De Sitter Entropy in Higher Derivative Theories of Gravity
Abstract
:1. Introduction
2. Entropy for De Sitter Space in Higher Derivative Theories of Gravity
2.1. Brief Review of Noetherian Entropy and Entropy Function
2.2. Ds Entropy Function for Higher Derivative Gravity
3. Conclusions
In any generally covariant theory of gravity coupled to matter fields, the near horizon geometry of a spherically symmetric extremal black hole in D dimensions has isometry.
- (i)
- De Sitter space has a geometry structure that is similar to the near horizon geometry of a spherically symmetric extremal black hole and has an analogue symmetry .
- (ii)
- De Sitter geometry and the entropy function method share the same property, namely, the entropy can be calculated without knowing the exact metric form.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Riess, A.G.; Filippenko, A.V.; Challis, P.; Clocchiatti, A.; Diercks, A.; Garnavich, P.M.; Gillil, R.L.; Hogan, C.J.; Jha, S.; Kirshner, R.P.; et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 1998, 116, 1009. [Google Scholar] [CrossRef]
- Perlmutter, S.; Aldering, G.; Goldhaber, G.; Knop, R.A.; Nugent, P.; Castro, P.G.; Deustua, S.; Fabbro, S.; Goobar, A.; Groom, D.E.; et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 1999, 517, 565–586. [Google Scholar] [CrossRef]
- Maldacena, J.M. The Large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 1998, 2, 231–252. [Google Scholar] [CrossRef]
- Strominger, A. The dS/CFT correspondence. J. High Energy Phys. 2001, 10, 034. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Cosmological Event Horizons, Thermodynamics, and Particle Creation. Phys. Rev. D 1977, 15, 2738–2751. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Bekenstein, J.D. Generalized second law of thermodynamics in black hole physics. Phys. Rev. D 1974, 9, 3292–3300. [Google Scholar] [CrossRef]
- Hawking, S.W. Black hole explosions. Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle Creation by Black Holes. Commun. Math. Phys. 1975, 43, 199–220, Erratum in Commun. Math. Phys. 1976, 46, 206. [Google Scholar] [CrossRef]
- Hawking, S.W. Black Holes and Thermodynamics. Phys. Rev. D 1976, 13, 191–197. [Google Scholar] [CrossRef]
- Maldacena, J.; Strominger, A. Statistical entropy of de Sitter space. J. High Energy Phys. 1998, 1998, 014. [Google Scholar] [CrossRef]
- Strominger, A.; Vafa, C. Microscopic origin of the Bekenstein-Hawking entropy. Phys. Lett. B 1996, 379, 99–104. [Google Scholar] [CrossRef]
- Sen, A. Black hole entropy function and the attractor mechanism in higher derivative gravity. J. High Energy Phys. 2005, 0509, 038. [Google Scholar] [CrossRef]
- Sen, A. Black hole entropy function, attractors and precision counting of microstates. Gen. Relativ. Gravit. 2008, 40, 2249–2431. [Google Scholar] [CrossRef]
- Cardoso, G.L.; Kidambi, A.; Nampuri, S.; Reys, V.; Rosselló, M. The gravitational path integral for N = 4 BPS black holes from black hole microstate counting. arXiv 2022, arXiv:2211.06873. [Google Scholar]
- Nastase, H.; Tiedt, C.L. Holographic transport with topological term and entropy function. arXiv 2022, arXiv:2208.08309. [Google Scholar]
- Hosseini, S.M.; Hristov, K.; Zaffaroni, A. Gluing gravitational blocks for AdS black holes. J. High Energy Phys. 2019, 12, 168. [Google Scholar] [CrossRef]
- Hristov, K.; Katmadas, S.; Toldo, C. Rotating attractors and BPS black holes in AdS4. J. High Energy Phys. 2019, 2019, 199. [Google Scholar] [CrossRef]
- Hristov, K.; Lodato, I.; Reys, V. On the quantum entropy function in 4D gauged supergravity. J. High Energy Phys. 2018, 2018, 72. [Google Scholar] [CrossRef]
- Goulart, P. Dyonic AdS4 black hole entropy and attractors via entropy function. J. High Energy Phys. 2016, 2016, 3. [Google Scholar] [CrossRef]
- Astefanesei, D.; Miskovic, O.; Olea, R. Attractor horizons in six-dimensional type IIB supergravity. Phys. Lett. B 2012, 714, 331–336. [Google Scholar] [CrossRef]
- Nath Tiwari, B. Geometric Perspective of Entropy Function: Embedding, Spectrum and Convexity. arXiv 2011, arXiv:1108.4654. [Google Scholar]
- Zhang, M.; Jiang, J. Generalized covariant entropy bound in Lanczos-Lovelock gravity. Phys. Rev. D 2022, 106, 064002. [Google Scholar] [CrossRef]
- Pang, Y. Attractor mechanism and nonrenormalization theorem in 6D (1, 0) supergravity. Phys. Rev. D 2021, 103, 026018. [Google Scholar] [CrossRef]
- Majhi, B.R. Entropy function from the gravitational surface action for an extremal near horizon black hole. Eur. Phys. J. C 2015, 75, 521. [Google Scholar] [CrossRef]
- Anabalón, A.; Astefanesei, D. On attractor mechanism of AdS4 black holes. Phys. Lett. B 2013, 727, 568–572. [Google Scholar] [CrossRef]
- Gao, X. Non-supersymmetric Attractors in Born-Infeld Black Holes with a Cosmological Constant. J. High Energy Phys. 2007, 2007, 6. [Google Scholar] [CrossRef]
- Chen, C.M.; Gal’tsov, D.V.; Orlov, D.G. Extremal dyonic black holes in D = 4 Gauss-Bonnet gravity. Phys. Rev. D 2008, 78, 104013. [Google Scholar] [CrossRef]
- Garousi, M.R.; Ghodsi, A.; Houri, T.; Khosravi, M. More on entropy function formalism for non-extremal branes. J. High Energy Phys. 2009, 2009, 26. [Google Scholar] [CrossRef]
- Wald, R.M. Black hole entropy is the Noether charge. Phys. Rev. D 1993, 48, R3427. [Google Scholar] [CrossRef]
- Jacobson, T.; Myers, R.C. Black hole entropy and higher curvature interactions. Phys. Rev. Lett. 1993, 70, 3684. [Google Scholar] [CrossRef] [PubMed]
- Iyer, V.; Wald, R.M. Some properties of the Noether charge and a proposal for dynamical black hole entropy. Phys. Rev. D 1994, 50, 846. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.C. Black Holes in Higher Curvature Gravity. arXiv 1998, arXiv:gr-qc/9811042. [Google Scholar]
- Dutta, S.; Gopakumar, R. Euclidean and Noetherian entropies in AdS space. Phys. Rev. D 2006, 74, 044007. [Google Scholar] [CrossRef]
- Clunan, T.; Ross, S.F.; Smith, D.J. On Gauss-Bonnet black hole entropy. Class. Quantum Gravity 2004, 21, 3447. [Google Scholar] [CrossRef]
- Shu, F.-W.; Ge, X.-H. Entropy function and higher derivative corrections to entropies in (anti-)de Sitter space. J. High Energy Phys. 2008, 8, 021. [Google Scholar] [CrossRef]
- Iyer, V.; Wald, R.M. Comparison fo the Noether charge and Euclidean methods for computing the entropy of stationary black holes. Phys. Rev. D 1995, 52, 4430. [Google Scholar] [CrossRef]
- Cai, R.-G. Gauss-Bonnet black holes in AdS spaces. Phys. Rev. D 2002, 65, 084014. [Google Scholar] [CrossRef]
- Ge, X.-H.; Shu, F.-W. On black hole thermodynamics and entropy function method. arXiv 2008, arXiv:0804.2123. [Google Scholar]
- Zwiebach, B. Curvature squared terms and string theories. Phys. Lett. B 1985, 156, 315. [Google Scholar] [CrossRef]
- Zumino, B. Gravity theories in more than four dimensions. Phys. Rep. 1986, 137, 109. [Google Scholar] [CrossRef]
- Lovelock, D. The Einstein tensor and its generalizations. J. Math. Phys. 1971, 12, 498. [Google Scholar] [CrossRef]
- Boulware, D.G.; Deser, S. String Generated Gravity Models. Phys. Rev. Lett. 1985, 55, 2656. [Google Scholar] [CrossRef] [PubMed]
- Myers, R.C.; Simon, J.Z. Black Hole Thermodynamics in Lovelock Gravity. Phys. Rev. D 1988, 38, 2434. [Google Scholar] [CrossRef]
- Cai, R.G. A Note on thermodynamics of black holes in Lovelock gravity. Phys. Lett. B 2004, 582, 237. [Google Scholar] [CrossRef]
- Kunduri, H.K.; Lucietti, J.; Reall, H.S. Near-horizon symmetries of extremal black holes. Class. Quantum Gravity 2007, 24, 4169. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, A.; Liu, K.; Shu, F.-W. De Sitter Entropy in Higher Derivative Theories of Gravity. Universe 2023, 9, 116. https://doi.org/10.3390/universe9030116
Gong A, Liu K, Shu F-W. De Sitter Entropy in Higher Derivative Theories of Gravity. Universe. 2023; 9(3):116. https://doi.org/10.3390/universe9030116
Chicago/Turabian StyleGong, An, Kun Liu, and Fu-Wen Shu. 2023. "De Sitter Entropy in Higher Derivative Theories of Gravity" Universe 9, no. 3: 116. https://doi.org/10.3390/universe9030116
APA StyleGong, A., Liu, K., & Shu, F. -W. (2023). De Sitter Entropy in Higher Derivative Theories of Gravity. Universe, 9(3), 116. https://doi.org/10.3390/universe9030116