Electron Emission Cross Section from Methane under 250 keV Proton Impact
Abstract
:1. Introduction
2. Experimental Technique
3. Results and Discussions
3.1. Energy and Angular Distributions
3.2. Single Differential Cross Section (SDCS) and Total Cross Section (TCS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tielens, A.G.G.M. The molecular universe. Rev. Mod. Phys. 2013, 85, 1021–1081. [Google Scholar] [CrossRef]
- Herbst, E. The chemistry of interstellar space. Chem. Soc. Rev. 2001, 30, 168–176. [Google Scholar] [CrossRef]
- Biswas, S.; Tribedi, L.C. Plasmon-mediated electron emission from the coronene molecule under fast ion impact. Phys. Rev. A 2015, 92, 060701. [Google Scholar] [CrossRef]
- Holm, A.I.S.; Zettergren, H.; Johansson, H.A.B.; Seitz, F.; Rosén, S.; Schmidt, H.T.; Ławicki, A.; Rangama, J.; Rousseau, P.; Capron, M.; et al. Ions Colliding with Cold Polycyclic Aromatic Hydrocarbon Clusters. Phys. Rev. Lett. 2010, 105, 213401. [Google Scholar] [CrossRef]
- Rudd, M.E.; DuBois, R.D.; Toburen, L.H.; Ratcliffe, C.A.; Goffe, T.V. Cross sections for ionization of gases by 5-4000-keV protons and for electron capture by 5–150-keV protons. Phys. Rev. A 1983, 28, 3244–3257. [Google Scholar] [CrossRef]
- Wilson, W.E.; Toburen, L.H. Electron emission from proton-hydrocarbon-molecule collisions at 0.3–2.0 MeV. Phys. Rev. A 1975, 11, 1303–1308. [Google Scholar] [CrossRef]
- Kovács, S.T.S.; Herczku, P.; Juhász, Z.; Sarkadi, L.; Gulyás, L.; Sulik, B. Ionization of small molecules induced by H+, He+, and N+ projectiles: Comparison of experiment with quantum and classical calculations. Phys. Rev. A 2016, 94, 012704. [Google Scholar] [CrossRef] [Green Version]
- Lynch, D.J.; Toburen, L.H.; Wilson, W.E. Electron emission from methane, ammonia, monomethylamine, and dimethylamine by 0.25 to 2.0 MeV protons. J. Chem. Phys. 1976, 64, 2616–2622. [Google Scholar] [CrossRef]
- Rapp, D.; Englander-Golden, P. Total Cross Sections for Ionization and Attachment in Gases by Electron Impact. I. Positive Ionization. J. Chem. Phys. 1965, 43, 1464–1479. [Google Scholar] [CrossRef]
- Mandal, A.; Bagdia, C.; Roy Chowdhury, M.; Bhattacharjee, S.; Misra, D.; Monti, J.M.; Rivarola, R.D.; Tribedi, L.C. Electron emission from CH4 molecules in collisions with fast bare C ions. Phys. Rev. A 2020, 101, 062708. [Google Scholar] [CrossRef]
- Roy Chowdhury, M.; Mandal, A.; Bhogale, A.; Bansal, H.; Bagdia, C.; Bhattacharjee, S.; Monti, J.M.; Rivarola, R.D.; Tribedi, L.C. Ionization of atoms and molecules using 200-keV protons and 5.5-MeV/u bare C ions: Energy-dependent collision dynamics. Phys. Rev. A 2020, 102, 012819. [Google Scholar] [CrossRef]
- Dogan, M.; Ulu, M.; Ozer, Z.; Yavuz, M.; Bozkurt, G. Double Differential Cross-Sections for Electron Impact Ionization of Atoms and Molecules. J. Spectrosc. 2013, 2013, 16. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Wei, L.; Wang, B.; Ren, B.; Yu, W.; Zhang, Y.; Zou, Y.; Chen, L.; Xiao, J.; Wei, B. Measurement of Absolute Single and Double Electron Capture Cross Sections for O6+ Ion Collisions with CO2, CH4, H2, and N2. Astrophys. J. Suppl. Ser. 2021, 253, 6. [Google Scholar] [CrossRef]
- Seredyuk, B.; Mccullough, R.; Gilbody, H. Mechanisms of One-Electron Capture by Slow He2+, C4+ and O6+ Ions in Collisions with CH4. Braz. J. Phys. 2006, 36, 509–510. [Google Scholar] [CrossRef] [Green Version]
- Horsdal-Pedersen, E.; Loftager, P.; Rasmussen, J.L. Electron capture in close collisions between protons and carbon (CH4). J. Phys. B Atom. Mol. Phys. 1982, 15, 4423–4436. [Google Scholar] [CrossRef]
- Sanders, J.M.; Varghese, S.L.; Fleming, C.H.; Soosai, G.A. Electron capture by protons and electron loss from hydrogen atoms in collisions with hydrocarbon and hydrogen molecules in the 60 120 keV energy range. J. Phys. B Atom. Mol. Phys. 2003, 36, 3835–3846. [Google Scholar] [CrossRef]
- Browning, R.; Gilbody, H.B. Fragmentation of molecular gases by 5–45 keV protons. J. Phy. B Atom. Mol. Phys. 1968, 1, 1149–1156. [Google Scholar] [CrossRef]
- Ben-Itzhak, I.; Carnes, K.D.; Ginther, S.G.; Johnson, D.T.; Norris, P.J.; Weaver, O.L. Fragmentation of CH4 caused by fast-proton impact. Phys. Rev. A 1993, 47, 3748–3757. [Google Scholar] [CrossRef]
- Ben-Itzhak, I.; Carnes, K.D.; Johnson, D.T.; Norris, P.J.; Weaver, O.L. Velocity dependence of ionization and fragmentation of methane caused by fast-proton impact. Phys. Rev. A 1994, 49, 881–888. [Google Scholar] [CrossRef]
- Luna, H.; Cavalcanti, E.G.; Nickles, J.; Sigaud, G.M.; Montenegro, E.C. CH4ionization and dissociation by proton and electron impact. J. Phys. B Atom. Molecul. Opt. Phys. 2003, 36, 4717–4729. [Google Scholar] [CrossRef]
- Knudsen, H.; Mikkelsen, U.; Paludan, K.; Kirsebom, K.; Moller, S.P.; Uggerhoj, E.; Slevin, J.; Charlton, M.; Morenzoni, E. Non-dissociative and dissociative ionization of N2, CO, CO2, and CH4 by impact of 50–6000 keV protons and antiprotons. J. Phys. B Atom. Molecul. Opt. Phys. 1995, 28, 3569–3592. [Google Scholar] [CrossRef]
- Malhi, N.B.; Ben-Itzhak, I.; Gray, T.J.; Legg, J.C.; Needham, V.; Carnes, K.; McGuire, J.H. Fragmentation of CH4 in collisions with fast highly charged ions. J. Chem. Phys. 1987, 87, 6502–6506. [Google Scholar] [CrossRef]
- Rajput, J.; Safvan, C.P. Projectile charge-state dependence of methane fragmentation. Phys. Rev. A 2008, 77, 014702. [Google Scholar] [CrossRef]
- Werner, U.; Siegmann, B.; Lebius, H.; Huber, B.; Lutz, H.O. Multiple ionization and fragmentation of CH4 in collisions with slow highly charged ions. Nuclear Instrum. Methods Phys. Res. B 2003, 205, 639–642. [Google Scholar] [CrossRef]
- Tachino, C.A.; Monti, J.M.; Fojón, O.A.; Champion, C.; Rivarola, R.D. Ionization of water molecules by ion beams. On the relevance of dynamic screening and the influence of the description of the initial state. J. Phys. B Atom. Molecul. Opt. Phys. 2014, 47, 035203. [Google Scholar] [CrossRef]
- Champion, C. Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components. J. Chem. Phys. 2013, 138, 184306. [Google Scholar] [CrossRef]
- Gulyás, L.; Tóth, I.; Nagy, L. CDW-EIS calculation for ionization and fragmentation of methane impacted by fast protons. J. Phys. B Atom. Molecul. Opt. Phys. 2013, 46, 075201. [Google Scholar] [CrossRef]
- Gulyás, L.; Egri, S.; Ghavaminia, H.; Igarashi, A. Single and multiple electron removal and fragmentation in collisions of protons with water molecules. Phys. Rev. A 2016, 93, 032704. [Google Scholar] [CrossRef] [Green Version]
- Bagdia, C.; Tribedi, L. Electron emissions from CH4 molecules in collisions with 94 MeV Si13+ ions. Eur. J. D 2022, 76, 243. [Google Scholar] [CrossRef]
- Chakraborty, D.; Tribedi, L. Ionization of CH4 in high perturbation collisions and Young-type electron interference. Phys. Rev. A 2022. submitted. [Google Scholar]
- Chowdhury, M.R.; Tribedi, L.C. Electron impact ionization of O2 and the interference effect from forward–backward asymmetry. J. Phys. B Atom. Molecul. Opt. Phys. 2017, 50, 155201. [Google Scholar] [CrossRef]
Energy (eV) | 20° | 30° | 45° | 60° | 75° | 90° | 105° | 120° | 135° | 150° | 160° |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 4.33 | 3.16 | 3.19 | 3.07 | 3.04 | 2.88 | 2.26 | 2.03 | 1.92 | 1.76 | 1.55 |
3 | 5.47 | 4.29 | 3.82 | 4.01 | 3.71 | 3.46 | 2.53 | 2.19 | 2.02 | 1.73 | 1.67 |
7 | 2.98 | 2.66 | 2.28 | 1.95 | 1.78 | 1.39 | 1.07 | 0.859 | 0.684 | 0.601 | 0.559 |
11 | 1.85 | 1.63 | 1.45 | 1.26 | 1.07 | 0.876 | 0.573 | 0.382 | 0.330 | 0.272 | 0.254 |
15 | 1.26 | 1.11 | 0.979 | 0.863 | 0.729 | 0.499 | 0.309 | 0.232 | 0.148 | 0.135 | 0.136 |
21 | 0.775 | 0.682 | 0.645 | 0.539 | 0.432 | 0.286 | 0.162 | 0.113 | 0.073 | 0.069 | 0.061 |
31 | 0.445 | 0.408 | 0.366 | 0.341 | 0.241 | 0.176 | 0.059 | 0.049 | 0.036 | 0.031 | 0.027 |
40 | 0.282 | 0.272 | 0.238 | 0.221 | 0.166 | 0.096 | 0.036 | 0.026 | 0.019 | 0.018 | 0.017 |
50 | 0.209 | 0.199 | 0.188 | 0.163 | 0.114 | 0.061 | 0.021 | 0.015 | 0.011 | 0.011 | |
60 | 0.161 | 0.141 | 0.142 | 0.138 | 0.087 | 0.038 | 0.013 | 0.011 | |||
70 | 0.125 | 0.112 | 0.114 | 0.106 | 0.065 | 0.023 | |||||
80 | 0.105 | 0.090 | 0.109 | 0.091 | 0.049 | 0.018 | |||||
100 | 0.075 | 0.059 | 0.073 | 0.061 | 0.020 | ||||||
120 | 0.055 | 0.046 | 0.059 | 0.044 | 0.011 | ||||||
140 | 0.040 | 0.036 | 0.051 | 0.031 | |||||||
160 | 0.030 | 0.031 | 0.039 | 0.023 | |||||||
180 | 0.023 | 0.026 | 0.032 | 0.018 | |||||||
200 | 0.019 | 0.021 | 0.028 | 0.013 |
Energy (eV) | 15° | 20° | 30° | 40° | 50° | 60° | 70° | 80° | 90° | 110° | 125° |
---|---|---|---|---|---|---|---|---|---|---|---|
10 | 2.38 | 1.97 | 1.50 | 1.31 | 1.11 | 1.03 | 0.966 | 0.873 | 0.662 | 0.540 | 0.440 |
20 | 0.873 | 0.934 | 0.844 | 0.662 | 0.662 | 0.578 | 0.522 | 0.440 | 0.324 | 0.175 | 0.116 |
50 | 0.309 | 0.298 | 0.277 | 0.277 | 0.240 | 0.223 | 0.192 | 0.115 | 0.069 | 0.024 | 0.019 |
100 | 0.138 | 0.103 | 0.092 | 0.103 | 0.103 | 0.086 | 0.051 | 0.021 | |||
200 | 0.028 | 0.030 | 0.033 | 0.039 | 0.029 | 0.014 |
Energy (eV) | SDCS () | Angle (Degree) | SDCS () |
---|---|---|---|
1 | 33.04 | 20 | 71.22 |
3 | 39.35 | 30 | 64.38 |
7 | 18.47 | 45 | 59.05 |
11 | 10.93 | 60 | 51.06 |
15 | 6.97 | 75 | 40.27 |
21 | 4.16 | 90 | 30.64 |
31 | 2.35 | 105 | 20.46 |
40 | 1.50 | 120 | 16.73 |
50 | 1.07 | 135 | 13.88 |
60 | 0.806 | 150 | 11.99 |
70 | 0.610 | 160 | 11.38 |
80 | 0.512 | ||
100 | 0.315 | ||
120 | 0.228 | ||
140 | 0.171 | ||
160 | 0.129 | ||
180 | 0.101 | ||
200 | 0.082 |
Projectile | TCSExp | TCSLynch | TCSRudd | TCSCNDO | ||
---|---|---|---|---|---|---|
250 keV H+ | 4.27 | 3.10 | 4.92 * | 5.81 | 3.92 | 5.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chakraborty, D.; Gulyás, L.; Tribedi, L.C. Electron Emission Cross Section from Methane under 250 keV Proton Impact. Atoms 2023, 11, 49. https://doi.org/10.3390/atoms11030049
Chakraborty D, Gulyás L, Tribedi LC. Electron Emission Cross Section from Methane under 250 keV Proton Impact. Atoms. 2023; 11(3):49. https://doi.org/10.3390/atoms11030049
Chicago/Turabian StyleChakraborty, Debasmita, László Gulyás, and Lokesh C. Tribedi. 2023. "Electron Emission Cross Section from Methane under 250 keV Proton Impact" Atoms 11, no. 3: 49. https://doi.org/10.3390/atoms11030049
APA StyleChakraborty, D., Gulyás, L., & Tribedi, L. C. (2023). Electron Emission Cross Section from Methane under 250 keV Proton Impact. Atoms, 11(3), 49. https://doi.org/10.3390/atoms11030049