Pre-Main Sequence Ap Star LkHα 324/B in LDN 988 Star Forming Region
Abstract
:1. Introduction
2. LDN 988 Cloud and Peculiar Star LkH 324/B
3. Observations and Data Reduction
3.1. High-Resolution Spectroscopy
3.2. Low-Resolution Spectroscopy
3.3. Photometry
4. Results
4.1. Distance, Extinction, and Stellar Parameters
4.2. Atmospheric Parameters
4.3. Magnetic Field
- Rotationally modulated photometric variability (see Section 4.5);
- 5200 continuum depression;
- “Core-to-wing anomaly” in the line;
- Indications for the outflow activity in the past.
4.4. Average Abundances
4.5. Photometric Variability and Stellar Rotation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | https://www2.keck.hawaii.edu/koa/public/koa.php, accessed on 19 August 2020 |
2 | https://sites.astro.caltech.edu/~tb/makee/, accessed on 20 April 2021 |
3 | This heliocentric velocity was converted from LSR velocity given by Wouterloot and Brand using the peculiar velocity of the Sun from Schonrich et al. [38]. |
4 | http://kurucz.harvard.edu/atoms/2601/gfemq2601.pos, accessed on 14 December 2022 |
References
- Smith, K.C. Chemically Peculiar Hot Stars. Astrophys. Space Sci. 1996, 237, 77–105. [Google Scholar] [CrossRef]
- Romanyuk, I.I. Main-sequence magnetic CP stars: II. Physical parameters and chemical composition of the atmosphere. Astrophys. Bull. 2007, 62, 62–89. [Google Scholar] [CrossRef]
- Michaud, G. Diffusion Processes in Peculiar a Stars. Astrophys. J. 1970, 160, 641. [Google Scholar] [CrossRef]
- Michaud, G.; Alecian, G.; Richer, J. Atomic Diffusion in Stars; Springer International Publishing: Cham, Switzerland, 2015. [Google Scholar] [CrossRef]
- Ryabchikova, T.; Wade, G.A.; LeBlanc, F. Observational Evidence for the Stratification of Chemical Abundances in Stellar Atmospheres. In Modelling of Stellar Atmospheres, Proceedings of the 210th Symposium of the International Astronomical Union Held at Uppsala University, Uppsala, Sweden, 17–21 June 2002; Piskunov, N., Weiss, W.W., Gray, D.F., Eds.; IAU by the Astronomical Society of the Pacific: San Francisco, CA, USA, 2003; Volume 210, p. 301. [Google Scholar]
- Ryabchikova, T. Abundance structure of the atmospheres of magnetic CP stars. Contrib. Astron. Obs. Skalnate Pleso 2008, 38, 257–266. [Google Scholar]
- Kochukhov, O.; Bagnulo, S. Evolutionary state of magnetic chemically peculiar stars. Astron. Astrophys. 2006, 450, 763–775. [Google Scholar] [CrossRef]
- Abt, H.A. The occurence of abnormal stars in open clusters. Astrophys. J. 1979, 230, 485–496. [Google Scholar] [CrossRef]
- Netopil, M.; Fossati, L.; Zwintz, K.; Paunzen, E.; Bagnulo, S.; Pintado, O.I. Early Stage of Chemically Peculiar Stars. In Proceedings of the International Conference Physics and Evolution of Magnetic and Related Stars, Nizhny Arkhyz, Russia, 25–31 August 2014; Astronomical Society of the Pacific Conference Series: San Francisco, CA, USA, 2015; Volume 494, p. 148. [Google Scholar]
- Brittain, S.D.; Kamp, I.; Meeus, G.; Oudmaijer, R.D.; Waters, L.B.F.M. Herbig Stars. Space Sci. Rev. 2023, 219, 7. [Google Scholar] [CrossRef]
- Alecian, E.; Wade, G.A.; Catala, C.; Grunhut, J.H.; Landstreet, J.D.; Bagnulo, S.; Böhm, T.; Folsom, C.P.; Marsden, S.; Waite, I. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars—I. Observations and measurements. Mon. Not. R. Astron. Soc. 2013, 429, 1001–1026. [Google Scholar] [CrossRef]
- Mendigutía, I. On the Mass Accretion Rates of Herbig Ae/Be Stars. Magnetospheric Accretion or Boundary Layer? Galaxies 2020, 8, 39. [Google Scholar] [CrossRef]
- Wichittanakom, C.; Oudmaijer, R.D.; Fairlamb, J.R.; Mendigutía, I.; Vioque, M.; Ababakr, K.M. The accretion rates and mechanisms of Herbig Ae/Be stars. Mon. Not. R. Astron. Soc. 2020, 493, 234–249. [Google Scholar] [CrossRef]
- Folsom, C.P.; Bagnulo, S.; Wade, G.A.; Alecian, E.; Landstreet, J.D.; Marsden, S.C.; Waite, I.A. Chemical abundances of magnetic and non-magnetic Herbig Ae/Be stars. Mon. Not. R. Astron. Soc. 2012, 422, 2072–2101. [Google Scholar] [CrossRef]
- Castelli, F.; Hubrig, S.; Järvinen, S.P.; Schöller, M. The chemical composition of the Herbig Ae SB2 system AK Sco (HD 152404). Mon. Not. R. Astron. Soc. 2020, 491, 2010–2024. [Google Scholar] [CrossRef]
- Netopil, M.; Fossati, L.; Paunzen, E.; Zwintz, K.; Pintado, O.I.; Bagnulo, S. A probable pre-main sequence chemically peculiar star in the open cluster Stock 16. Mon. Not. R. Astron. Soc. 2014, 442, 3761–3768. [Google Scholar] [CrossRef]
- Shultz, M.E.; Alecian, E.; Petit, V.; Bagnulo, S.; Böhm, T.; Folsom, C.P.; Wade, G.A.; MiMeS Collaboration. NGC 6611 601: A hot pre-main-sequence spectroscopic binary containing a centrifugal magnetosphere host star. Mon. Not. R. Astron. Soc. 2021, 504, 3203–3220. [Google Scholar] [CrossRef]
- Potravnov, I.; Mashonkina, L.; Ryabchikova, T. BD +30°549: A young helium-weak silicon star in the NGC 1333 star-forming region. Mon. Not. R. Astron. Soc. 2023, 520, 1296–1310. [Google Scholar] [CrossRef]
- Semenko, E.; Romanyuk, I.; Yakunin, I.; Kudryavtsev, D.; Moiseeva, A. Spectropolarimetry of magnetic Chemically Peculiar stars in the Orion OB1 association. Mon. Not. R. Astron. Soc. 2022, 515, 998–1011. [Google Scholar] [CrossRef]
- Turcotte, S.; Charbonneau, P. Particle Transport and the lambda Bootis Phenomenon. II. an Accretion/Diffusion Model. Astrophys. J. 1993, 413, 376. [Google Scholar] [CrossRef]
- Vick, M.; Michaud, G.; Richer, J.; Richard, O. Abundance anomalies in pre-main-sequence stars. Stellar evolution models with mass loss. Astron. Astrophys. 2011, 526, A37. [Google Scholar] [CrossRef]
- Wade, G.A.; Drouin, D.; Bagnulo, S.; Landstreet, J.D.; Mason, E.; Silvester, J.; Alecian, E.; Böhm, T.; Bouret, J.C.; Catala, C.; et al. Discovery of the pre-main sequence progenitors of the magnetic Ap/Bp stars? Astron. Astrophys. 2005, 442, L31–L34. [Google Scholar] [CrossRef]
- Fairlamb, J.R.; Oudmaijer, R.D.; Mendigutía, I.; Ilee, J.D.; van den Ancker, M.E. A spectroscopic survey of Herbig Ae/Be stars with X-shooter—I. Stellar parameters and accretion rates. Mon. Not. R. Astron. Soc. 2015, 453, 976–1001. [Google Scholar] [CrossRef]
- Lynds, B.T. Catalogue of Dark Nebulae. Astrophys. J. Suppl. Ser. 1962, 7, 1. [Google Scholar] [CrossRef]
- Dobashi, K.; Uehara, H.; Kandori, R.; Sakurai, T.; Kaiden, M.; Umemoto, T.; Sato, F. Atlas and Catalog of Dark Clouds Based on Digitized Sky Survey I. Publ. Astron. Soc. Jpn. 2005, 57, S1–S386. [Google Scholar] [CrossRef]
- Herbig, G.H.; Dahm, S.E. The Pre-Main-Sequence Population of L988. Astron. J. 2006, 131, 1530–1543. [Google Scholar] [CrossRef]
- Clark, F.O. The pincushion cloud: The bipolar flows in L 988. Astron. Astrophys. 1986, 164, L19–L21. [Google Scholar]
- Walawender, J.; Reipurth, B.; Bally, J. Optical and Near-infrared Shocks in the L988 Cloud Complex. Astron. J. 2013, 146, 66. [Google Scholar] [CrossRef]
- Chavarria, C. A study of the peculiar T Tau star V1331 Cyg. Astron. Astrophys. 1981, 101, 105–117. [Google Scholar]
- Afanasiev, V.L.; Dodonov, S.N.; Amirkhanyan, V.R.; Moiseev, A.V. ADAM low- and medium-resolution spectrograph for 1.6-m AZT-33IK telescope. Astrophys. Bull. 2016, 71, 479–488. [Google Scholar] [CrossRef]
- Tody, D. IRAF in the Nineties. In Astronomical Data Analysis Software and Systems II; Astronomical Society of the Pacific Conference Series; Hanisch, R.J., Brissenden, R.J.V., Barnes, J., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1993; Volume 52, p. 173. [Google Scholar]
- Landolt, A.U. UBVRI Photometric Standard Stars around the Sky at +50 deg Declination. Astron. J. 2013, 146, 131. [Google Scholar] [CrossRef]
- Falcón-Barroso, J.; Sánchez-Blázquez, P.; Vazdekis, A.; Ricciardelli, E.; Cardiel, N.; Cenarro, A.J.; Gorgas, J.; Peletier, R.F. An updated MILES stellar library and stellar population models. Astron. Astrophys. 2011, 532, A95. [Google Scholar] [CrossRef]
- Gray, R.O.; Corbally, C.J. Stellar Spectral Classification; Princeton University Press: Princeton, NJ, USA, 2009. [Google Scholar]
- Kodaira, K. Osawa’s Peculiar Star HD 221568. Astrophys. J. 1969, 157, L59. [Google Scholar] [CrossRef]
- Romanyuk, I.I.; Kudryavtsev, D.O.; Semenko, E.A. Magnetic fields of chemically peculiar stars. II: Magnetic fields and rotation of stars with strong and weak anomalies in the continuum energy distribution. Astrophys. Bull. 2009, 64, 239–262. [Google Scholar] [CrossRef]
- Gaia Collaboration; Brown, A.G.A.; Vallenari, A.; Prusti, T.; de Bruijne, J.H.J.; Babusiaux, C.; Biermann, M.; Creevey, O.L.; Evans, D.W.; Eyer, L.; et al. Gaia Early Data Release 3. Summary of the contents and survey properties. Astron. Astrophys. 2021, 649, A1. [Google Scholar] [CrossRef]
- Schönrich, R.; Binney, J.; Dehnen, W. Local kinematics and the local standard of rest. Mon. Not. R. Astron. Soc. 2010, 403, 1829–1833. [Google Scholar] [CrossRef]
- Wouterloot, J.G.A.; Brand, J. IRAS sources beyond the solar circle. I. CO observations. Astron. Astrophys. Suppl. Ser. 1989, 80, 149–187. [Google Scholar]
- Lan, T.W.; Ménard, B.; Zhu, G. Exploring the diffuse interstellar bands with the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 2015, 452, 3629–3649. [Google Scholar] [CrossRef]
- Krełowski, J.; Galazutdinov, G.; Godunova, V.; Bondar, A. On the Relation between Interstellar Spectral Features and Reddening. Acta Astron. 2019, 69, 159–175. [Google Scholar] [CrossRef]
- Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163–1183. [Google Scholar] [CrossRef]
- Wright, E.L.; Eisenhardt, P.R.M.; Mainzer, A.K.; Ressler, M.E.; Cutri, R.M.; Jarrett, T.; Kirkpatrick, J.D.; Padgett, D.; McMillan, R.S.; Skrutskie, M.; et al. The Wide-field Infrared Survey Explorer (WISE): Mission Description and Initial On-orbit Performance. Astron. J. 2010, 140, 1868–1881. [Google Scholar] [CrossRef]
- Infrared Astronomical Satellite (IRAS) Catalogs and Atlases. Volume 1: Explanatory Supplement; NASA: Washington, DC, USA, 1988; Volume 1.
- Fitzpatrick, E.L.; Massa, D.; Gordon, K.D.; Bohlin, R.; Clayton, G.C. An Analysis of the Shapes of Interstellar Extinction Curves. VII. Milky Way Spectrophotometric Optical-through-ultraviolet Extinction and Its R-dependence. Astrophys. J. 2019, 886, 108. [Google Scholar] [CrossRef]
- Miroshnichenko, A.; Ivezić, Ž.; Vinković, D.; Elitzur, M. Dust Emission from Herbig AE/BE Stars: Evidence for Disks and Envelopes. Astrophys. J. Lett. 1999, 520, L115–L118. [Google Scholar] [CrossRef]
- Dominik, C.; Dullemond, C.P.; Waters, L.B.F.M.; Walch, S. Understanding the spectra of isolated Herbig stars in the frame of a passive disk model. Astron. Astrophys. 2003, 398, 607–619. [Google Scholar] [CrossRef]
- Bressan, A.; Marigo, P.; Girardi, L.; Salasnich, B.; Dal Cero, C.; Rubele, S.; Nanni, A. PARSEC: Stellar tracks and isochrones with the PAdova and TRieste Stellar Evolution Code. Mon. Not. R. Astron. Soc. 2012, 427, 127–145. [Google Scholar] [CrossRef]
- Iben, I., Jr. Stellar Evolution. I. The Approach to the Main Sequence. Astrophys. J. 1965, 141, 993. [Google Scholar] [CrossRef]
- Schmidt-Kaler, T. Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Technology—New Series “Gruppe/Group 6 Astronomy and Astrophysics” Vol. 2 Schaifers/Voigt: Astronomy and Astrophysics/Astronomie und Astrophysik “Stars and Star Clusters/Sterne und Sternhaufen; Springer: Berlin/Heidelberg, Germany, 1982. [Google Scholar]
- Shulyak, D.; Tsymbal, V.; Ryabchikova, T.; Stütz, C.; Weiss, W.W. Line-by-line opacity stellar model atmospheres. Astron. Astrophys. 2004, 428, 993–1000. [Google Scholar] [CrossRef]
- Kochukhov, O.P. Spectrum synthesis for magnetic, chemically stratified stellar atmospheres. In Proceedings of the International Conference Physics of Magnetic Stars, Special Astrophysical Observatory of the RAS, Nizhny Arkhyz, Russia, 28–31 August 2006; pp. 109–118. [Google Scholar]
- Piskunov, N.E.; Kupka, F.; Ryabchikova, T.A.; Weiss, W.W.; Jeffery, C.S. VALD: The Vienna Atomic Line Data Base. Astron. Astrophys. Suppl. Ser. 1995, 112, 525. [Google Scholar]
- Ryabchikova, T.; Piskunov, N.; Kurucz, R.L.; Stempels, H.C.; Heiter, U.; Pakhomov, Y.; Barklem, P.S. A major upgrade of the VALD database. Phys. Scr. 2015, 90, 054005. [Google Scholar] [CrossRef]
- Pakhomov, Y.V.; Ryabchikova, T.A.; Piskunov, N.E. Hyperfine Splitting in the VALD Database of Spectral-line Parameters. Astron. Rep. 2019, 63, 1010–1021. [Google Scholar] [CrossRef]
- Cowley, C.R.; Hubrig, S.; Ryabchikova, T.A.; Mathys, G.; Piskunov, N.; Mittermayer, P. The core-wing anomaly of cool Ap stars. Abnormal Balmer Profiles. Astron. Astrophys. 2001, 367, 939–942. [Google Scholar] [CrossRef]
- Kochukhov, O.; Bagnulo, S.; Barklem, P.S. Interpretation of the Core-Wing Anomaly of Balmer Line Profiles of Cool Ap Stars. Astrophys. J. 2002, 578, L75–L78. [Google Scholar] [CrossRef]
- Kochukhov, O. BinMag: Widget for Comparing Stellar Observed with Theoretical Spectra. Astrophysics Source Code Library. 2018. Available online: https://ascl.net/1805.015 (accessed on 25 April 2023).
- Preston, G.W. The Mean Surface Fields of Magnetic Stars. Astrophys. J. 1971, 164, 309. [Google Scholar] [CrossRef]
- Kochukhov, O.; Makaganiuk, V.; Piskunov, N.; Jeffers, S.V.; Johns-Krull, C.M.; Keller, C.U.; Rodenhuis, M.; Snik, F.; Stempels, H.C.; Valenti, J.A. Are there tangled magnetic fields on HgMn stars? Astron. Astrophys. 2013, 554, A61. [Google Scholar] [CrossRef]
- Mathys, G.; Lanz, T. Ap stars with resolved magnetically split lines. Astron. Astrophys. 1992, 256, 169–184. [Google Scholar]
- Raassen, A.J.J.; Uylings, P.H.M. On the determination of the solar iron abundance using Fe II lines. Astron. Astrophys. 1998, 340, 300–304. [Google Scholar]
- Fossati, L.; Ryabchikova, T.; Bagnulo, S.; Alecian, E.; Grunhut, J.; Kochukhov, O.; Wade, G. The chemical abundance analysis of normal early A- and late B-type stars. Astron. Astrophys. 2009, 503, 945–962. [Google Scholar] [CrossRef]
- Ryabchikova, T.; LeBlanc, F.; Shulyak, D. Modelling the Atmospheres of Peculiar Magnetic Stars. In Proceedings of the International Conference Magnetic Stars, Special Astrophysical Observatory of the RAS, Nizhny Arkhyz, Russia, 27 August–1 September 2010; pp. 69–80. [Google Scholar]
- Fuhr, J.R.; Martin, G.A.; Wiese, W.L. Atomic transition probabilities. Iron through Nickel. J. Phys. Chem. Ref. Data 1988, 17, 1–499. [Google Scholar]
- Scott, P.; Grevesse, N.; Asplund, M.; Sauval, A.J.; Lind, K.; Takeda, Y.; Collet, R.; Trampedach, R.; Hayek, W. The elemental composition of the Sun. I. The intermediate mass elements Na to Ca. Astron. Astrophys. 2015, 573, A25. [Google Scholar] [CrossRef]
- Scott, P.; Asplund, M.; Grevesse, N.; Bergemann, M.; Sauval, A.J. The elemental composition of the Sun. II. The iron group elements Sc to Ni. Astron. Astrophys. 2015, 573, A26. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J.; Scott, P. The Chemical Composition of the Sun. Ann. Rev. Astron. Astrophys. 2009, 47, 481–522. [Google Scholar] [CrossRef]
- Michaud, G.; Montmerle, T.; Cox, A.N.; Magee, N.H., Jr.; Hodson, S.W.; Martel, A. Helium abundance anomalies and radiative forces in stellar envelopes. Astrophys. J. 1979, 234, 206–216. [Google Scholar] [CrossRef]
- Vauclair, S.; Hardorp, J.; Peterson, D.M. Silicon levitation in chemically peculiar stars and the oblique rotator model. Astrophys. J. 1979, 227, 526–533. [Google Scholar] [CrossRef]
- Ryabchikova, T.A.; Romanovskaya, A.M. Investigation of the dependence of rare-earth element abundances on the effective temperature and magnetic field in the atmospheres of chemically peculiar (Ap) stars. Astron. Lett. 2017, 43, 252–264. [Google Scholar] [CrossRef]
- Kochanek, C.S.; Shappee, B.J.; Stanek, K.Z.; Holoien, T.W.S.; Thompson, T.A.; Prieto, J.L.; Dong, S.; Shields, J.V.; Will, D.; Britt, C.; et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) Light Curve Server v1.0. Publ. Astron. Soc. Pac. 2017, 129, 104502. [Google Scholar] [CrossRef]
- Linnell Nemec, A.F.; Nemec, J.M. A test of significance for periods derived using phase-dispersion-minimization techniques. Astrophys. J. 1985, 90, 2317–2320. [Google Scholar] [CrossRef]
- Alecian, E.; Wade, G.A.; Catala, C.; Grunhut, J.H.; Landstreet, J.D.; Böhm, T.; Folsom, C.P.; Marsden, S. A high-resolution spectropolarimetric survey of Herbig Ae/Be stars—II. Rotation. Mon. Not. R. Astron. Soc. 2013, 429, 1027–1038. [Google Scholar] [CrossRef]
- Reipurth, B.; Bally, J. Herbig-Haro Flows: Probes of Early Stellar Evolution. Ann. Rev. Astron. Astrophys. 2001, 39, 403–455. [Google Scholar] [CrossRef]
- Ferreira, J. Braking Down an Accreting Protostar: Disc-Locking, disc Winds, Stellar Winds, X-Winds and Magnetospheric Ejecta; Hennebelle, P., Charbonnel, C., Eds.; EAS Publications Series: Les Ulis, France, 2013; Volume 62, pp. 169–225. [Google Scholar] [CrossRef]
- Alecian, E.; Wade, G.A.; Catala, C.; Bagnulo, S.; Böhm, T.; Bouret, J.C.; Donati, J.F.; Folsom, C.P.; Grunhut, J.; Landstreet, J.D. Magnetism and binarity of the Herbig Ae star V380 Ori†. Mon. Not. R. Astron. Soc. 2009, 400, 354–368. [Google Scholar] [CrossRef]
- Havnes, O.; Conti, P.S. Magnetic accretion processes in peculiar A stars. Astron. Astrophys. 1971, 14, 1. [Google Scholar]
- Ryabchikova, T.A. Temperature Behavior of Elemental Abundances in the Atmospheres of Magnetic Peculiar Stars. Astron. Lett. 2005, 31, 388–397. [Google Scholar] [CrossRef]
- LeBlanc, F.; Monin, D.; Hui-Bon-Hoa, A.; Hauschildt, P.H. Stellar model atmospheres with abundance stratification. Astron. Astrophys. 2009, 495, 937–944. [Google Scholar] [CrossRef]
- Alecian, G.; Stift, M.J. Radiative diffusion in stellar atmospheres: Diffusion velocities. Astron. Astrophys. 2006, 454, 571–579. [Google Scholar] [CrossRef]
- Dalgarno, A.; McCray, R.A. Heating and Ionization of HI Regions. Ann. Rev. Astron. Astrophys. 1972, 10, 375. [Google Scholar] [CrossRef]
- Romanova, M.M.; Blinova, A.A.; Ustyugova, G.V.; Koldoba, A.V.; Lovelace, R.V.E. Properties of strong and weak propellers from MHD simulations. New Astron. 2018, 62, 94–114. [Google Scholar] [CrossRef]
- Grinin, V.P.; Potravnov, I.S.; Ilyin, I.V.; Shulman, S.G. Magnetic propeller effect in the spectra of young stars. Astron. Lett. 2015, 41, 407–416. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
11,175 ± 130 K | |
4.2 ± 0.15 dex | |
0.0 ± 0.2 km s | |
24 ± 1.5 km s | |
−16.2 ± 0.2 km s | |
∼3.5 kG | |
2.2 | |
1.87 ± 0.07 | |
3.0 | |
2.3 ± 0.15 | |
Age | ≈2.9 Myr |
Star | , K | , dex | , km s | , Gs | Composition | Obs. Data |
---|---|---|---|---|---|---|
21 Peg 1 | 10,400 | 3.55 | 3.8 | −4.6 ± 3.1 2 | normal | ESPaDOnS, R = 65,000 |
HD 170973 3 | 11,000 | 3.7 | 8.5 | 392 ± 5 | Ap | ESPaDOnS, R = 65,000 |
Line | , eV | z, eff. | |||
---|---|---|---|---|---|
G | G | ||||
Fe II 4491.397 Å | −2.71 (FMW) | 2.85 | 0.4 | −3.27 ± 0.03 | −3.45 ± 0.03 |
Fe II 4520.224 Å | −2.60 (RU) | 2.80 | 1.34 | −2.80 ± 0.05 | −3.36 ± 0.06 |
Fe II 6147.734 Å | −2.731 (K13) | 3.88 | 0.83 | −2.61 ± 0.05 | −3.46 ± 0.03 |
Fe II 6149.246 Å | −2.732 (K13) | 3.88 | 1.35 | −3.01 ± 0.02 | −3.41 ± 0.05 |
Fe II 6586.708 Å | −2.35 (fit) | 5.60 | 0.01 | −3.48 ± 0.06 | −3.48 ± 0.06 |
−3.03 ± 0.31 | −3.43 ± 0.04 |
Element | |||
---|---|---|---|
He I | 2 | −3.35 ± 0.15 | −1.07 |
C II | 2 | −4.10 ± 0.15 | −3.57 |
O I | 3 | −4.00 ± 0.30 | −3.31 |
Mg II | 4 | −4.56 ± 0.15 | −4.41 |
Al II | 1 | −6.18 ± 0.5 | −5.27 |
Si II | 9 | −3.14 ± 0.17 | −4.49 |
Si III | 2 | −2.98 ± 0.15 | −4.49 |
Ca II | 4 | −4.37 ± 0.18 | −5.68 |
Ti II | 6 | −7.17 ± 0.2 | −7.07 |
Cr I | 6 | −3.44 ± 0.20 | −6.38 |
Cr II | 14 | −3.64 ± 0.22 | −6.38 |
Mn II | 2 | −4.82 ± 0.16 | −6.58 |
Fe I | 4 | −3.24 ± 0.12 | −4.53 |
Fe II | 22 | −3.24 ± 0.16 | −4.53 |
Ni II | 7 | −5.20± 0.26 | −5.80 |
Ba II | 2 | ≲9.00 | −9.82 |
Pr III | 4 | −7.40 ± 0.17 | −11.33 |
Nd III | 12 | −6.86 ± 0.17 | −10.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potravnov, I.; Ryabchikova, T.; Artemenko, S.; Eselevich, M. Pre-Main Sequence Ap Star LkHα 324/B in LDN 988 Star Forming Region. Universe 2023, 9, 210. https://doi.org/10.3390/universe9050210
Potravnov I, Ryabchikova T, Artemenko S, Eselevich M. Pre-Main Sequence Ap Star LkHα 324/B in LDN 988 Star Forming Region. Universe. 2023; 9(5):210. https://doi.org/10.3390/universe9050210
Chicago/Turabian StylePotravnov, Ilya, Tatiana Ryabchikova, Svetlana Artemenko, and Maxim Eselevich. 2023. "Pre-Main Sequence Ap Star LkHα 324/B in LDN 988 Star Forming Region" Universe 9, no. 5: 210. https://doi.org/10.3390/universe9050210
APA StylePotravnov, I., Ryabchikova, T., Artemenko, S., & Eselevich, M. (2023). Pre-Main Sequence Ap Star LkHα 324/B in LDN 988 Star Forming Region. Universe, 9(5), 210. https://doi.org/10.3390/universe9050210