An Exact Model of a Gravitational Wave in the Bianchi III Universe Based on Shapovalov II Wave Spacetime and the Quadratic Theory of Gravity
Abstract
:1. Introduction
2. Shapovalov Wave Spacetimes and the Bianchi Type-III Universe
3. Quadratic Theory of Gravity with Scalar Field
4. Case I: The Scalar Field Depends on the Wave Variable Only
5. Case II: The Scalar Field Depends on Anisotropic Variable Only
6. Case III: The Scalar Field Depends on All Non-Ignored Variables
6.1. Case III A: The Scalar Field Depends on All Non-Ignored Variables,
6.2. Case III B: The Scalar Field Depends on All Non-Ignored Variables,
6.3. Case III C: The Scalar Field Depends on All Non-Ignored Variables,
7. Radiation Propagation
7.1. Radiation Propagation: Metric at
7.2. Propagation of Radiation: Metric at
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bennett, C.L.; Larson, D.; Weiland, J.L.; Jarosik, N.; Hinshaw, G.; Odegard, N.; Smith, K.M.; Hill, R.S.; Gold, B.; Halpern, M.; et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results. Astrophys. J. Suppl. Ser. 2013, 208, 20. [Google Scholar] [CrossRef] [Green Version]
- Saito, R.; Yokoyama, J. Gravitational-wave background as a probe of the primordial black-hole abundance. Phys. Rev. Lett. 2009, 102, 161101. [Google Scholar] [CrossRef] [Green Version]
- Saito, R.; Yokoyama, J. Gravitational-Wave constraints on the abundance of primordial black holes. Prog. Theor. Phys. 2010, 123, 867–886. [Google Scholar] [CrossRef] [Green Version]
- Boulware, D.; Deser, S. String-generated gravity models. Phys. Rev. Lett. 1985, 55, 2656–2660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guth, A.H. Inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 1981, 23, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Osetrin, K.; Osetrin, E.; Osetrina, E. Gravitational wave of the Bianchi VII universe: Particle trajectories, geodesic deviation and tidal accelerations. Eur. Phys. J. C 2022, 82, 894. [Google Scholar] [CrossRef]
- Osetrin, K.; Osetrin, E.; Osetrina, E. Geodesic deviation and tidal acceleration in the gravitational wave of the Bianchi type IV universe. Eur. Phys. J. Plus 2022, 137, 856. [Google Scholar] [CrossRef]
- Bamba, K.; Capozziello, S.; Nojiri, S.; Odintsov, S. Dark energy cosmology: The equivalent description via different theoretical models and cosmography tests. Astrophys. Space Sci. 2012, 342, 155–228. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S. Unified cosmic history in modified gravity: From F(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K. Modified Gravity Theories on a Nutshell: Inflation, Bounce and Late-time Evolution. Phys. Rep. 2017, 692, 1–104. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, J.T. Symmetric Solutions to the Gauss–Bonnet Extended Einstein Equations. Nucl. Phys. B 1986, 268, 737–746. [Google Scholar] [CrossRef]
- Goldberger, W.D.; Rothstein, I.Z. An Effective field theory of gravity for extended objects. Phys. Rev. D 2006, 73, 104029. [Google Scholar] [CrossRef] [Green Version]
- Maartens, R.; Koyama, K. Brane-World Gravity. Living Rev. Rel. 2010, 13, 5. [Google Scholar] [CrossRef] [Green Version]
- Gubitosi, G.; Piazza, F.; Vernizzi, F. The Effective Field Theory of Dark Energy. J. Cosmol. Astropart. Phys. 2013, 2013, 032. [Google Scholar] [CrossRef] [Green Version]
- Peebles, P.J.E. Fluid dark matter. Astrophys. J. Lett. 2000, 534, L127. [Google Scholar] [CrossRef] [Green Version]
- Crisostomi, M.; Koyama, K.; Tasinato, G. Extended Scalar-Tensor Theories of Gravity. J. Cosmol. Astropart. Phys. 2016, 2016, 044. [Google Scholar] [CrossRef]
- Hayashi, K.; Shirafuji, T. Gravity from Poincare Gauge Theory of the Fundamental Particles. 1. Linear and Quadratic Lagrangians. Prog. Theor. Phys. 1980, 64, 866, Erratum in Prog. Theor. Phys. 1981, 65, 2079. [Google Scholar] [CrossRef] [Green Version]
- Zhu, T.; Zhao, W.; Yan, J.M.; Gong, C.; Wang, A. Tests of modified gravitational wave propagations with gravitational waves. arXiv 2023, arXiv:2304.09025. [Google Scholar]
- East, W.E.; Pretorius, F. Binary neutron star mergers in Einstein-scalar-Gauss-Bonnet gravity. Phys. Rev. D 2022, 106, 104055. [Google Scholar] [CrossRef]
- Osetrin, K.; Osetrin, E. Shapovalov wave-like spacetimes. Symmetry 2020, 12, 1372. [Google Scholar] [CrossRef]
- Osetrin, K.; Kirnos, I.; Osetrin, E.; Filippov, A. Wave-Like Exact Models with Symmetry of Spatial Homogeneity in the Quadratic Theory of Gravity with a Scalar Field. Symmetry 2021, 13, 1173. [Google Scholar] [CrossRef]
- Osetrin, K.; Filippov, A.; Kirnos, I.; Osetrin, E. Type I Shapovalov Wave Spacetimes in the Brans-Dicke Scalar-Tensor Theory of Gravity. Symmetry 2022, 14, 2636. [Google Scholar] [CrossRef]
- Osetrin, K.; Kirnos, I.; Filippov, A. Quadratic Theory of Gravity with a Scalar Field and Type I Shapovalov Wave Spacetimes. Universe 2022, 8, 664. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osetrin, K.; Kirnos, I.; Osetrin, E. An Exact Model of a Gravitational Wave in the Bianchi III Universe Based on Shapovalov II Wave Spacetime and the Quadratic Theory of Gravity. Universe 2023, 9, 356. https://doi.org/10.3390/universe9080356
Osetrin K, Kirnos I, Osetrin E. An Exact Model of a Gravitational Wave in the Bianchi III Universe Based on Shapovalov II Wave Spacetime and the Quadratic Theory of Gravity. Universe. 2023; 9(8):356. https://doi.org/10.3390/universe9080356
Chicago/Turabian StyleOsetrin, Konstantin, Ilya Kirnos, and Evgeny Osetrin. 2023. "An Exact Model of a Gravitational Wave in the Bianchi III Universe Based on Shapovalov II Wave Spacetime and the Quadratic Theory of Gravity" Universe 9, no. 8: 356. https://doi.org/10.3390/universe9080356
APA StyleOsetrin, K., Kirnos, I., & Osetrin, E. (2023). An Exact Model of a Gravitational Wave in the Bianchi III Universe Based on Shapovalov II Wave Spacetime and the Quadratic Theory of Gravity. Universe, 9(8), 356. https://doi.org/10.3390/universe9080356