Application of Laboratory Atomic Physics to Some Significant Stellar Chemical Composition Questions
Abstract
:1. Introduction
2. Laboratory Transition Data
3. Some Applications of Laboratory Data to Low Metallicity Stars
- continuous spectral coverage from the through the optical, 2300−8000 Å;
- ∼550 Fe i and Fe ii lines, ∼600 lines of other Fe-group neutral and ionized species ([20] Figure 1);
- precise abundances from 17 Fe-peak species (mean line-to-line scatters log = 0.07), with good agreement (mean log differences of 0.03 dex) between neutrals and ions of seven elements ([20] Figure 7);
- little sign of over-ionization of neutral species, which would be a signature of departures from local thermodynamic equilibrium (LTE) in the Fe-group neutral species, which could be a fortuitous result that can be realized as well by a combination of more realistic three-dimensional model atmospheres and detailed non-LTE computations (e.g., [45]);
- no evidence for depletion of Cr and enhancement of Co at this metallicity; and
- a curious overabundance of the three lightest Fe-peak elements Sc, Ti, and V.
4. Extending the Wavelength Domain to the Near-Infrared
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Committee on the Physics of the Universe; Board on Physics and Astronomy; Division on Engineering and Physical Sciences; National Research Council of the National Academies. Connecting Quarks with the Cosmos: Eleven Science Questions for the New Century; National Academies Press: Washington, DC, USA, 2003. [Google Scholar]
- Ryabchikova, T.; Piskunov, N.; Kurucz, R.L.; Stempels, H.C.; Heiter, U.; Pakhomov, Y.; Barklem, P.S. A major upgrade of the VALD database. Phys. Scr. 2015, 90, 054005. [Google Scholar] [CrossRef]
- Kurucz, R.L. Including all the lines. Can. J. Phys. 2011, 89, 417–428. [Google Scholar] [CrossRef]
- Kurucz, R.L. Problems with Atomic and Molecular Data: Including All the Lines. In Determination of Atmospheric Parameters of B-, A-, F- and G-Type Stars; Niemczura, E., Smalley, B., Pych, W., Eds.; Springer: Cham, Switzerland, 2014; pp. 63–73. ISBN 978-3-319-06955-5. [Google Scholar]
- Anstee, S.D.; O’Mara, B.J. Width cross-sections for collisional broadening of s-p and p-s transitions by atomic hydrogen. Mon. Not. R. Astron. Soc. 1995, 276, 859–866. [Google Scholar] [CrossRef]
- Barklem, P.S.; Piskunov, N.; O’Mara, B.J. A list of data for the broadening of metallic lines by neutral hydrogen collisions. Astron. Astrophys. Suppl. 2000, 142, 467–473. [Google Scholar] [CrossRef] [Green Version]
- Barklem, P.S. Accurate abundance analysis of late-type stars: advances in atomic physics. Astron. Astrophys. Rev. 2016, 24, 9:1–9:54. [Google Scholar] [CrossRef]
- Pehlivan Rhodin, A.; Belmonte, M.T.; Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Pickering, J.C.; Clear, C.; Quinet, P.; Fivet, V.; et al. Lifetime measurements and oscillator strengths in singly ionized scandium and the solar abundance of scandium. Mon. Not. R. Astron. Soc. 2017, 472, 3337–3353. [Google Scholar] [CrossRef]
- Quinet, P.; Fivet, V.; Palmeri, P.; Engström, L.; Hartman, H.; Lundberg, H.; Nilsson, H. Experimental radiative lifetimes for highly excited states and calculated oscillator strengths for lines of astrophysical interest in singly ionized cobalt (Co II). Mon. Not. R. Astron. Soc. 2016, 462, 3912–3917. [Google Scholar] [CrossRef]
- Belmonte, M.T.; Pickering, J.C.; Ruffoni, M.P.; Den Hartog, E.A.; Lawler, J.E.; Guzman, A.; Heiter, U. Fe I Oscillator Strengths for Transitions from High-lying Odd-parity Levels. Mon. Not. R. Astron. Soc. 2017, 848, 125. [Google Scholar] [CrossRef]
- Belmonte, M.T.; Pickering, J.C.; Clear, C.; Liggings, F.; Thorne, A.P. Accurate atomic data for Galactic Surveys. In Proceedings of the IAU Symposium S330: Astrometry and Astrophysics in the Gaia Sky, Nice, France, 24–28 April 2017; Recio-Blanco, A., de Laverny, P., Brown, A.G.A., Prusti, T., Eds.; Cambridge University Press: Cambridge, UK, 2017; pp. 203–205. [Google Scholar]
- Engström, L.; Lundberg, H.; Nilsson, H.; Hartman, H.; Bäckström, E. The FERRUM project: Experimental transition probabilities from highly excited even 5 s levels in Cr II. Astron. Astrophys. 2014, 570, A34:1–A34:5. [Google Scholar] [CrossRef]
- Hartman, H.; Engström, L.; Lundberg, H.; Nilsson, H.; Quinet, P.; Fivet, V.; Palmeri, P.; Malcheva, G.; Blagoev, K. Radiative data for highly excited 3d84d levels in Ni II from laboratory measurements and atomic calculations. Astron. Astrohys. 2017, 600, A108:1–A108:13. [Google Scholar] [CrossRef]
- Rodionov, D.S.; Belyaev, A.K.; Guitou, M.; Spielfiedel, A.; Feautrier, N.; Barklem, P.S. Inelastic cross sections for low-energy Mg + H collisions. J. Phys. Conf. Ser. 2014, 572, 012010:1–012010:7. [Google Scholar] [CrossRef]
- Anderson, H.M.; Bergeson, S.D.; Doughty, D.A.; Lawler, J.E. Xenon 147-nm resonance f value and trapped decay rates. Phys. Rev. A 1995, 51, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Fedchak, J.A.; Lawler, J.E. Absolute UV And Vacuum UV Oscillator Strengths For Ni II. Astrophys. J. 1999, 523, 734–738. [Google Scholar] [CrossRef]
- Ruffoni, M.P.; Den Hartog, E.A.; Lawler, J.E.; Brewer, N.R.; Lind, K.; Nave, G.; Pickering, J.C. Fe I oscillator strengths for the Gaia-ESO survey. Mon. Not. R. Astron. Soc. 2014, 441, 3127–3136. [Google Scholar] [CrossRef]
- Den Hartog, E.A.; Ruffoni, M.P.; Lawler, J.E.; Pickering, J.C.; Lind, K.; Brewer, N.R. Fe I Oscillator Strengths for Transitions from High-lying Even-parity Levels. Astrophys. J. Suppl. Ser. 2014, 215, 23:1–23:13. [Google Scholar] [CrossRef]
- O’Brian, T.R.; Wickliffe, M.E.; Lawler, J.E.; Whaling, W.; Brault, J.W. Lifetimes, transition probabilities, and level energies in Fe i. J. Opt. Soc. Am. B 1991, 8, 1185–1201. [Google Scholar] [CrossRef]
- Sneden, C.; Cowan, J.J.; Kobayashi, C.; Pignatari, M.; Lawler, J.E.; Den Hartog, E.A.; Wood, M.P. Iron-group Abundances in the Metal-poor Main-Sequence Turnoff Star HD 84937. Astrophys. J. 2016, 817, 53:1–53:16. [Google Scholar] [CrossRef]
- Lawler, J.E.; Guzman, A.; Wood, M.P.; Sneden, C.; Cowan, J.J. Improved Log(gf) Values for Lines of Ti I and Abundance Determinations in the Photospheres of the Sun and Metal-Poor Star HD 84937 (Accurate Transition Probabilities for Ti I). Astrophys. J. Suppl. Ser. 2013, 205, 11:1–11:15. [Google Scholar] [CrossRef]
- Lawler, J.E.; Wood, M.P.; Den Hartog, E.A.; Feigenson, T.; Sneden, C.; Cowan, J.J. Improved V I Log(gf) Values and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937. Astrophys. J. Suppl. Ser. 2014, 215, 20:1–20:13. [Google Scholar] [CrossRef]
- Sobeck, J.S.; Lawler, J.E.; Sneden, C. Improved Laboratory Transition Probabilities for Neutral Chromium and Redetermination of the Chromium Abundance for the Sun and Three Stars. Astrophys. J. 2007, 667, 1267–1282. [Google Scholar] [CrossRef] [Green Version]
- Den Hartog, E.A.; Lawler, J.E.; Sobeck, J.S.; Sneden, C.; Cowan, J.J. Improved log(gf) Values of Selected Lines in Mn I and Mn II for Abundance Determinations in FGK Dwarfs and Giants. Astrophys. J. Suppl. Ser. 2011, 194, 35:1–35:11. [Google Scholar] [CrossRef]
- Lawler, J.E.; Sneden, C.; Cowan, J.J. Improved Co I log(gf) Values and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937. Astrophys. J. Suppl. Ser. 2015, 220, 13:1–13:11. [Google Scholar] [CrossRef]
- Wood, M.P.; Lawler, J.E.; Sneden, C.; Cowan, J.J. Improved Ni I log(gf) Values and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937. Astrophys. J. Suppl. Ser. 2014, 211, 20:1–20:13. [Google Scholar] [CrossRef]
- Wood, M.P.; Lawler, J.E.; Sneden, C.; Cowan, J.J. Improved Ti II Log(gf) Values and Abundance Determinations in the Photospheres of the Sun and Metal-Poor Star HD 84937. Astrophys. J. Suppl. Ser. 2013, 208, 27:1–27:10. [Google Scholar] [CrossRef]
- Lawler, J.E.; Sneden, C.; Nave, G.; Den Hartog, E.A.; Emrahoğlu, N.; Cowan, J.J. Improved Cr II log(gf) Values and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937. Astrophys. J. Suppl. Ser. 2017, 228, 10:1–10:16. [Google Scholar] [CrossRef] [PubMed]
- Lawler, J.E.; Feigenson, T.; Sneden, C.; Cowan, J.J.; Nave, G. Transition probabilities of Co II, weak lines to the ground and low metastable levels. arXiv, 2018; arXiv:astro-ph.SR/1806.00581. [Google Scholar]
- Wood, M.P.; Lawler, J.E.; Den Hartog, E.A.; Sneden, C.; Cowan, J.J. Improved V II Log(gf) Values, Hyperfine Structure Constants, and Abundance Determinations in the Photospheres of the Sun and Metal-poor Star HD 84937. Astrophys. J. Suppl. Ser. 2014, 214, 18:1–18:12. [Google Scholar] [CrossRef]
- Wallerstein, G.; Helfer, H.L. Adundances in G Dwarf Stars. II. The High-Velocity Star 85 Pegasi. Astrophys. J. 1959, 129, 720–723. [Google Scholar] [CrossRef]
- Abbott, B.P.; Abbott, R.; Abbott, T.D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.X.; Adya, V.B.; et al. GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett. 2017, 119, 161101:1–161101:18. [Google Scholar] [CrossRef] [PubMed]
- Drout, M.R.; Piro, A.L.; Shappee, B.J.; Kilpatrick, C.D.; Simon, J.D.; Contreras, C.; Coulter, D.A.; Foley, R.J.; Siebert, M.R.; Morrell, N.; et al. Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis. Science 2017, 358, 1570–1574. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shappee, B.J.; Simon, J.D.; Drout, M.R.; Piro, A.L.; Morrell, N.; Prieto, J.L.; Kasen, D.; Holoien, T.W.S.; Kollmeier, J.A.; Kelson, D.D.; et al. Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger. Science 2017, 358, 1574–1578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sneden, C.; Preston, G.W.; McWilliam, A.; Searle, L. Ultrametal-poor halo stars: The remarkable spectrum of CS 22892-052. Astrophys. J. 1994, 431, L27–L30. [Google Scholar] [CrossRef]
- Holmbeck, E.M.; Beers, T.C.; Roederer, I.U.; Placco, V.M.; Hansen, T.T.; Sakari, C.M.; Sneden, C.; Liu, C.; Lee, Y.S.; Cowan, J.J.; et al. The R-Process Alliance: 2MASS J09544277+5246414, the Most Actinide-enhanced R-II Star Known. Astrophys. J. 2018, 859, L24:1–L24:6. [Google Scholar] [CrossRef]
- Hill, V.; Plez, B.; Cayrel, R.; Beers, T.C.; Nordström, B.; Andersen, J.; Spite, M.; Spite, F.; Barbuy, B.; Bonifacio, P.; et al. First stars. I. The extreme r-element rich, iron-poor halo giant CS 31082-001. Implications for the r-process site(s) and radioactive cosmochronology. Astron. Astrophys. 2002, 387, 560–579. [Google Scholar] [CrossRef]
- Sneden, C.; Cowan, J.J.; Gallino, R. Neutron-Capture Elements in the Early Galaxy. Annu. Rev. Astron. Astrophys. 2008, 46, 241–288. [Google Scholar] [CrossRef]
- Siqueira Mello, C.; Spite, M.; Barbuy, B.; Spite, F.; Caffau, E.; Hill, V.; Wanajo, S.; Primas, F.; Plez, B.; Cayrel, R.; et al. First stars. XVI. HST/STIS abundances of heavy elements in the ura nium-rich metal-poor star CS 31082-001. Astron. Astrophys. 2013, 550, A122:1–A122:17. [Google Scholar] [CrossRef]
- Lambert, D.L. The chemical composition of main sequence stars. In Proceedings of the 1998 AIP Conference on Cosmic Abundances of Matter, Minneapolis, MN, USA, 15–17 August 1988; Waddington, C.J., Ed.; Volume 183, pp. 168–199. [Google Scholar]
- Wheeler, J.C.; Sneden, C.; Truran, J.W., Jr. Abundance ratios as a function of metallicity. Annu. Rev. Astron. Astrophys. 1989, 27, 279–349. [Google Scholar] [CrossRef]
- Sneden, C.; Gratton, R.G.; Crocker, D.A. Trends in copper and zinc abundances for disk and halo stars. Astron. Astrophys. 1991, 246, 354–367. [Google Scholar]
- McWilliam, A.; Preston, G.W.; Sneden, C.; Searle, L. Spectroscopic Analysis of 33 of the Most Metal Poor Stars. II. Astron. J. 1995, 109, 2757–2799. [Google Scholar] [CrossRef]
- Cayrel, R.; Depagne, E.; Spite, M.; Hill, V.; Spite, F.; François, P.; Plez, B.; Beers, T.; Primas, F.; Andersen, J.; et al. First stars V—Abundance patterns from C to Zn and supernova yields in the early Galaxy. Astron. Astrophys. 2004, 416, 1117–1138. [Google Scholar] [CrossRef]
- Amarsi, A.M.; Lind, K.; Asplund, M.; Barklem, P.S.; Collet, R. Non-LTE line formation of Fe in late-type stars—III. 3D non-LTE analysis of metal-poor stars. Mon. Not. R. Astron. Soc. 2016, 463, 1518–1533. [Google Scholar] [CrossRef]
- Sneden, C.; Roederer, I.U.; Boesgaard, A.M.; Lawler, J.E.; Den Hartog, E.; Cowan, J.J.; Sobeck, J. Detailed Iron-Group Abundances in a Very Metal-Poor Main Sequence Turnoff Star. Presented at the 2017 229th American Astronomical Society Meeting, Grapevine, TX, USA, 3–7 January 2017; p. 154. [Google Scholar]
- Roederer, I.U.; Sneden, C.; Lawler, J.E.; Sobeck, J.S.; Cowan, J.J.; Boesgaard, A.M. Consistent Iron Abundances Derived from Neutral and Singly Ionized Iron Lines in Ultraviolet and Optical Spectra of Six Warm Metal-poor Stars. Astrophys. J. 2018, 860, 125:1–125:15. [Google Scholar] [CrossRef]
- Wood, M.P.; Sneden, C.; Lawler, J.E.; Den Hartog, E.A.; Cowan, J.J.; Nave, G. Vanadium Transitions in the Spectrum of Arcturus. Astrophys. J. Suppl. Ser. 2018, 234, 25. [Google Scholar] [CrossRef]
- Afşar, M.; Sneden, C.; Wood, M.P.; Lawler, J.E.; Bozkurt, Z.; Böcek Topcu, G.; Mace, G.N.; Kim, H.; Jaffe, D.T. Chemical Compositions of Evolved Stars From Near-Infrared IGRINS High-Resolution Spectra. I. Abundances in Three Red Horizontal Branch Stars. arXiv, 2018; arXiv:astro-ph.SR/1808.03855. [Google Scholar]
- Blackwell-Whitehead, R.J.; Lundberg, H.; Nave, G.; Pickering, J.C.; Jones, H.R.A.; Lyubchik, Y.; Pavlenko, Y.V.; Viti, S. Experimental TiI oscillator strengths and their application to cool star analysis. Mon. Not. R. Astron. Soc. 2006, 373, 1603–1609. [Google Scholar] [CrossRef]
- Chavez, J.; Lambert, D.L. Isotopic Titanium Abundances in Local M Dwarfs. Astrophys. J. 2009, 699, 1906–1918. [Google Scholar] [CrossRef]
1. | |
2. | We adopt the standard spectroscopic notation [31] that, for elements A and B, [A/B] ≡ log(N/N) − log(N/N). We use the definition log (A) ≡ log(N/N) + 12.0, and equate metallicity with the stellar [Fe/H] value. |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sneden, C.; Lawler, J.E.; Wood, M.P. Application of Laboratory Atomic Physics to Some Significant Stellar Chemical Composition Questions. Atoms 2018, 6, 48. https://doi.org/10.3390/atoms6030048
Sneden C, Lawler JE, Wood MP. Application of Laboratory Atomic Physics to Some Significant Stellar Chemical Composition Questions. Atoms. 2018; 6(3):48. https://doi.org/10.3390/atoms6030048
Chicago/Turabian StyleSneden, Christopher, James E. Lawler, and Michael P. Wood. 2018. "Application of Laboratory Atomic Physics to Some Significant Stellar Chemical Composition Questions" Atoms 6, no. 3: 48. https://doi.org/10.3390/atoms6030048
APA StyleSneden, C., Lawler, J. E., & Wood, M. P. (2018). Application of Laboratory Atomic Physics to Some Significant Stellar Chemical Composition Questions. Atoms, 6(3), 48. https://doi.org/10.3390/atoms6030048