. 2022, 514, 1828–1856. [Google Scholar] [CrossRef]
- Cao, S.; Ryan, J.; Ratra, B. Cosmological constraints from H II starburst galaxy, quasar angular size, and other measurements. Mon. Not. R. Astron. Soc. 2022, 509, 4745–4757. [Google Scholar] [CrossRef]
- de Cruz Perez, J.; Park, C.G.; Ratra, B. Current data are consistent with flat spatial hypersurfaces in the ΛCDM cosmological model but favor more lensing than the model predicts. arXiv 2022, arXiv:2211.04268. [Google Scholar]
- Liu, Y.; Liang, N.; Xie, X.; Yuan, Z.; Yu, H.; Wu, P. Gamma-Ray Burst Constraints on Cosmological Models from the Improved Amati Correlation. Astroph. J. 2022, 935, 7. [Google Scholar] [CrossRef]
- Pourojaghi, S.; Zabihi, N.F.; Malekjani, M. Can high-redshift Hubble diagrams rule out the standard model of cosmology in the context of cosmography? Phys. Rev. D 2022, 106, 123523. [Google Scholar] [CrossRef]
- Wang, F.Y.; Hu, J.P.; Zhang, G.Q.; Dai, Z.G. Standardized Long Gamma-Ray Bursts as a Cosmic Distance Indicator. Astroph. J. 2022, 924, 97. [Google Scholar] [CrossRef]
- Blanchard, A.; Héloret, J.Y.; Ilić, S.; Lamine, B.; Tutusaus, I. ΛCDM is alive and well. arXiv 2022, arXiv:2205.05017. [Google Scholar]
- Berti, E.; Cardoso, V.; Haiman, Z.; Holz, D.E.; Mottola, E.; Mukherjee, S.; Sathyaprakash, B.; Siemens, X.; Yunes, N. Snowmass2021 Cosmic Frontier White Paper: Fundamental Physics and Beyond the Standard Model. arXiv 2022, arXiv:2203.06240. [Google Scholar]
- Schmitz, K. Modern Cosmology, an Amuse-Gueule. arXiv 2022, arXiv:2203.04757. [Google Scholar]
- Buchert, T.; Coley, A.A.; Kleinert, H.; Roukema, B.F.; Wiltshire, D.L. Observational challenges for the standard FLRW model. Int. J. Mod. Phys. D 2016, 25, 1630007. [Google Scholar] [CrossRef]
- Abdalla, E.; Abellán, G.F.; Aboubrahim, A.; Agnello, A.; Akarsu, O.; Akrami, Y.; Alestas, G.; Aloni, D.; Amendola, L.; Anchordoqui, L.A.; et al. Cosmology intertwined: A review of the particle physics, astrophysics, and cosmology associated with the cosmological tensions and anomalies. J. High Energy Astrop. 2022, 34, 49–211. [Google Scholar] [CrossRef]
- Di Valentino, E.D. Challenges of the Standard Cosmological Model. Universe 2022, 8, 399. [Google Scholar] [CrossRef]
- Perivolaropoulos, L.; Skara, F. Challenges for ΛCDM: An update. New Astron. Rev. 2022, 95, 101659. [Google Scholar] [CrossRef]
- Aluri, P.K.; Cea, P.; Chingangbam, P.; Chu, M.C.; Clowes, R.G.; Hutsemékers, D.; Kochappan, J.P.; Krasiński, A.; Lopez, A.M.; Liu, L.; et al. Is the Observable Universe Consistent with the Cosmological Principle? arXiv 2022, arXiv:2207.05765. [Google Scholar]
- Krishnan, C.; Mondol, R.; Sheikh-Jabbari, M.M. Dipole Cosmology: The Copernican Paradigm Beyond FLRW. arXiv 2022, arXiv:2209.14918. [Google Scholar]
- Weinberg, S. The cosmological constant problem. Rev. Mod. Phys. 1989, 61, 1–23. [Google Scholar] [CrossRef]
- Courbin, V.L.; Marlow, D.R.; Dementi, A.E. Critical Problems in Physics; Princeton University Press: Princeton, NJ, USA, 1997. [Google Scholar]
- Martin, J. Everything you always wanted to know about the cosmological constant problem (but were afraid to ask). Comptes Rendus Phys. 2012, 13, 566–665. [Google Scholar] [CrossRef]
- Burgess, C.P. The Cosmological Constant Problem: Why it’s hard to get Dark Energy from Micro-physics. arXiv 2013, arXiv:1309.4133. [Google Scholar]
- Velten, H.E.S.; vom Marttens, R.F.; Zimdahl, W. Aspects of the cosmological “coincidence problem”. Eur. Phys. J. C 2014, 74, 3160. [Google Scholar] [CrossRef] [Green Version]
- Copeland, E.J.; Sami, M.; Tsujikawa, S. Dynamics of Dark Energy. Int. J. Mod. Phys. D 2006, 15, 1753–1935. [Google Scholar] [CrossRef]
- Solà, J. Cosmological constant and vacuum energy: Old and new ideas. J. Phys. Conf. Ser. 2013, 453, 012015. [Google Scholar] [CrossRef]
- Weinberg, S. Anthropic bound on the cosmological constant. Phys. Rev. Lett. 1987, 59, 2607–2610. [Google Scholar] [CrossRef]
- Susskind, L. The Anthropic Landscape of String Theory. In Proceedings of the Davis Meeting ON Cosmic Inflation, Davis, CA, USA, 22–23 March 2003; p. 26. [Google Scholar]
- Planck Collaboration. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 2016, 594, A13. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.; Anderson, J.; MacKenty, J.W.; Bowers, J.B.; Clubb, K.I.; Filippenko, A.V.; Jones, D.O.; et al. New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant. Astroph. J. 2018, 855, 136. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Macri, L.M.; Scolnic, D. Large Magellanic Cloud Cepheid Standards Provide a 1% Foundation for the Determination of the Hubble Constant and Stronger Evidence for Physics beyond ΛCDM. Astroph. J. 2019, 876, 85. [Google Scholar] [CrossRef]
- Riess, A.G. The expansion of the Universe is faster than expected. Nat. Rev. Phys. 2020, 2, 10–12. [Google Scholar] [CrossRef]
- Wong, K.C.; Suyu, S.H.; Chen, G.C.F.; Rusu, C.E.; Millon, M.; Sluse, D.; Bonvin, V.; Fassnacht, C.D.; Taubenberger, S.; Auger, M.W.; et al. H0LiCOW-XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes. Mon. Not. R. Astron. Soc. 2020, 498, 1420–1439. [Google Scholar] [CrossRef]
- Di Valentino, E. A combined analysis of the H0 late time direct measurements and the impact on the Dark Energy sector. Mon. Not. R. Astron. Soc. 2021, 502, 2065–2073. [Google Scholar] [CrossRef]
- Riess, A.G.; Casertano, S.; Yuan, W.; Bowers, J.B.; Macri, L.; Zinn, J.C.; Scolnic, D. Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM. Astroph. J. Lett. 2021, 908, L6. [Google Scholar] [CrossRef]
- Riess, A.G.; Yuan, W.; Macri, L.M.; Scolnic, D.; Brout, D.; Casertano, S.; Jones, D.O.; Murakami, Y.; Anand, G.S.; Breuval, L.; et al. A Comprehensive Measurement of the Local Value of the Hubble Constant with 1 km s−1 Mpc−1 Uncertainty from the Hubble Space Telescope and the SH0ES Team. Astroph. J. Lett. 2022, 934, L7. [Google Scholar] [CrossRef]
- Basilakos, S.; Nesseris, S. Conjoined constraints on modified gravity from the expansion history and cosmic growth. Phys. Rev. D 2017, 96, 063517. [Google Scholar] [CrossRef]
- DES Collaboration. Dark Energy Survey year 1 results: Cosmological constraints from galaxy clustering and weak lensing. Phys. Rev. D 2018, 98, 043526. [Google Scholar] [CrossRef]
- Joudaki, S.; Blake, C.; Johnson, A.; Amon, A.; Asgari, M.; Choi, A.; Erben, T.; Glazebrook, K.; Harnois-Déraps, J.; Heymans, C.; et al. KiDS-450 + 2dFLenS: Cosmological parameter constraints from weak gravitational lensing tomography and overlapping redshift-space galaxy clustering. Mon. Not. R. Astron. Soc. 2018, 474, 4894–4924. [Google Scholar] [CrossRef]
- Akarsu, O.; Barrow, J.D.; Uzun, N.M. Screening anisotropy via energy-momentum squared gravity: Λ CDM model with hidden anisotropy. Phys. Rev. D 2020, 102, 124059. [Google Scholar] [CrossRef]
- Hu, J.P.; Wang, Y.Y.; Wang, F.Y. Testing cosmic anisotropy with Pantheon sample and quasars at high redshifts. Astron. Astrophys. 2020, 643, A93. [Google Scholar] [CrossRef]
- Planck Collaboration. Planck 2018 results. VII. Isotropy and statistics of the CMB. Astron. Astrophys. 2020, 641, A7. [Google Scholar] [CrossRef]
- Migkas, K.; Pacaud, F.; Schellenberger, G.; Erler, J.; Nguyen-Dang, N.T.; Reiprich, T.H.; Ramos-Ceja, M.E.; Lovisari, L. Cosmological implications of the anisotropy of ten galaxy cluster scaling relations. Astron. Astrophys. 2021, 649, A151. [Google Scholar] [CrossRef]
- Secrest, N.J.; von Hausegger, S.; Rameez, M.; Mohayaee, R.; Sarkar, S.; Colin, J. A Test of the Cosmological Principle with Quasars. Astroph. J. Lett. 2021, 908, L51. [Google Scholar] [CrossRef]
- Zhao, D.; Xia, J.Q. Constraining the anisotropy of the Universe with the X-ray and UV fluxes of quasars. Eur. Phys. J. C 2021, 81, 694. [Google Scholar] [CrossRef]
- Akarsu, O.; Dereli, T.; Katırcı, N. ACDM cosmology with a quiescent anisotropy in a higher dimensional steady state universe. J. Phys. Conf. Ser. 2022, 2191, 012001. [Google Scholar] [CrossRef]
- Kalbouneh, B.; Marinoni, C.; Bel, J. The multipole expansion of the local expansion rate. arXiv 2022, arXiv:2210.11333. [Google Scholar] [CrossRef]
- Zhao, D.; Xia, J.Q. Testing cosmic anisotropy with the Ep-Eiso (‘Amati’) correlation of GRBs. Mon. Not. R. Astron. Soc. 2022, 511, 5661–5671. [Google Scholar] [CrossRef]
- Akarsu, O.; Di Valentino, E.; Kumar, S.; Ozyiğit, M.; Sharma, S. Testing spatial curvature and anisotropic expansion on top of the ΛCDM model. Phys. Dark Universe 2023, 39, 101162. [Google Scholar] [CrossRef]
- Kashlinsky, A.; Atrio-Barandela, F.; Kocevski, D.; Ebeling, H. A Measurement of Large-Scale Peculiar Velocities of Clusters of Galaxies: Results and Cosmological Implications. Astroph. J. Lett. 2008, 686, L49. [Google Scholar] [CrossRef]
- Watkins, R.; Feldman, H.A.; Hudson, M.J. Consistently large cosmic flows on scales of 100h−1Mpc: A challenge for the standard ΛCDM cosmology. Mon. Not. R. Astron. Soc. 2009, 392, 743–756. [Google Scholar] [CrossRef]
- Webb, J.K.; King, J.A.; Murphy, M.T.; Flambaum, V.V.; Carswell, R.F.; Bainbridge, M.B. Indications of a Spatial Variation of the Fine Structure Constant. Phys. Rev. Lett. 2011, 107, 191101. [Google Scholar] [CrossRef] [PubMed]
- King, J.A.; Webb, J.K.; Murphy, M.T.; Flambaum, V.V.; Carswell, R.F.; Bainbridge, M.B.; Wilczynska, M.R.; Koch, F.E. Spatial variation in the fine-structure constant—New results from VLT/UVES. Mon. Not. R. Astron. Soc. 2012, 422, 3370–3414. [Google Scholar] [CrossRef]
- Wiltshire, D.L.; Smale, P.R.; Mattsson, T.; Watkins, R. Hubble flow variance and the cosmic rest frame. Phys. Rev. D 2013, 88, 083529. [Google Scholar] [CrossRef]
- Bengaly, C.A.P.; Maartens, R.; Santos, M.G. Probing the Cosmological Principle in the counts of radio galaxies at different frequencies. J. Cosmol. Astropart. Phys. 2018, 2018, 031. [Google Scholar] [CrossRef] [Green Version]
- Zhao, D.; Xia, J.Q. A tomographic test of cosmic anisotropy with the recently-released quasar sample. Eur. Phys. J. C 2021, 81, 948. [Google Scholar] [CrossRef]
- Horstmann, N.; Pietschke, Y.; Schwarz, D.J. Inference of the cosmic rest-frame from supernovae Ia. Astron. Astrophys. 2022, 668, A34. [Google Scholar] [CrossRef]
- Luongo, O.; Muccino, M.; Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Yin, L. Larger H0 values in the CMB dipole direction. Phys. Rev. D 2022, 105, 103510. [Google Scholar] [CrossRef]
- Guandalin, C.; Piat, J.; Clarkson, C.; Maartens, R. Theoretical systematics in testing the Cosmological Principle with the kinematic quasar dipole. arXiv 2022, arXiv:2212.04925. [Google Scholar]
- Evslin, J. Isolating the Lyman alpha forest BAO anomaly. J. Cosmol. Astropart. Phys. 2017, 2017, 024. [Google Scholar] [CrossRef]
- Addison, G.E.; Watts, D.J.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Weiland, J.L. Elucidating ΛCDM: Impact of Baryon Acoustic Oscillation Measurements on the Hubble Constant Discrepancy. Astroph. J. 2018, 853, 119. [Google Scholar] [CrossRef]
- Cuceu, A.; Farr, J.; Lemos, P.; Font-Ribera, A. Baryon Acoustic Oscillations and the Hubble constant: Past, present and future. J. Cosmol. Astropart. Phys. 2019, 2019, 044. [Google Scholar] [CrossRef]
- Minami, Y.; Ochi, H.; Ichiki, K.; Katayama, N.; Komatsu, E.; Matsumura, T. Simultaneous determination of the cosmic birefringence and miscalibrated polarisation angles from CMB experiments. arXiv 2019, arXiv:1904.12440. [Google Scholar]
- Minami, Y. Determination of miscalibrated polarization angles from observed cosmic microwave background and foreground EB power spectra: Application to partial-sky observation. Prog. Theor. Exp. Phys. 2020, 2020, 063E01. [Google Scholar] [CrossRef]
- Minami, Y.; Komatsu, E. New Extraction of the Cosmic Birefringence from the Planck 2018 Polarization Data. Phys. Rev. Lett. 2020, 125, 221301. [Google Scholar] [CrossRef]
- Minami, Y.; Komatsu, E. Simultaneous determination of the cosmic birefringence and miscalibrated polarization angles II: Including cross-frequency spectra. Prog. Theor. Exp. Phys. 2020, 2020, 103E02. [Google Scholar] [CrossRef]
- Bullock, J.S.; Boylan-Kolchin, M. Small-Scale Challenges to the ΛCDM Paradigm. Annu. Rev. Astron. Astr. 2017, 55, 343–387. [Google Scholar] [CrossRef] [Green Version]
- Del Popolo, A.; Le Delliou, M. Small Scale Problems of the ΛCDM Model: A Short Review. Galaxies 2017, 5, 17. [Google Scholar] [CrossRef]
- Salucci, P. The distribution of dark matter in galaxies. Astron. Astrophys. Rev. 2019, 27, 2. [Google Scholar] [CrossRef]
- Di Paolo, C.; Salucci, P. Fundamental properties of the dark and the luminous matter from Low Surface Brightness discs. arXiv 2020, arXiv:2005.03520. [Google Scholar]
- Verde, L.; Protopapas, P.; Jimenez, R. Planck and the local Universe: Quantifying the tension. Phys. Dark Universe 2013, 2, 166–175. [Google Scholar] [CrossRef]
- Fields, B.D. The Primordial Lithium Problem. Annu. Rev. Nucl. Part. Sci. 2011, 61, 47–68. [Google Scholar] [CrossRef]
- Lusso, E.; Piedipalumbo, E.; Risaliti, G.; Paolillo, M.; Bisogni, S.; Nardini, E.; Amati, L. Tension with the flat ΛCDM model from a high-redshift Hubble diagram of supernovae, quasars, and gamma-ray bursts. Astron. Astrophys. 2019, 628, L4. [Google Scholar] [CrossRef]
- Risaliti, G.; Lusso, E. Cosmological Constraints from the Hubble Diagram of Quasars at High Redshifts. Nat. Astron. 2019, 3, 272–277. [Google Scholar] [CrossRef]
- Yang, T.; Banerjee, A.; Ó Colgáin, E. Cosmography and flat Λ CDM tensions at high redshift. Phys. Rev. D 2020, 102, 123532. [Google Scholar] [CrossRef]
- Banerjee, A.; Ó Colgáin, E.; Sasaki, M.; Sheikh-Jabbari, M.M.; Yang, T. On problems with cosmography in cosmic dark ages. Phys. Lett. B 2021, 818, 136366. [Google Scholar] [CrossRef]
- Hu, J.P.; Wang, F.Y. High-redshift cosmography: Application and comparison with different methods. Astron. Astrophys. 2022, 661, A71. [Google Scholar] [CrossRef]
- Antoniou, I.; Perivolaropoulos, L. Constraints on spatially oscillating sub-mm forces from the Stanford Optically Levitated Microsphere Experiment data. Phys. Rev. D 2017, 96, 104002. [Google Scholar] [CrossRef] [Green Version]
- Perivolaropoulos, L. Submillimeter spatial oscillations of Newton’s constant: Theoretical models and laboratory tests. Phys. Rev. D 2017, 95, 084050. [Google Scholar] [CrossRef]
- Bowman, J.D.; Rogers, A.E.E.; Monsalve, R.A.; Mozdzen, T.J.; Mahesh, N. An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature 2018, 555, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Kraljic, D.; Sarkar, S. How rare is the Bullet Cluster (in a ΛCDM universe)? J. Cosmol. Astropart. Phys. 2015, 2015, 050. [Google Scholar] [CrossRef]
- Asencio, E.; Banik, I.; Kroupa, P. A massive blow for ΛCDM—The high redshift, mass, and collision velocity of the interacting galaxy cluster El Gordo contradicts concordance cosmology. Mon. Not. R. Astron. Soc. 2021, 500, 5249–5267. [Google Scholar] [CrossRef]
- Planck Collaboration. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 2014, 571, A16. [Google Scholar] [CrossRef]
- Planck Collaboration. Planck intermediate results. LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters. Astron. Astrophys. 2017, 607, A95. [Google Scholar] [CrossRef]
- Jones, D.O.; Riess, A.G.; Scolnic, D.M.; Pan, Y.C.; Johnson, E.; Coulter, D.A.; Dettman, K.G.; Foley, M.M.; Foley, R.J.; Huber, M.E.; et al. Should Type Ia Supernova Distances Be Corrected for Their Local Environments? Astroph. J. 2018, 867, 108. [Google Scholar] [CrossRef]
- Shanks, T.; Hogarth, L.M.; Metcalfe, N. Gaia Cepheid parallaxes and ’Local Hole’ relieve H0 tension. Mon. Not. R. Astron. Soc. 2019, 484, L64–L68. [Google Scholar] [CrossRef]
- Planck Collaboration. Planck 2018 results. I. Overview and the cosmological legacy of Planck. Astron. Astrophys. 2020, 641, A1. [Google Scholar] [CrossRef]
- Rigault, M.; Brinnel, V.; Aldering, G.; Antilogus, P.; Aragon, C.; Bailey, S.; Baltay, C.; Barbary, K.; Bongard, S.; Boone, K.; et al. Strong dependence of Type Ia supernova standardization on the local specific star formation rate. Astron. Astrophys. 2020, 644, A176. [Google Scholar] [CrossRef]
- Carneiro, S.; Pigozzo, C.; Alcaniz, J.S. Redshift systematics and the H0 tension problem. Eur. Phys. J. Plus 2022, 137, 537. [Google Scholar] [CrossRef]
- de Jaeger, T.; Galbany, L.; Riess, A.G.; Stahl, B.E.; Shappee, B.J.; Filippenko, A.V.; Zheng, W. A 5 per cent measurement of the Hubble-Lemaître constant from Type II supernovae. Mon. Not. R. Astron. Soc. 2022, 514, 4620–4628. [Google Scholar] [CrossRef]
- Hill, J.C.; McDonough, E.; Toomey, M.W.; Alexander, S. Early dark energy does not restore cosmological concordance. Phys. Rev. D 2020, 102, 043507. [Google Scholar] [CrossRef]
- D’Amico, G.; Senatore, L.; Zhang, P.; Zheng, H. The Hubble tension in light of the Full-Shape analysis of Large-Scale Structure data. J. Cosmol. Astropart. Phys. 2021, 2021, 072. [Google Scholar] [CrossRef]
- Shah, P.; Lemos, P.; Lahav, O. A buyer’s guide to the Hubble constant. Astron. Astrophys. Rev. 2021, 29, 9. [Google Scholar] [CrossRef]
- Verde, L.; Treu, T.; Riess, A.G. Tensions between the early and late Universe. Nat. Astron. 2019, 3, 891–895. [Google Scholar] [CrossRef]
- Weinberg, D.H.; Mortonson, M.J.; Eisenstein, D.J.; Hirata, C.; Riess, A.G.; Rozo, E. Observational probes of cosmic acceleration. Phys. Rep. 2013, 530, 87–255. [Google Scholar] [CrossRef]
- Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. Astrophys. J. Suppl. Ser. 2013, 208, 20. [Google Scholar] [CrossRef]
- Knox, L.; Millea, M. Hubble constant hunter’s guide. Phys. Rev. D 2020, 101, 043533. [Google Scholar] [CrossRef]
- SPT-3G Collaboration. Measurements of the E -mode polarization and temperature-E -mode correlation of the CMB from SPT-3G 2018 data. Phys. Rev. D 2021, 104, 022003. [Google Scholar] [CrossRef]
- Aiola, S.; Calabrese, E.; Maurin, L.; Naess, S.; Schmitt, B.L.; Abitbol, M.H.; Addison, G.E.; Ade, P.A.R.; Alonso, D.; Amiri, M.; et al. The Atacama Cosmology Telescope: DR4 maps and cosmological parameters. J. Cosmol. Astropart. Phys. 2020, 2020, 047. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Gibson, B.K.; Ferrarese, L.; Kelson, D.D.; Sakai, S.; Mould, J.R.; Kennicutt, R.C., Jr.; Ford, H.C.; Graham, J.A.; et al. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant. Astroph. J. 2001, 553, 47–72. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Scowcroft, V.; Burns, C.; Monson, A.; Persson, S.E.; Seibert, M.; Rigby, J. Carnegie Hubble Program: A Mid-infrared Calibration of the Hubble Constant. Astroph. J. 2012, 758, 24. [Google Scholar] [CrossRef]
- Lusso, E.; Risaliti, G. The Tight Relation between X-Ray and Ultraviolet Luminosity of Quasars. Astroph. J. 2016, 819, 154. [Google Scholar] [CrossRef]
- Bisogni, S.; Risaliti, G.; Lusso, E. A Hubble Diagram for Quasars. Front. Astron. Space Sci. 2017, 4, 68. [Google Scholar] [CrossRef]
- Lusso, E.; Risaliti, G. Quasars as standard candles. I. The physical relation between disc and coronal emission. Astron. Astrophys. 2017, 602, A79. [Google Scholar] [CrossRef]
- Melia, F. Cosmological test using the Hubble diagram of high-z quasars. Mon. Not. R. Astron. Soc. 2019, 489, 517–523. [Google Scholar] [CrossRef]
- Khadka, N.; Ratra, B. Quasar X-ray and UV flux, baryon acoustic oscillation, and Hubble parameter measurement constraints on cosmological model parameters. Mon. Not. R. Astron. Soc. 2020, 492, 4456–4468. [Google Scholar] [CrossRef]
- Cao, S.; Zajaček, M.; Panda, S.; Martínez-Aldama, M.L.; Czerny, B.; Ratra, B. Standardizing reverberation-measured C IV time-lag quasars, and using them with standardized Mg II quasars to constrain cosmological parameters. Mon. Not. R. Astron. Soc. 2022, 516, 1721–1740. [Google Scholar] [CrossRef]
- Khadka, N.; Martínez-Aldama, M.L.; Zajaček, M.; Czerny, B.; Ratra, B. Do reverberation-measured Hβ quasars provide a useful test of cosmology? Mon. Not. R. Astron. Soc. 2022, 513, 1985–2005. [Google Scholar] [CrossRef]
- Khadka, N.; Zajaček, M.; Panda, S.; Martínez-Aldama, M.L.; Ratra, B. Consistency study of high- and low-accreting Mg II quasars: No significant effect of the Fe II to Mg II flux ratio on the radius-luminosity relation dispersion. Mon. Not. R. Astron. Soc. 2022, 515, 3729–3748. [Google Scholar] [CrossRef]
- Khadka, N.; Ratra, B. Do quasar X-ray and UV flux measurements provide a useful test of cosmological models? Mon. Not. R. Astron. Soc. 2022, 510, 2753–2772. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Yuan, Z.; Liang, N.; Yu, H.; Wu, P. Redshift-evolutionary X-Ray and UV Luminosity Relation of Quasars from Gaussian Copula. Astroph. J. 2022, 940, 174. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Cardone, V.F.; Capozziello, S. A time-luminosity correlation for γ-ray bursts in the X-rays. Mon. Not. R. Astron. Soc. 2008, 391, L79–L83. [Google Scholar] [CrossRef]
- Wang, F.Y.; Dai, Z.G.; Liang, E.W. Gamma-ray burst cosmology. New Astron. Rev. 2015, 67, 1–17. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Del Vecchio, R. Gamma Ray Burst afterglow and prompt-afterglow relations: An overview. New Astron. Rev. 2017, 77, 23–61. [Google Scholar] [CrossRef]
- Cao, S.; Khadka, N.; Ratra, B. Standardizing Dainotti-correlated gamma-ray bursts, and using them with standardized Amati-correlated gamma-ray bursts to constrain cosmological model parameters. Mon. Not. R. Astron. Soc. 2022, 510, 2928–2947. [Google Scholar] [CrossRef]
- Cao, S.; Dainotti, M.; Ratra, B. Standardizing Platinum Dainotti-correlated gamma-ray bursts, and using them with standardized Amati-correlated gamma-ray bursts to constrain cosmological model parameters. Mon. Not. R. Astron. Soc. 2022, 512, 439–454. [Google Scholar] [CrossRef]
- Cao, S.; Ratra, B. Using lower redshift, non-CMB, data to constrain the Hubble constant and other cosmological parameters. Mon. Not. R. Astron. Soc. 2022, 513, 5686–5700. [Google Scholar] [CrossRef]
- Deng, C.; Huang, Y.F.; Xu, F. Pseudo Redshifts of Gamma-Ray Bursts Derived from the L-T-E Correlation. arXiv 2022, arXiv:2212.01990. [Google Scholar] [CrossRef]
- Jia, X.D.; Hu, J.P.; Yang, J.; Zhang, B.B.; Wang, F.Y. E iso-Ep correlation of gamma-ray bursts: Calibration and cosmological applications. Mon. Not. R. Astron. Soc. 2022, 516, 2575–2585. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, F.; Liang, N.; Yuan, Z.; Yu, H.; Wu, P. The Improved Amati Correlations from Gaussian Copula. Astroph. J. 2022, 931, 50. [Google Scholar] [CrossRef]
- Liang, N.; Li, Z.; Xie, X.; Wu, P. Calibrating Gamma-Ray Bursts by Using a Gaussian Process with Type Ia Supernovae. Astroph. J. 2022, 941, 84. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, B.; Liang, N. Constraints on Dark Energy Models with Gamma-Ray Bursts Calibrated from the Observational H(z) Data. arXiv 2022, arXiv:2212.14291. [Google Scholar]
- Muccino, M.; Luongo, O.; Jain, D. Constraints on the transition redshift from the calibrated Gamma-ray Burst Ep-Eiso correlation. arXiv 2022, arXiv:2208.13700. [Google Scholar]
- Luongo, O.; Muccino, M. Intermediate redshift calibration of gamma-ray bursts and cosmic constraints in non-flat cosmology. Mon. Not. R. Astron. Soc. 2023, 518, 2247–2255. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.M.; Hoffmann, S.L.; Scolnic, D.; Casertano, S.; Filippenko, A.V.; Tucker, B.E.; Reid, M.J.; Jones, D.O.; Silverman, J.M.; et al. A 2.4% Determination of the Local Value of the Hubble Constant. Astroph. J. 2016, 826, 56. [Google Scholar] [CrossRef]
- Cardona, W.; Kunz, M.; Pettorino, V. Determining H0 with Bayesian hyper-parameters. J. Cosmol. Astropart. Phys. 2017, 2017, 056. [Google Scholar] [CrossRef]
- Burns, C.R.; Parent, E.; Phillips, M.M.; Stritzinger, M.; Krisciunas, K.; Suntzeff, N.B.; Hsiao, E.Y.; Contreras, C.; Anais, J.; Boldt, L.; et al. The Carnegie Supernova Project: Absolute Calibration and the Hubble Constant. Astroph. J. 2018, 869, 56. [Google Scholar] [CrossRef]
- Feeney, S.M.; Mortlock, D.J.; Dalmasso, N. Clarifying the Hubble constant tension with a Bayesian hierarchical model of the local distance ladder. Mon. Not. R. Astron. Soc. 2018, 476, 3861–3882. [Google Scholar] [CrossRef]
- Follin, B.; Knox, L. Insensitivity of the distance ladder Hubble constant determination to Cepheid calibration modelling choices. Mon. Not. R. Astron. Soc. 2018, 477, 4534–4542. [Google Scholar] [CrossRef]
- Dhawan, S.; Jha, S.W.; Leibundgut, B. Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles. Astron. Astrophys. 2018, 609, A72. [Google Scholar] [CrossRef] [Green Version]
- Camarena, D.; Marra, V. Local determination of the Hubble constant and the deceleration parameter. Phys. Rev. Res. 2020, 2, 013028. [Google Scholar] [CrossRef]
- Javanmardi, B.; Mérand, A.; Kervella, P.; Breuval, L.; Gallenne, A.; Nardetto, N.; Gieren, W.; Pietrzyński, G.; Hocdé, V.; Borgniet, S. Inspecting the Cepheid Distance Ladder: The Hubble Space Telescope Distance to the SN Ia Host Galaxy NGC 5584. Astroph. J. 2021, 911, 12. [Google Scholar] [CrossRef]
- Spergel, D.N.; Verde, L.; Peiris, H.V.; Komatsu, E.; Nolta, M.R.; Bennett, C.L.; Halpern, M.; Hinshaw, G.; Jarosik, N.; Kogut, A.; et al. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters. Astrophys. J. Suppl. Ser. 2003, 148, 175–194. [Google Scholar] [CrossRef]
- Spergel, D.N.; Bean, R.; Doré, O.; Nolta, M.R.; Bennett, C.L.; Dunkley, J.; Hinshaw, G.; Jarosik, N.; Komatsu, E.; Page, L.; et al. Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology. Astrophys. J. Suppl. Ser. 2007, 170, 377–408. [Google Scholar] [CrossRef]
- Komatsu, E.; Dunkley, J.; Nolta, M.R.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Limon, M.; Page, L.; et al. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Cosmological Interpretation. Astrophys. J. Suppl. Ser. 2009, 180, 330–376. [Google Scholar] [CrossRef]
- Komatsu, E.; Smith, K.M.; Dunkley, J.; Bennett, C.L.; Gold, B.; Hinshaw, G.; Jarosik, N.; Larson, D.; Nolta, M.R.; Page, L.; et al. Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation. Astrophys. J. Suppl. Ser. 2011, 192, 18. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.; Casertano, S.; Sosey, M.; Lampeitl, H.; Ferguson, H.C.; Filippenko, A.V.; Jha, S.W.; Li, W.; Chornock, R.; et al. A Redetermination of the Hubble Constant with the Hubble Space Telescope from a Differential Distance Ladder. Astroph. J. 2009, 699, 539–563. [Google Scholar] [CrossRef]
- Riess, A.G.; Macri, L.; Casertano, S.; Lampeitl, H.; Ferguson, H.C.; Filippenko, A.V.; Jha, S.W.; Li, W.; Chornock, R. A 3% Solution: Determination of the Hubble Constant with the Hubble Space Telescope and Wide Field Camera 3. Astroph. J. 2011, 730, 119. [Google Scholar] [CrossRef]
- Millon, M.; Galan, A.; Courbin, F.; Treu, T.; Suyu, S.H.; Ding, X.; Birrer, S.; Chen, G.C.F.; Shajib, A.J.; Sluse, D.; et al. TDCOSMO-I. An exploration of systematic uncertainties in the inference of H0 from time-delay cosmography. Astron. Astrophys. 2020, 639, A101. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Braatz, J.A.; Reid, M.J.; Lo, K.Y.; Condon, J.J.; Impellizzeri, C.M.V.; Henkel, C. The Megamaser Cosmology Project. V. An Angular-diameter Distance to NGC 6264 at 140 Mpc. Astroph. J. 2013, 767, 155. [Google Scholar] [CrossRef] [Green Version]
- Reid, M.J.; Braatz, J.A.; Condon, J.J.; Lo, K.Y.; Kuo, C.Y.; Impellizzeri, C.M.V.; Henkel, C. The Megamaser Cosmology Project. IV. A Direct Measurement of the Hubble Constant from UGC 3789. Astroph. J. 2013, 767, 154. [Google Scholar] [CrossRef]
- Kuo, C.Y.; Braatz, J.A.; Lo, K.Y.; Reid, M.J.; Suyu, S.H.; Pesce, D.W.; Condon, J.J.; Henkel, C.; Impellizzeri, C.M.V. The Megamaser Cosmology Project. VI. Observations of NGC 6323. Astroph. J. 2015, 800, 26. [Google Scholar] [CrossRef]
- Reid, M.J.; Pesce, D.W.; Riess, A.G. An Improved Distance to NGC 4258 and Its Implications for the Hubble Constant. Astroph. J. Lett. 2019, 886, L27. [Google Scholar] [CrossRef]
- Pesce, D.W.; Braatz, J.A.; Reid, M.J.; Riess, A.G.; Scolnic, D.; Condon, J.J.; Gao, F.; Henkel, C.; Impellizzeri, C.M.V.; Kuo, C.Y.; et al. The Megamaser Cosmology Project. XIII. Combined Hubble Constant Constraints. Astroph. J. Lett. 2020, 891, L1. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. A gravitational-wave standard siren measurement of the Hubble constant. Nature 2017, 551, 85–88. [Google Scholar] [CrossRef]
- Mooley, K.P.; Deller, A.T.; Gottlieb, O.; Nakar, E.; Hallinan, G.; Bourke, S.; Frail, D.A.; Horesh, A.; Corsi, A.; Hotokezaka, K. Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 2018, 561, 355–359. [Google Scholar] [CrossRef]
- Hotokezaka, K.; Nakar, E.; Gottlieb, O.; Nissanke, S.; Masuda, K.; Hallinan, G.; Mooley, K.P.; Deller, A.T. A Hubble constant measurement from superluminal motion of the jet in GW170817. Nat. Astron. 2019, 3, 940–944. [Google Scholar] [CrossRef]
- Hagstotz, S.; Reischke, R.; Lilow, R. A new measurement of the Hubble constant using fast radio bursts. Mon. Not. R. Astron. Soc. 2022, 511, 662–667. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, G.Q.; Wang, F.Y. An 8 per cent determination of the Hubble constant from localized fast radio bursts. Mon. Not. R. Astron. Soc. 2022, 515, L1–L5. [Google Scholar] [CrossRef]
- James, C.W.; Ghosh, E.M.; Prochaska, J.X.; Bannister, K.W.; Bhandari, S.; Day, C.K.; Deller, A.T.; Glowacki, M.; Gordon, A.C.; Heintz, K.E.; et al. A measurement of Hubble’s Constant using Fast Radio Bursts. Mon. Not. R. Astron. Soc. 2022, 516, 4862–4881. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H.; Wu, P. Cosmological-model-independent determination of Hubble constant from fast radio bursts and Hubble parameter measurements. arXiv 2022, arXiv:2210.05202. [Google Scholar]
- Zhao, Z.W.; Zhang, J.G.; Li, Y.; Zou, J.M.; Zhang, J.F.; Zhang, X. First statistical measurement of the Hubble constant using unlocalized fast radio bursts. arXiv 2022, arXiv:2212.13433. [Google Scholar]
- Freedman, W.L.; Madore, B.F.; Hatt, D.; Hoyt, T.J.; Jang, I.S.; Beaton, R.L.; Burns, C.R.; Lee, M.G.; Monson, A.J.; Neeley, J.R.; et al. The Carnegie-Chicago Hubble Program. VIII. An Independent Determination of the Hubble Constant Based on the Tip of the Red Giant Branch. Astroph. J. 2019, 882, 34. [Google Scholar] [CrossRef]
- Freedman, W.L.; Madore, B.F.; Hoyt, T.; Jang, I.S.; Beaton, R.; Lee, M.G.; Monson, A.; Neeley, J.; Rich, J. Calibration of the Tip of the Red Giant Branch. Astroph. J. 2020, 891, 57. [Google Scholar] [CrossRef]
- Freedman, W.L. Measurements of the Hubble Constant: Tensions in Perspective. Astroph. J. 2021, 919, 16. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Pacucci, F.; Loeb, A. Implications for the Hubble tension from the ages of the oldest astrophysical objects. J. High Energy Astrop. 2022, 36, 27–35. [Google Scholar] [CrossRef]
- Wei, J.J.; Melia, F. Exploring the Hubble Tension and Spatial Curvature from the Ages of Old Astrophysical Objects. Astroph. J. 2022, 928, 165. [Google Scholar] [CrossRef]
- Moresco, M.; Amati, L.; Amendola, L.; Birrer, S.; Blakeslee, J.P.; Cantiello, M.; Cimatti, A.; Darling, J.; Della Valle, M.; Fishbach, M.; et al. Unveiling the Universe with emerging cosmological probes. Living Rev. Relativ. 2022, 25, 6. [Google Scholar] [CrossRef]
- Courbin, F.; Minniti, D. Gravitational Lensing: An Astrophysical Tool; Springer: Berlin/Heidelberg, Germany, 2002; Volume 608. [Google Scholar]
- Suyu, S.H.; Chang, T.C.; Courbin, F.; Okumura, T. Cosmological Distance Indicators. Space Sci. Rev. 2018, 214, 91. [Google Scholar] [CrossRef]
- Shajib, A.J.; Mozumdar, P.; Chen, G.C.F.; Treu, T.; Cappellari, M.; Knabel, S.; Suyu, S.H.; Bennert, V.N.; Frieman, J.A.; Sluse, D.; et al. TDCOSMO. XIII. Improved Hubble constant measurement from lensing time delays using spatially resolved stellar kinematics of the lens galaxy. arXiv 2023, arXiv:2301.02656. [Google Scholar]
- Suyu, S.H.; Halkola, A. The halos of satellite galaxies: The companion of the massive elliptical lens SL2S J08544-0121. Astron. Astrophys. 2010, 524, A94. [Google Scholar] [CrossRef]
- Jee, I.; Suyu, S.H.; Komatsu, E.; Fassnacht, C.D.; Hilbert, S.; Koopmans, L.V.E. A measurement of the Hubble constant from angular diameter distances to two gravitational lenses. Science 2019, 365, 1134–1138. [Google Scholar] [CrossRef] [PubMed]
- Suyu, S.H.; Treu, T.; Hilbert, S.; Sonnenfeld, A.; Auger, M.W.; Blandford, R.D.; Collett, T.; Courbin, F.; Fassnacht, C.D.; Koopmans, L.V.E.; et al. Cosmology from Gravitational Lens Time Delays and Planck Data. Astroph. J. Lett. 2014, 788, L35. [Google Scholar] [CrossRef]
- Chen, G.C.F.; Fassnacht, C.D.; Suyu, S.H.; Rusu, C.E.; Chan, J.H.H.; Wong, K.C.; Auger, M.W.; Hilbert, S.; Bonvin, V.; Birrer, S.; et al. A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging. Mon. Not. R. Astron. Soc. 2019, 490, 1743–1773. [Google Scholar] [CrossRef]
- Wong, K.C.; Suyu, S.H.; Auger, M.W.; Bonvin, V.; Courbin, F.; Fassnacht, C.D.; Halkola, A.; Rusu, C.E.; Sluse, D.; Sonnenfeld, A.; et al. H0LiCOW-IV. Lens mass model of HE 0435-1223 and blind measurement of its time-delay distance for cosmology. Mon. Not. R. Astron. Soc. 2017, 465, 4895–4913. [Google Scholar] [CrossRef]
- Birrer, S.; Treu, T.; Rusu, C.E.; Bonvin, V.; Fassnacht, C.D.; Chan, J.H.H.; Agnello, A.; Shajib, A.J.; Chen, G.C.F.; Auger, M.; et al. H0LiCOW-IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant. Mon. Not. R. Astron. Soc. 2019, 484, 4726–4753. [Google Scholar] [CrossRef]
- Rusu, C.E.; Wong, K.C.; Bonvin, V.; Sluse, D.; Suyu, S.H.; Fassnacht, C.D.; Chan, J.H.H.; Hilbert, S.; Auger, M.W.; Sonnenfeld, A.; et al. H0LiCOW XII. Lens mass model of WFI2033-4723 and blind measurement of its time-delay distance and H0. Mon. Not. R. Astron. Soc. 2020, 498, 1440–1468. [Google Scholar] [CrossRef]
- DES Collaboration. Discovery of the Lensed Quasar System DES J0408-5354. Astroph. J. Lett. 2017, 838, L15. [Google Scholar] [CrossRef]
- Shajib, A.J.; Birrer, S.; Treu, T.; Agnello, A.; Buckley-Geer, E.J.; Chan, J.H.H.; Christensen, L.; Lemon, C.; Lin, H.; Millon, M.; et al. STRIDES: A 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408-5354. Mon. Not. R. Astron. Soc. 2020, 494, 6072–6102. [Google Scholar] [CrossRef]
- Humphreys, E.M.L.; Reid, M.J.; Moran, J.M.; Greenhill, L.J.; Argon, A.L. Toward a New Geometric Distance to the Active Galaxy NGC 4258. III. Final Results and the Hubble Constant. Astroph. J. 2013, 775, 13. [Google Scholar] [CrossRef]
- Claussen, M.J.; Heiligman, G.M.; Lo, K.Y. Water-vapour maser emission from galactic nuclei. Nature 1984, 310, 298–300. [Google Scholar] [CrossRef]
- Nakai, N.; Inoue, M.; Miyoshi, M. Extremely-high-velocity H20 maser emission in the galaxy NGC4258. Nature 1993, 361, 45–47. [Google Scholar] [CrossRef]
- Herrnstein, J.R.; Moran, J.M.; Greenhill, L.J.; Diamond, P.J.; Inoue, M.; Nakai, N.; Miyoshi, M.; Henkel, C.; Riess, A. A geometric distance to the galaxy NGC4258 from orbital motions in a nuclear gas disk. Nature 1999, 400, 539–541. [Google Scholar] [CrossRef] [Green Version]
- Braatz, J.; Greenhill, L.; Reid, M.; Condon, J.; Henkel, C.; Lo, K.Y. Precision cosmology with H2O megamasers: Progress in measuring distances to galaxies in the Hubble flow. In Proceedings of the Astrophysical Masers and Their Environments; Chapman, J.M., Baan, W.A., Eds.; Cambridge University Press: Cambridge, UK, 2007; Volume 242, pp. 399–401. [Google Scholar] [CrossRef]
- Braatz, J.A.; Gugliucci, N.E. The Discovery of Water Maser Emission from Eight Nearby Galaxies. Astroph. J. 2008, 678, 96–101. [Google Scholar] [CrossRef]
- Gao, F.; Braatz, J.A.; Reid, M.J.; Condon, J.J.; Greene, J.E.; Henkel, C.; Impellizzeri, C.M.V.; Lo, K.Y.; Kuo, C.Y.; Pesce, D.W.; et al. The Megamaser Cosmology Project. IX. Black Hole Masses for Three Maser Galaxies. Astroph. J. 2017, 834, 52. [Google Scholar] [CrossRef]
- Gao, F.; Braatz, J.A.; Reid, M.J.; Lo, K.Y.; Condon, J.J.; Henkel, C.; Kuo, C.Y.; Impellizzeri, C.M.V.; Pesce, D.W.; Zhao, W. The Megamaser Cosmology Project. VIII. A Geometric Distance to NGC 5765b. Astroph. J. 2016, 817, 128. [Google Scholar] [CrossRef]
- Pesce, D.W.; Braatz, J.A.; Reid, M.J.; Condon, J.J.; Gao, F.; Henkel, C.; Kuo, C.Y.; Lo, K.Y.; Zhao, W. The Megamaser Cosmology Project. XI. A Geometric Distance to CGCG 074-064. Astroph. J. 2020, 890, 118. [Google Scholar] [CrossRef]
- Braatz, J.; Condon, J.; Henkel, C.; Greene, J.; Lo, F.; Reid, M.; Pesce, D.; Gao, F.; Impellizzeri, V.; Kuo, C.Y.; et al. A Measurement of the Hubble Constant by the Megamaser Cosmology Project. In Proceedings of the Astrophysical Masers: Unlocking the Mysteries of the Universe; Tarchi, A., Reid, M.J., Castangia, P., Eds.; Cambridge University Press: Cambridge, UK, 2018; Volume 336, pp. 86–91. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration. Advanced LIGO. Class. Quant. Grav. 2015, 32, 074001. [Google Scholar] [CrossRef]
- Acernese, F.; Agathos, M.; Agatsuma, K.; Aisa, D.; Allemandou, N.; Allocca, A.; Amarni, J.; Astone, P.; Balestri, G.; Ballardin, G.; et al. Advanced Virgo: A second-generation interferometric gravitational wave detector. Class. Quant. Grav. 2015, 32, 024001. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration; Virgo Collaboration. Gravitational Waves and Gamma-Rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A. Astroph. J. Lett. 2017, 848, L13. [Google Scholar] [CrossRef]
- Goldstein, A.; Veres, P.; Burns, E.; Briggs, M.S.; Hamburg, R.; Kocevski, D.; Wilson-Hodge, C.A.; Preece, R.D.; Poolakkil, S.; Roberts, O.J.; et al. An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A. Astroph. J. Lett. 2017, 848, L14. [Google Scholar] [CrossRef] [Green Version]
- Savchenko, V.; Ferrigno, C.; Kuulkers, E.; Bazzano, A.; Bozzo, E.; Brandt, S.; Chenevez, J.; Courvoisier, T.J.L.; Diehl, R.; Domingo, A.; et al. INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817. Astroph. J. Lett. 2017, 848, L15. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration; Virgo Collaboration. Multi-messenger Observations of a Binary Neutron Star Merger. Astroph. J. Lett. 2017, 848, L12. [Google Scholar] [CrossRef]
- LIGO Scientific Collaboration; Virgo Collaboration; KAGRA Collaboration. Constraints on the cosmic expansion history from GWTC-3. arXiv 2021, arXiv:2111.03604. [Google Scholar]
- Mukherjee, S.; Krolewski, A.; Wandelt, B.D.; Silk, J. Cross-correlating dark sirens and galaxies: Measurement of H0 from GWTC-3 of LIGO-Virgo-KAGRA. arXiv 2022, arXiv:2203.03643. [Google Scholar]
- Lorimer, D.R.; Bailes, M.; McLaughlin, M.A.; Narkevic, D.J.; Crawford, F. A Bright Millisecond Radio Burst of Extragalactic Origin. Science 2007, 318, 777. [Google Scholar] [CrossRef]
- Xiao, D.; Wang, F.; Dai, Z. The physics of fast radio bursts. Science China Physics, Mechanics, and Astronomy 2021, 64, 249501. [Google Scholar] [CrossRef]
- Zhang, B. The Physics of Fast Radio Bursts. arXiv 2022, arXiv:2212.03972. [Google Scholar]
- Deng, W.; Zhang, B. Cosmological Implications of Fast Radio Burst/Gamma-Ray Burst Associations. Astroph. J. Lett. 2014, 783, L35. [Google Scholar] [CrossRef]
- Shull, J.M.; Smith, B.D.; Danforth, C.W. The Baryon Census in a Multiphase Intergalactic Medium: 30% of the Baryons May Still be Missing. Astroph. J. 2012, 759, 23. [Google Scholar] [CrossRef]
- McQuinn, M. Locating the “Missing” Baryons with Extragalactic Dispersion Measure Estimates. Astroph. J. Lett. 2014, 780, L33. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Yan, K.; Li, C.M.; Zhang, G.Q.; Wang, F.Y. Intergalactic Medium Dispersion Measures of Fast Radio Bursts Estimated from IllustrisTNG Simulation and Their Cosmological Applications. Astroph. J. 2021, 906, 49. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Yu, H.; He, J.H.; Wang, F.Y. Dispersion Measures of Fast Radio Burst Host Galaxies Derived from IllustrisTNG Simulation. Astroph. J. 2020, 900, 170. [Google Scholar] [CrossRef]
- Vagnozzi, S. New physics in light of the H0 tension: An alternative view. Phys. Rev. D 2020, 102, 023518. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mena, O.; Pan, S.; Visinelli, L.; Yang, W.; Melchiorri, A.; Mota, D.F.; Riess, A.G.; Silk, J. In the realm of the Hubble tension-a review of solutions. Class. Quant. Grav. 2021, 38, 153001. [Google Scholar] [CrossRef]
- Sabla, V.I.; Caldwell, R.R. No H0 assistance from assisted quintessence. Phys. Rev. D 2021, 103, 103506. [Google Scholar] [CrossRef]
- Kamionkowski, M.; Riess, A.G. The Hubble Tension and Early Dark Energy. arXiv 2022, arXiv:2211.04492. [Google Scholar]
- Herold, L.; Ferreira, E.G.M. Resolving the Hubble tension with Early Dark Energy. arXiv 2022, arXiv:2210.16296. [Google Scholar]
- Poulin, V.; Smith, T.L.; Karwal, T.; Kamionkowski, M. Early Dark Energy can Resolve the Hubble Tension. Phys. Rev. Lett. 2019, 122, 221301. [Google Scholar] [CrossRef] [PubMed]
- Kaloper, N. Dark energy, H0 and weak gravity conjecture. Int. J. Mod. Phys. D 2019, 28, 1944017. [Google Scholar] [CrossRef]
- Lucca, M. The role of CMB spectral distortions in the Hubble tension: A proof of principle. Phys. Lett. B 2020, 810, 135791. [Google Scholar] [CrossRef]
- Chudaykin, A.; Gorbunov, D.; Nedelko, N. Exploring an early dark energy solution to the Hubble tension with Planck and SPTPol data. Phys. Rev. D 2021, 103, 043529. [Google Scholar] [CrossRef]
- Haridasu, B.S.; Viel, M.; Vittorio, N. Sources of H0-tension in dark energy scenarios. Phys. Rev. D 2021, 103, 063539. [Google Scholar] [CrossRef]
- Murgia, R.; Abellán, G.F.; Poulin, V. Early dark energy resolution to the Hubble tension in light of weak lensing surveys and lensing anomalies. Phys. Rev. D 2021, 103, 063502. [Google Scholar] [CrossRef]
- Berghaus, K.V.; Karwal, T. Thermal friction as a solution to the Hubble tension. Phys. Rev. D 2020, 101, 083537. [Google Scholar] [CrossRef]
- Alexander, S.; McDonough, E. Axion-dilaton destabilization and the Hubble tension. Phys. Lett. B 2019, 797, 134830. [Google Scholar] [CrossRef]
- Chudaykin, A.; Gorbunov, D.; Nedelko, N. Combined analysis of Planck and SPTPol data favors the early dark energy models. J. Cosmol. Astropart. Phys. 2020, 2020, 013. [Google Scholar] [CrossRef]
- Agrawal, P.; Cyr-Racine, F.Y.; Pinner, D.; Randall, L. Rock ‘n’ Roll Solutions to the Hubble Tension. arXiv 2019, arXiv:1904.01016. [Google Scholar]
- Niedermann, F.; Sloth, M.S. Resolving the Hubble tension with new early dark energy. Phys. Rev. D 2020, 102, 063527. [Google Scholar] [CrossRef]
- Niedermann, F.; Sloth, M.S. New early dark energy. Phys. Rev. D 2021, 103, L041303. [Google Scholar] [CrossRef]
- Freese, K.; Winkler, M.W. Chain early dark energy: A Proposal for solving the Hubble tension and explaining today’s dark energy. Phys. Rev. D 2021, 104, 083533. [Google Scholar] [CrossRef]
- Ye, G.; Piao, Y.S. Is the Hubble tension a hint of AdS phase around recombination? Phys. Rev. D 2020, 101, 083507. [Google Scholar] [CrossRef]
- Ong, Y.C. An Effective Sign Switching Dark Energy: Lotka-Volterra Model of Two Interacting Fluids. arXiv 2022, arXiv:2212.04429. [Google Scholar]
- Akarsu, Ö.; Barrow, J.D.; Escamilla, L.A.; Vazquez, J.A. Graduated dark energy: Observational hints of a spontaneous sign switch in the cosmological constant. Phys. Rev. D 2020, 101, 063528. [Google Scholar] [CrossRef]
- Lin, M.X.; Benevento, G.; Hu, W.; Raveri, M. Acoustic dark energy: Potential conversion of the Hubble tension. Phys. Rev. D 2019, 100, 063542. [Google Scholar] [CrossRef]
- Yin, L. Reducing the H0 tension with exponential acoustic dark energy. Eur. Phys. J. C 2022, 82, 78. [Google Scholar] [CrossRef]
- Braglia, M.; Ballardini, M.; Emond, W.T.; Finelli, F.; Gümrükçüoǧlu, A.E.; Koyama, K.; Paoletti, D. Larger value for H0 by an evolving gravitational constant. Phys. Rev. D 2020, 102, 023529. [Google Scholar] [CrossRef]
- Zhao, G.B.; Raveri, M.; Pogosian, L.; Wang, Y.; Crittenden, R.G.; Handley, W.J.; Percival, W.J.; Beutler, F.; Brinkmann, J.; Chuang, C.H.; et al. Dynamical dark energy in light of the latest observations. Nat. Astron. 2017, 1, 627–632. [Google Scholar] [CrossRef] [Green Version]
- Batista, R.C. A Short Review on Clustering Dark Energy. Universe 2021, 8, 22. [Google Scholar] [CrossRef]
- Heisenberg, L.; Villarrubia-Rojo, H.; Zosso, J. Simultaneously solving the H0 and σ8 tensions with late dark energy. arXiv 2022, arXiv:2201.11623. [Google Scholar] [CrossRef]
- Martinelli, M.; Tutusaus, I. CMB Tensions with Low-Redshift H0 and S8 Measurements: Impact of a Redshift-Dependent Type-Ia Supernovae Intrinsic Luminosity. Symmetry 2019, 11, 986. [Google Scholar] [CrossRef]
- Alestas, G.; Kazantzidis, L.; Perivolaropoulos, L. H0 tension, phantom dark energy, and cosmological parameter degeneracies. Phys. Rev. D 2020, 101, 123516. [Google Scholar] [CrossRef]
- D’Amico, G.; Senatore, L.; Zhang, P. Limits on wCDM from the EFTofLSS with the PyBird code. J. Cosmol. Astropart. Phys. 2021, 2021, 006. [Google Scholar] [CrossRef]
- Yang, W.; Pan, S.; Valentino, E.D.; Saridakis, E.N. Observational Constraints on Dynamical Dark Energy with Pivoting Redshift. Universe 2019, 5, 219. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Silk, J. Cosmological constraints in extended parameter space from the Planck 2018 Legacy release. J. Cosmol. Astropart. Phys. 2020, 2020, 013. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Dhawan, S.; Gerbino, M.; Freese, K.; Goobar, A.; Mena, O. Constraints on the sum of the neutrino masses in dynamical dark energy models with w (z) ≥ − 1 are tighter than those obtained in Λ CDM. Phys. Rev. D 2018, 98, 083501. [Google Scholar] [CrossRef]
- Du, M.; Yang, W.; Xu, L.; Pan, S.; Mota, D.F. Future constraints on dynamical dark-energy using gravitational-wave standard sirens. Phys. Rev. D 2019, 100, 043535. [Google Scholar] [CrossRef]
- Yang, W.; Pan, S.; Di Valentino, E.; Saridakis, E.N.; Chakraborty, S. Observational constraints on one-parameter dynamical dark-energy parametrizations and the H0 tension. Phys. Rev. D 2019, 99, 043543. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Shafieloo, A.; Sahni, V.; Starobinsky, A.A. Revisiting Metastable Dark Energy and Tensions in the Estimation of Cosmological Parameters. Astroph. J. 2019, 887, 153. [Google Scholar] [CrossRef]
- Szydłowski, M.; Stachowski, A.; Urbanowski, K. The evolution of the FRW universe with decaying metastable dark energy—A dynamical system analysis. J. Cosmol. Astropart. Phys. 2020, 2020, 029. [Google Scholar] [CrossRef]
- Yang, W.; Di Valentino, E.; Pan, S.; Basilakos, S.; Paliathanasis, A. Metastable dark energy models in light of Planck 2018 data: Alleviating the H0 tension. Phys. Rev. D 2020, 102, 063503. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mukherjee, A.; Sen, A.A. Dark Energy with Phantom Crossing and the H0 Tension. Entropy 2021, 23, 404. [Google Scholar] [CrossRef] [PubMed]
- Benevento, G.; Hu, W.; Raveri, M. Can late dark energy transitions raise the Hubble constant? Phys. Rev. D 2020, 101, 103517. [Google Scholar] [CrossRef]
- Alestas, G.; Kazantzidis, L.; Perivolaropoulos, L. w -M phantom transition at zt < 0.1 as a resolution of the Hubble tension. Phys. Rev. D 2021, 103, 083517. [Google Scholar] [CrossRef]
- Solà Peracaula, J.; Gómez-Valent, A.; de Cruz Pérez, J.; Moreno-Pulido, C. Running vacuum against the H0 and σ8 tensions. Europhys. Lett. 2021, 134, 19001. [Google Scholar] [CrossRef]
- Mavromatos, N.E.; Solà Peracaula, J. Stringy-running-vacuum-model inflation: From primordial gravitational waves and stiff axion matter to dynamical dark energy. Eur. Phys. J. Spec. Top. 2021, 230, 2077–2110. [Google Scholar] [CrossRef]
- Keeley, R.E.; Joudaki, S.; Kaplinghat, M.; Kirkby, D. Implications of a transition in the dark energy equation of state for the H0 and σ8 tensions. J. Cosmol. Astropart. Phys. 2019, 2019, 035. [Google Scholar] [CrossRef]
- Dutta, K.; Roy, A.; Ruchika; Sen, A.A.; Sheikh-Jabbari, M.M. Beyond Λ CDM with low and high redshift data: Implications for dark energy. Gen. Relat. Gravit. 2020, 52, 15. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Pan, S.; Di Valentino, E.; Paliathanasis, A.; Lu, J. Challenging bulk viscous unified scenarios with cosmological observations. Phys. Rev. D 2019, 100, 103518. [Google Scholar] [CrossRef]
- Elizalde, E.; Khurshudyan, M.; Odintsov, S.D.; Myrzakulov, R. Analysis of the H0 tension problem in the Universe with viscous dark fluid. Phys. Rev. D 2020, 102, 123501. [Google Scholar] [CrossRef]
- da Silva, W.J.C.; Silva, R. Growth of matter perturbations in the extended viscous dark energy models. Eur. Phys. J. C 2021, 81, 403. [Google Scholar] [CrossRef]
- Guo, R.Y.; Zhang, J.F.; Zhang, X. Can the H0 tension be resolved in extensions to ΛCDM cosmology? J. Cosmol. Astropart. Phys. 2019, 2019, 054. [Google Scholar] [CrossRef]
- van Putten, M.H.P.M. Alleviating tension in ΛCDM and the local distance ladder from first principles with no free parameters. Mon. Not. R. Astron. Soc. 2020, 491, L6–L10. [Google Scholar] [CrossRef]
- Dai, W.M.; Ma, Y.Z.; He, H.J. Reconciling Hubble constant discrepancy from holographic dark energy. Phys. Rev. D 2020, 102, 121302. [Google Scholar] [CrossRef]
- Ó Colgáin, E.; Sheikh-Jabbari, M.M. A critique of holographic dark energy. Class. Quant. Grav. 2021, 38, 177001. [Google Scholar] [CrossRef]
- da Silva, W.J.C.; Silva, R. Cosmological perturbations in the Tsallis holographic dark energy scenarios. Eur. Phys. J. Plus 2021, 136, 543. [Google Scholar] [CrossRef]
- Ó Colgáin, E.; van Putten, M.H.P.M.; Yavartanoo, H. de Sitter Swampland, H0 tension & observation. Phys. Lett. B 2019, 793, 126–129. [Google Scholar] [CrossRef]
- Ó Colgáin, E.; Yavartanoo, H. Testing the Swampland: H0 tension. Phys. Lett. B 2019, 797, 134907. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Antoniadis, I.; Lüst, D.; Soriano, J.F.; Taylor, T.R. H0 tension and the string swampland. Phys. Rev. D 2020, 101, 083532. [Google Scholar] [CrossRef]
- Agrawal, P.; Obied, G.; Vafa, C. H0 tension, swampland conjectures, and the epoch of fading dark matter. Phys. Rev. D 2021, 103, 043523. [Google Scholar] [CrossRef]
- Banerjee, A.; Cai, H.; Heisenberg, L.; Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Yang, T. Hubble sinks in the low-redshift swampland. Phys. Rev. D 2021, 103, L081305. [Google Scholar] [CrossRef]
- Miao, H.; Huang, Z. The H 0 Tension in Non-flat QCDM Cosmology. Astroph. J. 2018, 868, 20. [Google Scholar] [CrossRef]
- Di Valentino, E.; Ferreira, R.Z.; Visinelli, L.; Danielsson, U. Late time transitions in the quintessence field and the H0 tension. Phys. Dark Universe 2019, 26, 100385. [Google Scholar] [CrossRef]
- Bag, S.; Sahni, V.; Shafieloo, A.; Shtanov, Y. Phantom Braneworld and the Hubble Tension. Astroph. J. 2021, 923, 212. [Google Scholar] [CrossRef]
- Adler, S.L. Implications of a frame dependent dark energy for the spacetime metric, cosmography, and effective Hubble constant. Phys. Rev. D 2019, 100, 123503. [Google Scholar] [CrossRef]
- Cai, R.G.; Guo, Z.K.; Li, L.; Wang, S.J.; Yu, W.W. Chameleon dark energy can resolve the Hubble tension. Phys. Rev. D 2021, 103, L121302. [Google Scholar] [CrossRef]
- Karwal, T.; Raveri, M.; Jain, B.; Khoury, J.; Trodden, M. Chameleon early dark energy and the Hubble tension. Phys. Rev. D 2022, 105, 063535. [Google Scholar] [CrossRef]
- Li, X.; Shafieloo, A. A Simple Phenomenological Emergent Dark Energy Model can Resolve the Hubble Tension. Astroph. J. Lett. 2019, 883, L3. [Google Scholar] [CrossRef] [Green Version]
- Hernández-Almada, A.; Leon, G.; Magaña, J.; García-Aspeitia, M.A.; Motta, V. Generalized emergent dark energy: Observational Hubble data constraints and stability analysis. Mon. Not. R. Astron. Soc. 2020, 497, 1590–1602. [Google Scholar] [CrossRef]
- Yang, W.; Di Valentino, E.; Pan, S.; Mena, O. Emergent Dark Energy, neutrinos and cosmological tensions. Phys. Dark Universe 2021, 31, 100762. [Google Scholar] [CrossRef]
- Li, X.; Shafieloo, A. Evidence for Emergent Dark Energy. Astroph. J. 2020, 902, 58. [Google Scholar] [CrossRef]
- Yang, W.; Di Valentino, E.; Pan, S.; Shafieloo, A.; Li, X. Generalized emergent dark energy model and the Hubble constant tension. Phys. Rev. D 2021, 104, 063521. [Google Scholar] [CrossRef]
- Benaoum, H.B.; Yang, W.; Pan, S.; Di Valentino, E. Modified Emergent Dark Energy and its Astronomical Constraints. arXiv 2020, arXiv:2008.09098. [Google Scholar] [CrossRef]
- Di Valentino, E.; Linder, E.V.; Melchiorri, A. Vacuum phase transition solves the H0 tension. Phys. Rev. D 2018, 97, 043528. [Google Scholar] [CrossRef]
- Di Valentino, E.; Linder, E.V.; Melchiorri, A. H0 ex machina: Vacuum metamorphosis and beyond H0. Phys. Dark Universe 2020, 30, 100733. [Google Scholar] [CrossRef]
- Di Valentino, E.; Pan, S.; Yang, W.; Anchordoqui, L.A. Touch of neutrinos on the vacuum metamorphosis: Is the H0 solution back? Phys. Rev. D 2021, 103, 123527. [Google Scholar] [CrossRef]
- Carneiro, S.; de Holanda, P.C.; Pigozzo, C.; Sobreira, F. Is the H0 tension suggesting a fourth neutrino generation? Phys. Rev. D 2019, 100, 023505. [Google Scholar] [CrossRef]
- Gelmini, G.B.; Kawasaki, M.; Kusenko, A.; Murai, K.; Takhistov, V. Big bang nucleosynthesis constraints on sterile neutrino and lepton asymmetry of the Universe. J. Cosmol. Astropart. Phys. 2020, 2020, 051. [Google Scholar] [CrossRef]
- Barenboim, G.; Kinney, W.H.; Park, W.I. Flavor versus mass eigenstates in neutrino asymmetries: Implications for cosmology. Eur. Phys. J. C 2017, 77, 590. [Google Scholar] [CrossRef]
- D’Eramo, F.; Ferreira, R.Z.; Notari, A.; Bernal, J.L. Hot axions and the H0 tension. J. Cosmol. Astropart. Phys. 2018, 2018, 014. [Google Scholar] [CrossRef]
- Di Luzio, L.; Giannotti, M.; Nardi, E.; Visinelli, L. Corrigendum to “The landscape of QCD axion models”. Phys. Rep. 2020, 870, 1–117. [Google Scholar] [CrossRef]
- Xiao, L.; Zhang, L.; An, R.; Feng, C.; Wang, B. Fractional Dark Matter decay: Cosmological imprints and observational constraints. J. Cosmol. Astropart. Phys. 2020, 2020, 045. [Google Scholar] [CrossRef]
- Blinov, N.; Keith, C.; Hooper, D. Warm decaying dark matter and the hubble tension. J. Cosmol. Astropart. Phys. 2020, 2020, 005. [Google Scholar] [CrossRef]
- Haridasu, B.S.; Viel, M. Late-time decaying dark matter: Constraints and implications for the H0-tension. Mon. Not. R. Astron. Soc. 2020, 497, 1757–1764. [Google Scholar] [CrossRef]
- Pandey, K.L.; Karwal, T.; Das, S. Alleviating the H0 and σ8 anomalies with a decaying dark matter model. J. Cosmol. Astropart. Phys. 2020, 2020, 026. [Google Scholar] [CrossRef]
- Anchordoqui, L.A. Decaying dark matter, the H0 tension, and the lithium problem. Phys. Rev. D 2021, 103, 035025. [Google Scholar] [CrossRef]
- Davari, Z.; Khosravi, N. Can decaying dark matter scenarios alleviate both H0 and σ8 tensions? Mon. Not. R. Astron. Soc. 2022, 516, 4373–4382. [Google Scholar] [CrossRef]
- Hryczuk, A.; Jodłowski, K. Self-interacting dark matter from late decays and the H0 tension. Phys. Rev. D 2020, 102, 043024. [Google Scholar] [CrossRef]
- Jodlowski, K. Self-interacting dark matter from late decays and the H0 tension. In Proceedings of the European Physical Society Conference on High Energy Physics, Jointly organized by Universität Hamburg and the Research Center DESY, Online Conference, 23–30 July 2021; p. 115. [Google Scholar] [CrossRef]
- Vattis, K.; Koushiappas, S.M.; Loeb, A. Dark matter decaying in the late Universe can relieve the H0 tension. Phys. Rev. D 2019, 99, 121302. [Google Scholar] [CrossRef]
- Clark, S.J.; Vattis, K.; Koushiappas, S.M. Cosmological constraints on late-Universe decaying dark matter as a solution to the H0 tension. Phys. Rev. D 2021, 103, 043014. [Google Scholar] [CrossRef]
- Choi, G.; Suzuki, M.; Yanagida, T.T. Quintessence axion dark energy and a solution to the hubble tension. Phys. Lett. B 2020, 805, 135408. [Google Scholar] [CrossRef]
- Gu, Y.; Khlopov, M.; Wu, L.; Yang, J.M.; Zhu, B. Light gravitino dark matter: LHC searches and the Hubble tension. Phys. Rev. D 2020, 102, 115005. [Google Scholar] [CrossRef]
- Alcaniz, J.; Bernal, N.; Masiero, A.; Queiroz, F.S. Light dark matter: A common solution to the lithium and H0 problems. Phys. Lett. B 2021, 812, 136008. [Google Scholar] [CrossRef]
- Escudero, M.; Hooper, D.; Krnjaic, G.; Pierre, M. Cosmology With a Very Light Lμ-Lτ Gauge Boson. arXiv 2019, arXiv:1901.02010. [Google Scholar] [CrossRef]
- Desai, A.; Dienes, K.R.; Thomas, B. Constraining dark-matter ensembles with supernova data. Phys. Rev. D 2020, 101, 035031. [Google Scholar] [CrossRef]
- Choi, G.; Suzuki, M.; Yanagida, T.T. Degenerate Sub-keV fermion dark matter from a solution to the Hubble tension. Phys. Rev. D 2020, 101, 075031. [Google Scholar] [CrossRef]
- Di Valentino, E.; Bœhm, C.; Hivon, E.; Bouchet, F.R. Reducing the H0 and σ8 tensions with dark matter-neutrino interactions. Phys. Rev. D 2018, 97, 043513. [Google Scholar] [CrossRef] [Green Version]
- Stadler, J.; Bœhm, C.; Mena, O. Comprehensive study of neutrino-dark matter mixed damping. J. Cosmol. Astropart. Phys. 2019, 2019, 014. [Google Scholar] [CrossRef]
- Mosbech, M.R.; Boehm, C.; Hannestad, S.; Mena, O.; Stadler, J.; Wong, Y.Y.Y. The full Boltzmann hierarchy for dark matter-massive neutrino interactions. J. Cosmol. Astropart. Phys. 2021, 2021, 066. [Google Scholar] [CrossRef]
- Arias-Aragón, F.; Fernández-Martínez, E.; González-López, M.; Merlo, L. Neutrino masses and Hubble tension via a Majoron in MFV. Eur. Phys. J. C 2021, 81, 28. [Google Scholar] [CrossRef]
- Escudero, M.; Witte, S.J. The hubble tension as a hint of leptogenesis and neutrino mass generation. Eur. Phys. J. C 2021, 81, 515. [Google Scholar] [CrossRef]
- Huang, G.y.; Rodejohann, W. Solving the Hubble tension without spoiling big bang nucleosynthesis. Phys. Rev. D 2021, 103, 123007. [Google Scholar] [CrossRef]
- Boyarsky, A.; Ovchynnikov, M.; Sabti, N.; Syvolap, V. When feebly interacting massive particles decay into neutrinos: The Neff story. Phys. Rev. D 2021, 104, 035006. [Google Scholar] [CrossRef]
- Archidiacono, M.; Hooper, D.C.; Murgia, R.; Bohr, S.; Lesgourgues, J.; Viel, M. Constraining Dark Matter-Dark Radiation interactions with CMB, BAO, and Lyman-α. J. Cosmol. Astropart. Phys. 2019, 2019, 055. [Google Scholar] [CrossRef]
- Becker, N.; Hooper, D.C.; Kahlhoefer, F.; Lesgourgues, J.; Schöneberg, N. Cosmological constraints on multi-interacting dark matter. J. Cosmol. Astropart. Phys. 2021, 2021, 019. [Google Scholar] [CrossRef]
- Buen-Abad, M.A.; Emami, R.; Schmaltz, M. Cannibal dark matter and large scale structure. Phys. Rev. D 2018, 98, 083517. [Google Scholar] [CrossRef]
- Freese, K.; Sfakianakis, E.I.; Stengel, P.; Visinelli, L. The Higgs boson can delay reheating after inflation. J. Cosmol. Astropart. Phys. 2018, 2018, 067. [Google Scholar] [CrossRef] [Green Version]
- Anchordoqui, L.A.; Bergliaffa, S.E.P. Hot thermal universe endowed with massive dark vector fields and the Hubble tension. Phys. Rev. D 2019, 100, 123525. [Google Scholar] [CrossRef]
- Flambaum, V.V.; Samsonov, I.B. Ultralight dark photon as a model for early Universe dark matter. Phys. Rev. D 2019, 100, 063541. [Google Scholar] [CrossRef]
- Carr, B.; Kühnel, F. Primordial Black Holes as Dark Matter: Recent Developments. Annu. Rev. Nucl. Part. S. 2020, 70, 355–394. [Google Scholar] [CrossRef]
- Flores, M.M.; Kusenko, A. Primordial Black Holes from Long-Range Scalar Forces and Scalar Radiative Cooling. Phys. Rev. Lett. 2021, 126, 041101. [Google Scholar] [CrossRef] [PubMed]
- Green, A.M.; Kavanagh, B.J. Primordial black holes as a dark matter candidate. J. Phys. Nucl. Phys. 2021, 48, 043001. [Google Scholar] [CrossRef]
- Artymowski, M.; Ben-Dayan, I.; Kumar, U. Emergent dark energy from unparticles. Phys. Rev. D 2021, 103, L121303. [Google Scholar] [CrossRef]
- Yao, Y.H.; Meng, X.H. Can interacting dark energy with dynamical coupling resolve the Hubble tension. arXiv 2022, arXiv:2207.05955. [Google Scholar] [CrossRef]
- Kumar, S.; Nunes, R.C.; Yadav, S.K. Dark sector interaction: A remedy of the tensions between CMB and LSS data. Eur. Phys. J. C 2019, 79, 576. [Google Scholar] [CrossRef]
- Yang, W.; Pan, S.; Nunes, R.C.; Mota, D.F. Dark calling dark: Interaction in the dark sector in presence of neutrino properties after Planck CMB final release. J. Cosmol. Astropart. Phys. 2020, 2020, 008. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. Interacting dark energy in the early 2020s: A promising solution to the H0 and cosmic shear tensions. Phys. Dark Universe 2020, 30, 100666. [Google Scholar] [CrossRef]
- Gao, L.Y.; Zhao, Z.W.; Xue, S.S.; Zhang, X. Relieving the H0 tension with a new interacting dark energy model. J. Cosmol. Astropart. Phys. 2021, 2021, 005. [Google Scholar] [CrossRef]
- Wang, L.F.; Zhang, J.H.; He, D.Z.; Zhang, J.F.; Zhang, X. Constraints on interacting dark energy models from time-delay cosmography with seven lensed quasars. Mon. Not. R. Astron. Soc. 2022, 514, 1433–1440. [Google Scholar] [CrossRef]
- Gómez-Valent, A.; Pettorino, V.; Amendola, L. Update on coupled dark energy and the H0 tension. Phys. Rev. D 2020, 101, 123513. [Google Scholar] [CrossRef]
- Yang, W.; Pan, S.; Di Valentino, E.; Nunes, R.C.; Vagnozzi, S.; Mota, D.F. Tale of stable interacting dark energy, observational signatures, and the H0 tension. J. Cosmol. Astropart. Phys. 2018, 2018, 019. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Mena, O.; Vagnozzi, S. Nonminimal dark sector physics and cosmological tensions. Phys. Rev. D 2020, 101, 063502. [Google Scholar] [CrossRef]
- Banihashemi, A.; Khosravi, N.; Shirazi, A.H. Ginzburg-Landau theory of dark energy: A framework to study both temporal and spatial cosmological tensions simultaneously. Phys. Rev. D 2019, 99, 083509. [Google Scholar] [CrossRef]
- Pan, S.; Yang, W.; Paliathanasis, A. Non-linear interacting cosmological models after Planck 2018 legacy release and the H0 tension. Mon. Not. R. Astron. Soc. 2020, 493, 3114–3131. [Google Scholar] [CrossRef]
- Pan, S.; Yang, W.; Di Valentino, E.; Saridakis, E.N.; Chakraborty, S. Interacting scenarios with dynamical dark energy: Observational constraints and alleviation of the H0 tension. Phys. Rev. D 2019, 100, 103520. [Google Scholar] [CrossRef]
- Yang, W.; Di Valentino, E.; Mena, O.; Pan, S. Dynamical dark sectors and neutrino masses and abundances. Phys. Rev. D 2020, 102, 023535. [Google Scholar] [CrossRef]
- Pan, S.; Yang, W.; Singha, C.; Saridakis, E.N. Observational constraints on sign-changeable interaction models and alleviation of the H0 tension. Phys. Rev. D 2019, 100, 083539. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Pan, S.; Xu, L.; Mota, D.F. Effects of anisotropic stress in interacting dark matter—Dark energy scenarios. Mon. Not. R. Astron. Soc. 2019, 482, 1858–1871. [Google Scholar] [CrossRef]
- Amirhashchi, H.; Yadav, A.K. Interacting Dark Sectors in Anisotropic Universe: Observational Constraints and H0 Tension. arXiv 2020, arXiv:2001.03775. [Google Scholar] [CrossRef]
- Bégué, D.; Stahl, C.; Xue, S.S. A model of interacting dark fluids tested with supernovae and Baryon Acoustic Oscillations data. Nucl. Phys. B 2019, 940, 312–320. [Google Scholar] [CrossRef]
- Panpanich, S.; Burikham, P.; Ponglertsakul, S.; Tannukij, L. Resolving Hubble tension with quintom dark energy model. Chin. Phys. C 2021, 45, 015108. [Google Scholar] [CrossRef]
- Jesus, J.F.; Escobal, A.A.; Benndorf, D.; Pereira, S.H. Can dark matter-dark energy interaction alleviate the Cosmic Coincidence Problem? arXiv 2020, arXiv:2012.07494. [Google Scholar] [CrossRef]
- Harko, T.; Asadi, K.; Moshafi, H.; Sheikhahmadi, H. Observational constraints on the interacting dark energy—Dark matter (IDM) cosmological models. Phys. Dark Universe 2022, 38, 101131. [Google Scholar] [CrossRef]
- Stadler, J.; Bœhm, C. Constraints on γ-CDM interactions matching the Planck data precision. J. Cosmol. Astropart. Phys. 2018, 2018, 009. [Google Scholar] [CrossRef]
- Yadav, S.K. Constraints on dark matter-photon coupling in the presence of time-varying dark energy. Mod. Phys. Lett. A 2020, 35, 1950358. [Google Scholar] [CrossRef]
- Barkana, R. Possible interaction between baryons and dark-matter particles revealed by the first stars. Nature 2018, 555, 71–74. [Google Scholar] [CrossRef]
- Slatyer, T.R.; Wu, C.L. Early-Universe constraints on dark matter-baryon scattering and their implications for a global 21 cm signal. Phys. Rev. D 2018, 98, 023013. [Google Scholar] [CrossRef] [Green Version]
- Beltrán Jiménez, J.; Bettoni, D.; Figueruelo, D.; Teppa Pannia, F.A. On cosmological signatures of baryons-dark energy elastic couplings. J. Cosmol. Astropart. Phys. 2020, 2020, 020. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Visinelli, L.; Mena, O.; Mota, D.F. Do we have any hope of detecting scattering between dark energy and baryons through cosmology? Mon. Not. R. Astron. Soc. 2020, 493, 1139–1152. [Google Scholar] [CrossRef]
- Blinov, N.; Kelly, K.J.; Krnjaic, G.; McDermott, S.D. Constraining the Self-Interacting Neutrino Interpretation of the Hubble Tension. Phys. Rev. Lett. 2019, 123, 191102. [Google Scholar] [CrossRef] [PubMed]
- He, H.J.; Ma, Y.Z.; Zheng, J. Resolving Hubble tension by self-interacting neutrinos with Dirac seesaw. J. Cosmol. Astropart. Phys. 2020, 2020, 003. [Google Scholar] [CrossRef]
- Lyu, K.F.; Stamou, E.; Wang, L.T. Self-interacting neutrinos: Solution to Hubble tension versus experimental constraints. Phys. Rev. D 2021, 103, 015004. [Google Scholar] [CrossRef]
- Kreisch, C.D.; Cyr-Racine, F.Y.; Doré, O. Neutrino puzzle: Anomalies, interactions, and cosmological tensions. Phys. Rev. D 2020, 101, 123505. [Google Scholar] [CrossRef]
- Brinckmann, T.; Chang, J.H.; LoVerde, M. Self-interacting neutrinos, the Hubble parameter tension, and the cosmic microwave background. Phys. Rev. D 2021, 104, 063523. [Google Scholar] [CrossRef]
- Berryman, J.M.; Blinov, N.; Brdar, V.; Brinckmann, T.; Bustamante, M.; Cyr-Racine, F.Y.; Das, A.; de Gouvêa, A.; Denton, P.B.; Bhupal Dev, P.S.; et al. Neutrino Self-Interactions: A White Paper. arXiv 2022, arXiv:2203.01955. [Google Scholar]
- Archidiacono, M.; Gariazzo, S.; Giunti, C.; Hannestad, S.; Tram, T. Sterile neutrino self-interactions: H0 tension and short-baseline anomalies. J. Cosmol. Astropart. Phys. 2020, 2020, 029. [Google Scholar] [CrossRef]
- Ghosh, S.; Khatri, R.; Roy, T.S. Dark neutrino interactions make gravitational waves blue. Phys. Rev. D 2018, 97, 063529. [Google Scholar] [CrossRef]
- Ghosh, S.; Khatri, R.; Roy, T.S. Can dark neutrino interactions phase out the Hubble tension? Phys. Rev. D 2020, 102, 123544. [Google Scholar] [CrossRef]
- Yang, W.; Pan, S.; Vagnozzi, S.; Di Valentino, E.; Mota, D.F.; Capozziello, S. Dawn of the dark: Unified dark sectors and the EDGES Cosmic Dawn 21-cm signal. J. Cosmol. Astropart. Phys. 2019, 2019, 044. [Google Scholar] [CrossRef]
- Yang, W.; Pan, S.; Paliathanasis, A.; Ghosh, S.; Wu, Y. Observational constraints of a new unified dark fluid and the H0 tension. Mon. Not. R. Astron. Soc. 2019, 490, 2071–2085. [Google Scholar] [CrossRef]
- Benetti, M.; Borges, H.; Pigozzo, C.; Carneiro, S.; Alcaniz, J. Dark sector interactions and the curvature of the Universe in light of Planck’s 2018 data. arXiv 2021, arXiv:2102.10123. [Google Scholar] [CrossRef]
- Gurzadyan, V.G.; Stepanian, A. H0 tension: Clue to common nature of dark sector? Eur. Phys. J. C 2019, 79, 568. [Google Scholar] [CrossRef]
- Gurzadyan, V.G.; Stepanian, A. Hubble tension vs two flows. Eur. Phys. J. Plus 2021, 136, 235. [Google Scholar] [CrossRef]
- Quiros, I. Selected topics in scalar-tensor theories and beyond. Int. J. Mod. Phys. D 2019, 28, 1930012. [Google Scholar] [CrossRef]
- D’Agostino, R.; Nunes, R.C. Measurements of H0 in modified gravity theories: The role of lensed quasars in the late-time Universe. Phys. Rev. D 2020, 101, 103505. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Sáez-Chillón Gómez, D.; Sharov, G.S. Analyzing the H0 tension in F(R) gravity models. Nuclear Physics B 2021, 966, 115377. [Google Scholar] [CrossRef]
- Wang, D. Can f(R) gravity relieve H0 and σ8 tensions? Eur. Phys. J. C 2021, 81, 482. [Google Scholar] [CrossRef]
- Schiavone, T.; Montani, G. f(R) gravity in the Jordan Frame as a Paradigm for the Hubble Tension. arXiv 2022, arXiv:2211.16737. [Google Scholar]
- Nunes, R.C. Structure formation in f(T) gravity and a solution for H0 tension. J. Cosmol. Astropart. Phys. 2018, 2018, 052. [Google Scholar] [CrossRef] [Green Version]
- Yan, S.F.; Zhang, P.; Chen, J.W.; Zhang, X.Z.; Cai, Y.F.; Saridakis, E.N. Interpreting cosmological tensions from the effective field theory of torsional gravity. Phys. Rev. D 2020, 101, 121301. [Google Scholar] [CrossRef]
- Wang, D.; Mota, D. Can f (T) gravity resolve the H0 tension? Phys. Rev. D 2020, 102, 063530. [Google Scholar] [CrossRef]
- Aljaf, M.; Elizalde, E.; Khurshudyan, M.; Myrzakulov, K.; Zhadyranova, A. Solving the H0 tension in f(T) Gravity through Bayesian Machine Learning. arXiv 2022, arXiv:2205.06252. [Google Scholar]
- Escamilla-Rivera, C.; Said, J.L. Cosmological viable models in f(T, B) theory as solutions to the H0 tension. Class. Quant. Grav. 2020, 37, 165002. [Google Scholar] [CrossRef]
- Paliathanasis, A. Minisuperspace Quantization of f(T, B) Cosmology. Universe 2021, 7, 150. [Google Scholar] [CrossRef]
- Albuquerque, I.S.; Frusciante, N. A designer approach to f(Q) gravity and cosmological implications. Phys. Dark Universe 2022, 35, 100980. [Google Scholar] [CrossRef]
- Koussour, M.; Pacif, S.K.J.; Bennai, M.; Sahoo, P.K. A new parametrization of Hubble parameter in f(Q) gravity. arXiv 2022, arXiv:2208.04723. [Google Scholar]
- Joudaki, S.; Ferreira, P.G.; Lima, N.A.; Winther, H.A. Testing gravity on cosmic scales: A case study of Jordan-Brans-Dicke theory. Phys. Rev. D 2022, 105, 043522. [Google Scholar] [CrossRef]
- Solà Peracaula, J.; Gómez-Valent, A.; de Cruz Pérez, J.; Moreno-Pulido, C. Brans-Dicke Gravity with a Cosmological Constant Smoothes Out ΛCDM Tensions. Astroph. J. Lett. 2019, 886, L6. [Google Scholar] [CrossRef]
- Peracaula, J.S.; Gómez-Valent, A.; de Cruz Pérez, J.; Moreno-Pulido, C. Brans-Dicke cosmology with a Λ-term: A possible solution to ΛCDM tensions. Class. Quant. Grav. 2020, 37, 245003. [Google Scholar] [CrossRef]
- Ballardini, M.; Braglia, M.; Finelli, F.; Paoletti, D.; Starobinsky, A.A.; Umiltà, C. Scalar-tensor theories of gravity, neutrino physics, and the H0 tension. J. Cosmol. Astropart. Phys. 2020, 2020, 044. [Google Scholar] [CrossRef]
- Ballesteros, G.; Notari, A.; Rompineve, F. Δ GN vs. Δ Neff. J. Cosmol. Astropart. Phys. 2020, 2020, 024. [Google Scholar] [CrossRef]
- Abadi, T.; Kovetz, E.D. Can conformally coupled modified gravity solve the Hubble tension? Phys. Rev. D 2021, 103, 023530. [Google Scholar] [CrossRef]
- Braglia, M.; Ballardini, M.; Finelli, F.; Koyama, K. Early modified gravity in light of the H0 tension and LSS data. Phys. Rev. D 2021, 103, 043528. [Google Scholar] [CrossRef]
- Desmond, H.; Jain, B.; Sakstein, J. Erratum: Local resolution of the Hubble tension: The impact of screened fifth forces on the cosmic distance ladder [Phys. Rev. D 100, 043537 (2019)]. Phys. Rev. D 2020, 101, 129901. [Google Scholar] [CrossRef]
- Desmond, H.; Sakstein, J. Screened fifth forces lower the TRGB-calibrated Hubble constant too. Phys. Rev. D 2020, 102, 023007. [Google Scholar] [CrossRef]
- Khosravi, N. Über-gravity and the cosmological constant problem. Phys. Dark Universe 2018, 21, 21. [Google Scholar] [CrossRef]
- Khosravi, N.; Baghram, S.; Afshordi, N.; Altamirano, N. H0 tension as a hint for a transition in gravitational theory. Phys. Rev. D 2019, 99, 103526. [Google Scholar] [CrossRef]
- Zumalacárregui, M. Gravity in the era of equality: Towards solutions to the Hubble problem without fine-tuned initial conditions. Phys. Rev. D 2020, 102, 023523. [Google Scholar] [CrossRef]
- Heisenberg, L.; Villarrubia-Rojo, H. Proca in the sky. J. Cosmol. Astropart. Phys. 2021, 2021, 032. [Google Scholar] [CrossRef]
- Belgacem, E.; Dirian, Y.; Foffa, S.; Maggiore, M. Nonlocal gravity. Conceptual aspects and cosmological predictions. J. Cosmol. Astropart. Phys. 2018, 2018, 002. [Google Scholar] [CrossRef]
- Belgacem, E.; Dirian, Y.; Finke, A.; Foffa, S.; Maggiore, M. Gravity in the infrared and effective nonlocal models. J. Cosmol. Astropart. Phys. 2020, 2020, 010. [Google Scholar] [CrossRef]
- Linares Cedeño, F.X.; Nucamendi, U. Revisiting cosmological diffusion models in Unimodular Gravity and the H0 tension. Phys. Dark Universe 2021, 32, 100807. [Google Scholar] [CrossRef]
- Alvarez, P.D.; Koch, B.; Laporte, C.; Rincón, Á. Can scale-dependent cosmology alleviate the H0 tension? J. Cosmol. Astropart. Phys. 2021, 2021, 019. [Google Scholar] [CrossRef]
- De Felice, A.; Mukohyama, S.; Pookkillath, M.C. Addressing H0 tension by means of VCDM. Phys. Lett. B 2021, 816, 136201. [Google Scholar] [CrossRef]
- Ganz, A.; Martens, P.; Mukohyama, S.; Namba, R. Bouncing Cosmology in VCDM. arXiv 2022, arXiv:2212.13561. [Google Scholar]
- Ratra, B. Tilted spatially nonflat inflation. Phys. Rev. D 2022, 106, 123524. [Google Scholar] [CrossRef]
- Di Valentino, E.; Mersini-Houghton, L. Testing predictions of the quantum landscape multiverse 2: The exponential inflationary potential. J. Cosmol. Astropart. Phys. 2017, 2017, 020. [Google Scholar] [CrossRef]
- Guo, R.Y.; Zhang, X. Constraints on inflation revisited: An analysis including the latest local measurement of the Hubble constant. Eur. Phys. J. C 2017, 77, 882. [Google Scholar] [CrossRef]
- Keeley, R.E.; Shafieloo, A.; Hazra, D.K.; Souradeep, T. Inflation wars: A new hope. J. Cosmol. Astropart. Phys. 2020, 2020, 055. [Google Scholar] [CrossRef]
- Liu, M.; Huang, Z. Band-limited Features in the Primordial Power Spectrum Do Not Resolve the Hubble Tension. Astroph. J. 2020, 897, 166. [Google Scholar] [CrossRef]
- Aresté Saló, L.; Benisty, D.; Guendelman, E.I.; Haro, J.d. Quintessential inflation and cosmological seesaw mechanism: Reheating and observational constraints. J. Cosmol. Astropart. Phys. 2021, 2021, 007. [Google Scholar] [CrossRef]
- Di Valentino, E.; Melchiorri, A.; Fantaye, Y.; Heavens, A. Bayesian evidence against the Harrison-Zel’dovich spectrum in tensions with cosmological data sets. Phys. Rev. D 2018, 98, 063508. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.T.; Slosar, A. Inferences of H0 in presence of a non-standard recombination. arXiv 2018, arXiv:1811.03624. [Google Scholar]
- Hart, L.; Chluba, J. New constraints on time-dependent variations of fundamental constants using Planck data. Mon. Not. R. Astron. Soc. 2018, 474, 1850–1861. [Google Scholar] [CrossRef]
- Hart, L.; Chluba, J. Updated fundamental constant constraints from Planck 2018 data and possible relations to the Hubble tension. Mon. Not. R. Astron. Soc. 2020, 493, 3255–3263. [Google Scholar] [CrossRef]
- Sekiguchi, T.; Takahashi, T. Early recombination as a solution to the H0 tension. Phys. Rev. D 2021, 103, 083507. [Google Scholar] [CrossRef]
- Fung, L.W.H.; Li, L.; Liu, T.; Luu, H.N.; Qiu, Y.C.; Tye, S.H.H. Axi-Higgs cosmology. J. Cosmol. Astropart. Phys. 2021, 2021, 057. [Google Scholar] [CrossRef]
- Jedamzik, K.; Saveliev, A. Stringent Limit on Primordial Magnetic Fields from the Cosmic Microwave Background Radiation. Phys. Rev. Lett. 2019, 123, 021301. [Google Scholar] [CrossRef]
- Jedamzik, K.; Pogosian, L. Relieving the Hubble Tension with Primordial Magnetic Fields. Phys. Rev. Lett. 2020, 125, 181302. [Google Scholar] [CrossRef] [PubMed]
- Banihashemi, A.; Khosravi, N.; Shirazi, A.H. Phase transition in the dark sector as a proposal to lessen cosmological tensions. Phys. Rev. D 2020, 101, 123521. [Google Scholar] [CrossRef]
- Banihashemi, A.; Khosravi, N.; Shafieloo, A. Dark energy as a critical phenomenon: A hint from Hubble tension. J. Cosmol. Astropart. Phys. 2021, 2021, 003. [Google Scholar] [CrossRef]
- Kasai, M.; Futamase, T. A possible solution to the Hubble constant discrepancy: Cosmology where the local volume expansion is driven by the domain average density. Prog. Theor. Exp. Phys. 2019, 2019, 073E01. [Google Scholar] [CrossRef]
- Yusofi, E.; Ramzanpour, M.A. Cosmological Constant Problem and H0 Tension in Void-dominated Cosmology. arXiv 2022, arXiv:2204.12180. [Google Scholar]
- Akarsu, Ö.; Kumar, S.; Sharma, S.; Tedesco, L. Constraints on a Bianchi type I spacetime extension of the standard Λ CDM model. Phys. Rev. D 2019, 100, 023532. [Google Scholar] [CrossRef] [Green Version]
- Bolejko, K. Emerging spatial curvature can resolve the tension between high-redshift CMB and low-redshift distance ladder measurements of the Hubble constant. Phys. Rev. D 2018, 97, 103529. [Google Scholar] [CrossRef]
- Macpherson, H.J.; Lasky, P.D.; Price, D.J. The Trouble with Hubble: Local versus Global Expansion Rates in Inhomogeneous Cosmological Simulations with Numerical Relativity. Astroph. J. Lett. 2018, 865, L4. [Google Scholar] [CrossRef]
- Heinesen, A.; Buchert, T. Solving the curvature and Hubble parameter inconsistencies through structure formation-induced curvature. Class. Quant. Grav. 2020, 37, 164001. [Google Scholar] [CrossRef]
- Ivanov, M.M.; Ali-Haïmoud, Y.; Lesgourgues, J. H0 tension or T0 tension? Phys. Rev. D 2020, 102, 063515. [Google Scholar] [CrossRef]
- Bengaly, C.A.P.; Gonzalez, J.E.; Alcaniz, J.S. Is there evidence for a hotter Universe? Eur. Phys. J. C 2020, 80, 936. [Google Scholar] [CrossRef]
- Bose, B.; Lombriser, L. Easing cosmic tensions with an open and hotter universe. Phys. Rev. D 2021, 103, L081304. [Google Scholar] [CrossRef]
- Adhikari, S.; Huterer, D. Super-CMB fluctuations and the Hubble tension. Phys. Dark Universe 2020, 28, 100539. [Google Scholar] [CrossRef]
- Capozziello, S.; Benetti, M.; Spallicci, A.D.A.M. Addressing the cosmological H0 tension by the Heisenberg uncertainty. Found. Phys. 2020, 50, 893–899. [Google Scholar] [CrossRef]
- Perez, A.; Sudarsky, D.; Wilson-Ewing, E. Resolving the H0 tension with diffusion. Gen. Relat. Gravit. 2021, 53, 7. [Google Scholar] [CrossRef]
- Berechya, D.; Leonhardt, U. Lifshitz cosmology: Quantum vacuum and Hubble tension. Mon. Not. R. Astron. Soc. 2021, 507, 3473–3485. [Google Scholar] [CrossRef]
- Ortiz, C. Surface tension: Accelerated expansion, coincidence problem & Hubble tension. Int. J. Mod. Phys. D 2020, 29, 2050115. [Google Scholar] [CrossRef]
- Vishwakarma, R.G. Resolving Hubble tension with the Milne model. Int. J. Mod. Phys. D 2020, 29, 2043025. [Google Scholar] [CrossRef]
- Milne, E.A. Relativity, gravitation and world-structure. Nature 1935, 135, 635–636. [Google Scholar]
- Krishnan, C.; Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Yang, T. Running Hubble tension and a H0 diagnostic. Phys. Rev. D 2021, 103, 103509. [Google Scholar] [CrossRef]
- Dainotti, M.G.; De Simone, B.; Schiavone, T.; Montani, G.; Rinaldi, E.; Lambiase, G. On the Hubble Constant Tension in the SNe Ia Pantheon Sample. Astroph. J. 2021, 912, 150. [Google Scholar] [CrossRef]
- Marra, V.; Perivolaropoulos, L. Rapid transition of Geff at zt≃0.01 as a possible solution of the Hubble and growth tensions. Phys. Rev. D 2021, 104, L021303. [Google Scholar] [CrossRef]
- Fosalba, P.; Gaztañaga, E. Explaining cosmological anisotropy: Evidence for causal horizons from CMB data. Mon. Not. R. Astron. Soc. 2021, 504, 5840–5862. [Google Scholar] [CrossRef]
- Gaztañaga, E. The size of our causal Universe. Mon. Not. R. Astron. Soc. 2020, 494, 2766–2772. [Google Scholar] [CrossRef]
- Haslbauer, M.; Banik, I.; Kroupa, P. The KBC void and Hubble tension contradict ΛCDM on a Gpc scale—Milgromian dynamics as a possible solution. Mon. Not. R. Astron. Soc. 2020, 499, 2845–2883. [Google Scholar] [CrossRef]
- Beltrán Jiménez, J.; Bettoni, D.; Brax, P. Screening away the H0 tension. Int. J. Mod. Phys. D 2020, 29, 2043010. [Google Scholar] [CrossRef]
- Jiménez, J.B.; Bettoni, D.; Brax, P. Charged dark matter and the H0 tension. Phys. Rev. D 2021, 103, 103505. [Google Scholar] [CrossRef]
- Cruz, M.; Lepe, S.; Soto, G.E. Phantom cosmologies from QCD ghost dark energy. Phys. Rev. D 2022, 106, 103508. [Google Scholar] [CrossRef]
- Sola, J.; Gomez-Valent, A.; de Cruz Perez, J.; Moreno-Pulido, C. Running vacuum against the H0 and σ8 tensions. arXiv 2021, arXiv:2102.12758. [Google Scholar]
- Pan, S.; Yang, W.; Di Valentino, E.; Shafieloo, A.; Chakraborty, S. Reconciling H0 tension in a six parameter space? J. Cosmol. Astropart. Phys. 2020, 2020, 062. [Google Scholar] [CrossRef]
- Liu, Z.; Miao, H. Update constraints on neutrino mass and mass hierarchy in light of dark energy models. Int. J. Mod. Phys. D 2020, 29, 2050088. [Google Scholar] [CrossRef]
- Di Valentino, E.; Gariazzo, S.; Giunti, C.; Mena, O.; Pan, S.; Yang, W. Minimal dark energy: Key to sterile neutrino and Hubble constant tensions? Phys. Rev. D 2022, 105, 103511. [Google Scholar] [CrossRef]
- Moshafi, H.; Firouzjahi, H.; Talebian, A. Multiple Transitions in Vacuum Dark Energy and H 0 Tension. Astroph. J. 2022, 940, 121. [Google Scholar] [CrossRef]
- Moshafi, H.; Baghram, S.; Khosravi, N. CMB lensing in a modified Λ CDM model in light of the H0 tension. Phys. Rev. D 2021, 104, 063506. [Google Scholar] [CrossRef]
- Yang, W.; Mukherjee, A.; Di Valentino, E.; Pan, S. Interacting dark energy with time varying equation of state and the H0 tension. Phys. Rev. D 2018, 98, 123527. [Google Scholar] [CrossRef]
- Carrilho, P.; Moretti, C.; Bose, B.; Markovič, K.; Pourtsidou, A. Interacting dark energy from redshift-space galaxy clustering. J. Cosmol. Astropart. Phys. 2021, 2021, 004. [Google Scholar] [CrossRef]
- Guo, R.Y.; Feng, L.; Yao, T.Y.; Chen, X.Y. Exploration of interacting dynamical dark energy model with interaction term including the equation-of-state parameter: Alleviation of the H0 tension. J. Cosmol. Astropart. Phys. 2021, 2021, 036. [Google Scholar] [CrossRef]
- Nunes, R.C.; Di Valentino, E. Dark sector interaction and the supernova absolute magnitude tension. Phys. Rev. D 2021, 104, 063529. [Google Scholar] [CrossRef]
- Chatzidakis, S.; Giacomini, A.; Leach, P.G.L.; Leon, G.; Paliathanasis, A.; Pan, S. Interacting dark energy in curved FLRW spacetime from Weyl Integrable Spacetime. J. High Energy Astrop. 2022, 36, 141–151. [Google Scholar] [CrossRef]
- Gariazzo, S.; Di Valentino, E.; Mena, O.; Nunes, R.C. Late-time interacting cosmologies and the Hubble constant tension. Phys. Rev. D 2022, 106, 023530. [Google Scholar] [CrossRef]
- Anchordoqui, L.A.; Barger, V.; Marfatia, D.; Soriano, J.F. Decay of multiple dark matter particles to dark radiation in different epochs does not alleviate the Hubble tension. Phys. Rev. D 2022, 105, 103512. [Google Scholar] [CrossRef]
- Vagnozzi, S.; Visinelli, L.; Brax, P.; Davis, A.C.; Sakstein, J. Direct detection of dark energy: The XENON1T excess and future prospects. Phys. Rev. D 2021, 104, 063023. [Google Scholar] [CrossRef]
- Benisty, D.; Davis, A.C. Dark energy interactions near the Galactic Center. Phys. Rev. D 2022, 105, 024052. [Google Scholar] [CrossRef]
- Lombriser, L. Consistency of the local Hubble constant with the cosmic microwave background. Phys. Lett. B 2020, 803, 135303. [Google Scholar] [CrossRef]
- Contarini, S.; Pisani, A.; Hamaus, N.; Marulli, F.; Moscardini, L.; Baldi, M. Voids fill us in on rising cosmology tensions. arXiv 2022, arXiv:2212.07438. [Google Scholar]
- Kazantzidis, L.; Perivolaropoulos, L. Hints of a local matter underdensity or modified gravity in the low z Pantheon data. Phys. Rev. D 2020, 102, 023520. [Google Scholar] [CrossRef]
- Alestas, G.; Perivolaropoulos, L. Late-time approaches to the Hubble tension deforming H(z), worsen the growth tension. Mon. Not. R. Astron. Soc. 2021, 504, 3956–3962. [Google Scholar] [CrossRef]
- Perivolaropoulos, L.; Skara, F. A Reanalysis of the Latest SH0ES Data for H0: Effects of New Degrees of Freedom on the Hubble Tension. Universe 2022, 8, 502. [Google Scholar] [CrossRef]
- Perivolaropoulos, L.; Skara, F. Gravitational transitions via the explicitly broken symmetron screening mechanism. Phys. Rev. D 2022, 106, 043528. [Google Scholar] [CrossRef]
- Dhawan, S.; Brout, D.; Scolnic, D.; Goobar, A.; Riess, A.G.; Miranda, V. Cosmological Model Insensitivity of Local H0 from the Cepheid Distance Ladder. Astroph. J. 2020, 894, 54. [Google Scholar] [CrossRef]
- Perivolaropoulos, L.; Skara, F. Hubble tension or a transition of the Cepheid SnIa calibrator parameters? Phys. Rev. D 2021, 104, 123511. [Google Scholar] [CrossRef]
- Mörtsell, E.; Goobar, A.; Johansson, J.; Dhawan, S. The Hubble Tension Revisited: Additional Local Distance Ladder Uncertainties. Astroph. J. 2022, 935, 58. [Google Scholar] [CrossRef]
- Smith, T.L.; Poulin, V.; Amin, M.A. Oscillating scalar fields and the Hubble tension: A resolution with novel signatures. Phys. Rev. D 2020, 101, 063523. [Google Scholar] [CrossRef]
- Sakstein, J.; Trodden, M. Early Dark Energy from Massive Neutrinos as a Natural Resolution of the Hubble Tension. Phys. Rev. Lett. 2020, 124, 161301. [Google Scholar] [CrossRef]
- Gogoi, A.; Kumar Sharma, R.; Chanda, P.; Das, S. Early Mass-varying Neutrino Dark Energy: Nugget Formation and Hubble Anomaly. Astroph. J. 2021, 915, 132. [Google Scholar] [CrossRef]
- Poulin, V.; Smith, T.L.; Bartlett, A. Dark energy at early times and ACT data: A larger Hubble constant without late-time priors. Phys. Rev. D 2021, 104, 123550. [Google Scholar] [CrossRef]
- Seto, O.; Toda, Y. Comparing early dark energy and extra radiation solutions to the Hubble tension with BBN. Phys. Rev. D 2021, 103, 123501. [Google Scholar] [CrossRef]
- Ye, G.; Zhang, J.; Piao, Y.S. Resolving both H0 and S8 tensions with AdS early dark energy and ultralight axion. arXiv, 2021; arXiv:2107.13391. [Google Scholar]
- Jiang, J.Q.; Piao, Y.S. Testing AdS early dark energy with Planck, SPTpol, and LSS data. Phys. Rev. D 2021, 104, 103524. [Google Scholar] [CrossRef]
- Niedermann, F.; Sloth, M.S. Hot new early dark energy: Towards a unified dark sector of neutrinos, dark energy and dark matter. Phys. Lett. B 2022, 835, 137555. [Google Scholar] [CrossRef]
- Smith, T.L.; Lucca, M.; Poulin, V.; Abellan, G.F.; Balkenhol, L.; Benabed, K.; Galli, S.; Murgia, R. Hints of early dark energy in Planck, SPT, and ACT data: New physics or systematics? Phys. Rev. D 2022, 106, 043526. [Google Scholar] [CrossRef]
- Fernandez-Martinez, E.; Pierre, M.; Pinsard, E.; Rosauro-Alcaraz, S. Inverse Seesaw, dark matter and the Hubble tension. Eur. Phys. J. C 2021, 81, 954. [Google Scholar] [CrossRef]
- Seto, O.; Toda, Y. Hubble tension in lepton asymmetric cosmology with an extra radiation. Phys. Rev. D 2021, 104, 063019. [Google Scholar] [CrossRef]
- Aboubrahim, A.; Klasen, M.; Nath, P. Analyzing the Hubble tension through hidden sector dynamics in the early universe. J. Cosmol. Astropart. Phys. 2022, 2022, 042. [Google Scholar] [CrossRef]
- Gu, Y.; Wu, L.; Zhu, B. Axion dark radiation: Hubble tension and the Hyper-Kamiokande neutrino experiment. Phys. Rev. D 2022, 105, 095008. [Google Scholar] [CrossRef]
- Aloni, D.; Berlin, A.; Joseph, M.; Schmaltz, M.; Weiner, N. A Step in understanding the Hubble tension. Phys. Rev. D 2022, 105, 123516. [Google Scholar] [CrossRef]
- Ghosh, S.; Kumar, S.; Tsai, Y. Free-streaming and coupled dark radiation isocurvature perturbations: Constraints and application to the Hubble tension. J. Cosmol. Astropart. Phys. 2022, 2022, 014. [Google Scholar] [CrossRef]
- Berbig, M.; Jana, S.; Trautner, A. The Hubble tension and a renormalizable model of gauged neutrino self-interactions. Phys. Rev. D 2020, 102, 115008. [Google Scholar] [CrossRef]
- Choudhury, S.R.; Hannestad, S.; Tram, T. Updated constraints on massive neutrino self-interactions from cosmology in light of the H0 tension. J. Cosmol. Astropart. Phys. 2021, 2021, 084. [Google Scholar] [CrossRef]
- Mazumdar, A.; Mohanty, S.; Parashari, P. Flavour specific neutrino self-interaction: H0 tension and IceCube. J. Cosmol. Astropart. Phys. 2022, 2022, 011. [Google Scholar] [CrossRef]
- Shimon, M. Possible resolution of the Hubble tension with Weyl invariant gravity. J. Cosmol. Astropart. Phys. 2022, 2022, 048. [Google Scholar] [CrossRef]
- Petronikolou, M.; Basilakos, S.; Saridakis, E.N. Alleviating H0 tension in Horndeski gravity. Phys. Rev. D 2022, 106, 124051. [Google Scholar] [CrossRef]
- Akarsu, Ö.; Kumar, S.; Özülker, E.; Vazquez, J.A. Relaxing cosmological tensions with a sign switching cosmological constant. Phys. Rev. D 2021, 104, 123512. [Google Scholar] [CrossRef]
- Akarsu, O.; Kumar, S.; Ozulker, E.; Vazquez, J.A.; Yadav, A. Relaxing cosmological tensions with a sign switching cosmological constant: Improved results with Planck, BAO and Pantheon data. arXiv 2022, arXiv:2211.05742. [Google Scholar]
- Vagnozzi, S. Consistency tests of Λ CDM from the early integrated Sachs-Wolfe effect: Implications for early-time new physics and the Hubble tension. Phys. Rev. D 2021, 104, 063524. [Google Scholar] [CrossRef]
- Blinov, N.; Krnjaic, G.; Li, S.W. Realistic model of dark atoms to resolve the Hubble tension. Phys. Rev. D 2022, 105, 095005. [Google Scholar] [CrossRef]
- Gough, M.P. Information Dark Energy Can Resolve the Hubble Tension and Is Falsifiable by Experiment. Entropy 2022, 24, 385. [Google Scholar] [CrossRef] [PubMed]
- Araki, T.; Asai, K.; Honda, K.; Kasuya, R.; Sato, J.; Shimomura, T.; Yang, M.J.S. Resolving the Hubble tension in a U(1)Lμ-Lτ model with the Majoron. Prog. Theor. Exp. Phys. 2021, 2021, 103B05. [Google Scholar] [CrossRef]
- Schöneberg, N.; Abellán, G.F.; Sánchez, A.P.; Witte, S.J.; Poulin, V.; Lesgourgues, J. The H0 Olympics: A fair ranking of proposed models. Phys. Rep. 2022, 984, 1–55. [Google Scholar] [CrossRef]
- Desmond, H.; Jain, B.; Sakstein, J. Local resolution of the Hubble tension: The impact of screened fifth forces on the cosmic distance ladder. Phys. Rev. D 2019, 100, 043537. [Google Scholar] [CrossRef]
- Poulin, V. How to Resolve the Hubble tension. In Proceedings of the H0 2020: Assessing Uncertainties in Hubble’s Constant across the Universe, Online Conference, 22–26 June 2020; p. 22. [Google Scholar] [CrossRef]
- Addison, G.E. High H0 Values from CMB E-mode Data: A Clue for Resolving the Hubble Tension? Astroph. J. Lett. 2021, 912, L1. [Google Scholar] [CrossRef]
- Thiele, L.; Guan, Y.; Hill, J.C.; Kosowsky, A.; Spergel, D.N. Can small-scale baryon inhomogeneities resolve the Hubble tension? An investigation with ACT DR4. Phys. Rev. D 2021, 104, 063535. [Google Scholar] [CrossRef]
- Jedamzik, K.; Pogosian, L.; Zhao, G.B. Why reducing the cosmic sound horizon alone can not fully resolve the Hubble tension. Commun. Phys. 2021, 4, 123. [Google Scholar] [CrossRef]
- Cai, R.G.; Guo, Z.K.; Wang, S.J.; Yu, W.W.; Zhou, Y. No-go guide for the Hubble tension: Late-time solutions. Phys. Rev. D 2022, 105, L021301. [Google Scholar] [CrossRef]
- Cai, R.G.; Guo, Z.K.; Wang, S.J.; Yu, W.W.; Zhou, Y. No-go guide for late-time solutions to the Hubble tension: Matter perturbations. Phys. Rev. D 2022, 106, 063519. [Google Scholar] [CrossRef]
- Escudero, H.G.; Kuo, J.L.; Keeley, R.E.; Abazajian, K.N. Early or phantom dark energy, self-interacting, extra, or massive neutrinos, primordial magnetic fields, or a curved universe: An exploration of possible solutions to the H0 and σ8 problems. Phys. Rev. D 2022, 106, 103517. [Google Scholar] [CrossRef]
- Wang, Y.Y.; Tang, S.P.; Li, X.Y.; Jin, Z.P.; Fan, Y.Z. Prospects of calibrating afterglow modeling of short GRBs with gravitational wave inclination angle measurements and resolving the Hubble tension with a GW-GRB association event. Phys. Rev. D 2022, 106, 023011. [Google Scholar] [CrossRef]
- Khodadi, M.; Schreck, M. Hubble tension as a guide for refining the early Universe: Cosmologies with explicit local Lorentz and diffeomorphism violation. arXiv 2023, arXiv:2301.03883. [Google Scholar] [CrossRef]
- Birrer, S.; Shajib, A.J.; Galan, A.; Millon, M.; Treu, T.; Agnello, A.; Auger, M.; Chen, G.C.F.; Christensen, L.; Collett, T.; et al. TDCOSMO. IV. Hierarchical time-delay cosmography—Joint inference of the Hubble constant and galaxy density profiles. Astron. Astrophys. 2020, 643, A165. [Google Scholar] [CrossRef]
- Krishnan, C.; Ó Colgáin, E.; Ruchika; Sen, A.A.; Sheikh-Jabbari, M.M.; Yang, T. Is there an early Universe solution to Hubble tension? Phys. Rev. D 2020, 102, 103525. [Google Scholar] [CrossRef]
- Lloyd, N.M.; Petrosian, V. Synchrotron Radiation as the Source of Gamma-Ray Burst Spectra. Astroph. J. 2000, 543, 722–732. [Google Scholar] [CrossRef]
- Singal, J.; Petrosian, V.; Lawrence, A.; Stawarz, Ł. On the Radio and Optical Luminosity Evolution of Quasars. Astroph. J. 2011, 743, 104. [Google Scholar] [CrossRef]
- Dainotti, M.G.; Lenart, A.; Sarracino, G.; Nagataki, S.; Capozziello, S.; Fraija, N. The X-Ray Fundamental Plane of the Platinum Sample, the Kilonovae, and the SNe Ib/c Associated with GRBs. Astroph. J. 2020, 904, 97. [Google Scholar] [CrossRef]
- Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Solomon, R.; Bargiacchi, G.; Capozziello, S.; Dainotti, M.G.; Stojkovic, D. Revealing intrinsic flat Λ CDM biases with standardizable candles. Phys. Rev. D 2022, 106, L041301. [Google Scholar] [CrossRef]
- Dainotti, M.G.; De Simone, B.D.; Schiavone, T.; Montani, G.; Rinaldi, E.; Lambiase, G.; Bogdan, M.; Ugale, S. On the Evolution of the Hubble Constant with the SNe Ia Pantheon Sample and Baryon Acoustic Oscillations: A Feasibility Study for GRB-Cosmology in 2030. Galaxies 2022, 10, 24. [Google Scholar] [CrossRef]
- Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Solomon, R.; Dainotti, M.G.; Stojkovic, D. Putting Flat ΛCDM In The (Redshift) Bin. arXiv 2022, arXiv:2206.11447. [Google Scholar]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Wojtak, R.; Hjorth, J. Intrinsic tension in the supernova sector of the local Hubble constant measurement and its implications. Mon. Not. R. Astron. Soc. 2022, 515, 2790–2799. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Gómez-Valent, A.; Amendola, L. H0 from cosmic chronometers and Type Ia supernovae, with Gaussian Processes and the novel Weighted Polynomial Regression method. J. Cosmol. Astropart. Phys. 2018, 2018, 051. [Google Scholar] [CrossRef]
- Yu, H.; Ratra, B.; Wang, F.Y. Hubble Parameter and Baryon Acoustic Oscillation Measurement Constraints on the Hubble Constant, the Deviation from the Spatially Flat ΛCDM Model, the Deceleration-Acceleration Transition Redshift, and Spatial Curvature. Astroph. J. 2018, 856, 3. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.; Shafieloo, A.; Keeley, R.E.; Linder, E.V. A Model-independent Determination of the Hubble Constant from Lensed Quasars and Supernovae Using Gaussian Process Regression. Astroph. J. Lett. 2019, 886, L23. [Google Scholar] [CrossRef]
- Liao, K.; Shafieloo, A.; Keeley, R.E.; Linder, E.V. Determining Model-independent H0 and Consistency Tests. Astroph. J. Lett. 2020, 895, L29. [Google Scholar] [CrossRef]
- Salti, M.; Ciger, E.; Kangal, E.E.; Zengin, B. Data-driven predictive modeling of Hubble parameter. Phys. Scripta 2022, 97, 085011. [Google Scholar] [CrossRef]
- Melia, F.; Yennapureddy, M.K. Model selection using cosmic chronometers with Gaussian Processes. J. Cosmol. Astropart. Phys. 2018, 2018, 034. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Frazier, P.I. A Tutorial on Bayesian Optimization. arXiv 2018, arXiv:1807.02811. [Google Scholar]
- Schulz, E.; Speekenbrink, M.; Krause, A. A tutorial on Gaussian process regression: Modelling, exploring, and exploiting functions. J. Math. Psychol. 2018, 85, 1–16. [Google Scholar] [CrossRef]
- Hu, J.P.; Wang, F.Y. Revealing the late-time transition of H0: Relieve the Hubble crisis. Mon. Not. R. Astron. Soc. 2022, 517, 576–581. [Google Scholar] [CrossRef]
- Jia, X.D.; Hu, J.P.; Wang, F.Y. The evidence for a decreasing trend of Hubble constant. arXiv 2022, arXiv:2212.00238. [Google Scholar]
- Malekjani, M.; Mc Conville, R.; Ó Colgáin, E.; Pourojaghi, S.; Sheikh-Jabbari, M.M. Negative Dark Energy Density from High Redshift Pantheon+ Supernovae. arXiv 2023, arXiv:2301.12725. [Google Scholar]
- Krishnan, C.; Mohayaee, R.; Ó Colgáin, E.; Sheikh-Jabbari, M.M.; Yin, L. Does Hubble tension signal a breakdown in FLRW cosmology? Class. Quant. Grav. 2021, 38, 184001. [Google Scholar] [CrossRef]
- Keeley, R.E.; Shafieloo, A. Ruling Out New Physics at Low Redshift as a solution to the H0 Tension. arXiv 2022, arXiv:2206.08440. [Google Scholar]
- Keenan, R.C.; Barger, A.J.; Cowie, L.L. Evidence for a ~300 Megaparsec Scale Under-density in the Local Galaxy Distribution. Astroph. J. 2013, 775, 62. [Google Scholar] [CrossRef]
- Wang, F.Y.; Dai, Z.G. Testing the local-void alternative to dark energy using galaxy pairs. Mon. Not. R. Astron. Soc. 2013, 432, 3025–3029. [Google Scholar] [CrossRef]
- Camarena, D.; Marra, V.; Sakr, Z.; Clarkson, C. A void in the Hubble tension? The end of the line for the Hubble bubble. Class. Quant. Grav. 2022, 39, 184001. [Google Scholar] [CrossRef]
- Yusofi, E.; Khanpour, M.; Khanpour, B.; Ramzanpour, M.A.; Mohsenzadeh, M. Surface tension of cosmic voids as a possible source for dark energy. Mon. Not. R. Astron. Soc. 2022, 511, L82–L86. [Google Scholar] [CrossRef]
- Benetti, M.; Capozziello, S.; Lambiase, G. Updating constraints on f(T) teleparallel cosmology and the consistency with big bang nucleosynthesis. Mon. Not. R. Astron. Soc. 2021, 500, 1795–1805. [Google Scholar] [CrossRef]
- Kenworthy, W.D.; Scolnic, D.; Riess, A. The Local Perspective on the Hubble Tension: Local Structure Does Not Impact Measurement of the Hubble Constant. Astroph. J. 2019, 875, 145. [Google Scholar] [CrossRef]
- Luković, V.V.; Haridasu, B.S.; Vittorio, N. Exploring the evidence for a large local void with supernovae Ia data. Mon. Not. R. Astron. Soc. 2020, 491, 2075–2087. [Google Scholar] [CrossRef]
- Cai, R.G.; Ding, J.F.; Guo, Z.K.; Wang, S.J.; Yu, W.W. Do the observational data favor a local void? Phys. Rev. D 2021, 103, 123539. [Google Scholar] [CrossRef]
- Böhringer, H.; Chon, G.; Collins, C.A. Observational evidence for a local underdensity in the Universe and its effect on the measurement of the Hubble constant. Astron. Astrophys. 2020, 633, A19. [Google Scholar] [CrossRef]
- DES Collaboration. Dark Energy Survey Year 3 results: Imprints of cosmic voids and superclusters in the Planck CMB lensing map. Mon. Not. R. Astron. Soc. 2022, 515, 4417–4429. [Google Scholar] [CrossRef]
- Krishnan, C.; Mondol, R. H0 as a Universal FLRW Diagnostic. arXiv 2022, arXiv:2201.13384. [Google Scholar]
- Coleman, S. Fate of the false vacuum: Semiclassical theory. Phys. Rev. D 1977, 15, 2929–2936. [Google Scholar] [CrossRef]
- Callan, C.G., Jr.; Coleman, S. Fate of the false vacuum. II. First quantum corrections. Phys. Rev. D 1977, 16, 1762–1768. [Google Scholar] [CrossRef]
- Patwardhan, A.V.; Fuller, G.M. Late-time vacuum phase transitions: Connecting sub-eV scale physics with cosmological structure formation. Phys. Rev. D 2014, 90, 063009. [Google Scholar] [CrossRef] [Green Version]
- Oguri, M.; Marshall, P.J. Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys. Mon. Not. R. Astron. Soc. 2010, 405, 2579–2593. [Google Scholar] [CrossRef]
- Collett, T.E. The Population of Galaxy-Galaxy Strong Lenses in Forthcoming Optical Imaging Surveys. Astroph. J. 2015, 811, 20. [Google Scholar] [CrossRef]
- LSST Dark Energy Science Collaboration. Strongly lensed SNe Ia in the era of LSST: Observing cadence for lens discoveries and time-delay measurements. Astron. Astrophys. 2019, 631, A161. [Google Scholar] [CrossRef]
- Wei, J.; Cordier, B.; Antier, S.; Antilogus, P.; Atteia, J.L.; Bajat, A.; Basa, S.; Beckmann, V.; Bernardini, M.G.; Boissier, S.; et al. The Deep and Transient Universe in the SVOM Era: New Challenges and Opportunities—Scientific prospects of the SVOM mission. arXiv 2016, arXiv:1610.06892. [Google Scholar]
- Yuan, W.; Zhang, C.; Feng, H.; Zhang, S.N.; Ling, Z.X.; Zhao, D.; Deng, J.; Qiu, Y.; Osborne, J.P.; O’Brien, P.; et al. Einstein Probe—A small mission to monitor and explore the dynamic X-ray Universe. arXiv 2015, arXiv:1506.07735. [Google Scholar]
- Amati, L.; O’Brien, P.; Götz, D.; Bozzo, E.; Tenzer, C.; Frontera, F.; Ghirlanda, G.; Labanti, C.; Osborne, J.P.; Stratta, G.; et al. The THESEUS space mission concept: Science case, design and expected performances. Adv. Space Res. 2018, 62, 191–244. [Google Scholar] [CrossRef] [Green Version]
Lens Name | (km/s/Mpc) | Reference | ||
---|---|---|---|---|
B1608+656 | 0.6304 | 1.394 | [166,167] | |
RXJ1131-1231 | 0.295 | 0.654 | [165,168,169] | |
HE0435-1223 | 0.4546 | 1.693 | [169,170] | |
SDSS 1206+4332 | 0.745 | 1.789 | [171] | |
WFI2033-4723 | 0.6575 | 1.662 | [172] | |
PG1115+080 | 0.311 | 1.722 | [169] | |
DES J0408-5354 | 0.597 | 2.375 | [173,174] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.-P.; Wang, F.-Y. Hubble Tension: The Evidence of New Physics. Universe 2023, 9, 94. https://doi.org/10.3390/universe9020094
Hu J-P, Wang F-Y. Hubble Tension: The Evidence of New Physics. Universe. 2023; 9(2):94. https://doi.org/10.3390/universe9020094
Chicago/Turabian StyleHu, Jian-Ping, and Fa-Yin Wang. 2023. "Hubble Tension: The Evidence of New Physics" Universe 9, no. 2: 94. https://doi.org/10.3390/universe9020094
APA StyleHu, J. -P., & Wang, F. -Y. (2023). Hubble Tension: The Evidence of New Physics. Universe, 9(2), 94. https://doi.org/10.3390/universe9020094