Yang–Mills Instantons in the Dual-Superconductor Vacuum Can Become Confining
Abstract
:1. Introduction
2. Yang–Mills Instantons in the London Limit of the Dual Superconductor
3. Summary
Funding
Conflicts of Interest
Appendix A. Heavy-Quark Potential for the 1/ρ3-Distribution of Large-Size Instantons
References
- Yagi, K.; Hatsuda, T.; Miake, Y. Quark-Gluon Plasma; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Antonov, D.; Di Giacomo, A. String breaking in QCD: Dual superconductor vs. stochastic vacuum model. J. High Energy Phys. 2005, 3, 017. [Google Scholar] [CrossRef]
- Antonov, D. Calculating non-perturbative quantities through the world-line formalism. J. Phys. Conf. Ser. 2019, 1208, 012005. [Google Scholar] [CrossRef]
- Casher, A.; Neuberger, H.; Nussinov, S. Chromoelectric-flux-tube model of particle production. Phys. Rev. D 1979, 20, 179–188. [Google Scholar] [CrossRef]
- Dosch, H.G.; Gromes, D. Theoretical foundation for treating decays allowed by the Okubo–Zweig–Iizuka rule and related phenomena. Phys. Rev. D 1986, 33, 1378–1386. [Google Scholar] [CrossRef] [PubMed]
- Bialas, A. Fluctuations of string tension and transverse mass distribution. Phys. Lett. B 1999, 466, 301–304. [Google Scholar] [CrossRef]
- Mandelstam, S. Vortices and quark confinement in non-Abelian gauge theories. Phys. Lett. B 1975, 53, 476–478. [Google Scholar] [CrossRef]
- ’t Hooft, G. Topology of the gauge condition and new confinement phases in non-Abelian gauge theories. Nucl. Phys. B 1981, 190, 455–478. [Google Scholar] [CrossRef]
- Ripka, G. Dual Superconductor Models of Color Confinement; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Antonov, D. Monopole-based scenarios of confinement and deconfinement in 3D and 4D. Universe 2017, 3, 50. [Google Scholar] [CrossRef]
- Lifshitz, E.M.; Pitaevskii, L.P. Statistical Physics. Part 2; Butterworth-Heinemann: Oxford, UK, 1980. [Google Scholar]
- Abrikosov, A.A. On the magnetic properties of superconductors of the second group. J. Exp. Theor. Phys. 1957, 5, 1174–1182. [Google Scholar]
- Nielsen, H.B.; Olesen, P. Vortex-line models for dual strings. Nucl. Phys. B 1973, 61, 45–61. [Google Scholar] [CrossRef]
- Vilenkin, A.; Shellard, E.P.S. Cosmic Strings and other Topological Defects; Cambridge University Press: Cambridge, UK, 1994; Chapter 4.3. [Google Scholar]
- Bogomolny, E.B. Stability of classical solutions. Sov. J. Nucl. Phys. 1976, 24, 449–454. [Google Scholar]
- Koma, Y.; Ilgenfritz, E.-M.; Toki, H.; Suzuki, T. Casimir scaling in a dual superconducting scenario of confinement. Phys. Rev. D 2001, 64, 011501. [Google Scholar] [CrossRef]
- Antonov, D.; Del Debbio, L.; Ebert, D. k-string tensions in the 4-d SU(N)-inspired dual Abelian-Higgs-type theory. J. High Energy Phys. 2004, 12, 022. [Google Scholar] [CrossRef]
- Cea, P.; Cosmai, L.; Cuteri, F.; Papa, A. Flux tubes in the QCD vacuum. Phys. Rev. D 2017, 95, 114511. [Google Scholar] [CrossRef]
- Simonov, Y.A. Field correlator method for the confinement in QCD. Phys. Rev. D 2019, 99, 056012. [Google Scholar] [CrossRef]
- Diakonov, D. Instantons at work. Prog. Part. Nucl. Phys. 2003, 51, 173–222. [Google Scholar] [CrossRef]
- Fukushima, M.; Sasaki, S.; Suganuma, H.; Tanaka, A.; Toki, H.; Diakonov, D. Clustering of monopoles in the instanton vacuum. Phys. Lett. B 1997, 399, 141–147. [Google Scholar] [CrossRef]
- Agasian, N.O.; Fedorov, S.M. Instanton IR stabilization in the nonperturbative confining vacuum. J. High Energy Phys. 2001, 12, 019. [Google Scholar] [CrossRef]
- Di Giacomo, A.; Dosch, H.G.; Shevchenko, V.I.; Simonov, Y.A. Field correlators in QCD. Theory and applications. Phys. Rept. 2002, 372, 319–368. [Google Scholar] [CrossRef]
- Baker, M.; Brambilla, N.; Dosch, H.G.; Vairo, A. Field-strength correlators and dual effective dynamics in QCD. Phys. Rev. D 1998, 58, 034010. [Google Scholar] [CrossRef]
- Antonov, D. Field correlators in Abelian-projected theories and stochastic vacuum model. J. High Energy Phys. 2000, 7, 055. [Google Scholar] [CrossRef]
- Bicudo, P.; Brambilla, N.; Ribeiro, E.; Vairo, A. Confinement and chiral symmetry breaking in heavy-light quark systems. Phys. Lett. B 1998, 442, 349–358. [Google Scholar] [CrossRef]
- Antonov, D.; Ribeiro, J.E. Quark condensate for various heavy flavors. Eur. Phys. J. C 2012, 72, 2179. [Google Scholar] [CrossRef]
- Diakonov, D.; Petrov, V. Confinement from instantons? In Non-Perturbative Approaches to Quantum Chromodynamics; Petersburg Nuclear Physics Institute: Gatchina, Russia, 1995; pp. 239–247. [Google Scholar]
- Diakonov, D.I.; Petrov, V.Y.; Pobylitsa, P.V. The Wilson loop and heavy-quark potential in the instanton vacuum. Phys. Lett. B 1989, 226, 372–376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonov, D. Yang–Mills Instantons in the Dual-Superconductor Vacuum Can Become Confining. Universe 2023, 9, 257. https://doi.org/10.3390/universe9060257
Antonov D. Yang–Mills Instantons in the Dual-Superconductor Vacuum Can Become Confining. Universe. 2023; 9(6):257. https://doi.org/10.3390/universe9060257
Chicago/Turabian StyleAntonov, Dmitry. 2023. "Yang–Mills Instantons in the Dual-Superconductor Vacuum Can Become Confining" Universe 9, no. 6: 257. https://doi.org/10.3390/universe9060257
APA StyleAntonov, D. (2023). Yang–Mills Instantons in the Dual-Superconductor Vacuum Can Become Confining. Universe, 9(6), 257. https://doi.org/10.3390/universe9060257