Modified Potentiometric Screen-Printed Electrodes Based on Imprinting Character for Sodium Deoxycholate Determination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. Reagents and Materials
2.3. Molecular Imprinted (MIP) and Non-Imprinted Polymers (NIP) Synthesis
2.4. Membranes and Electrode Construction
2.5. Potentiometric Assay of Human Serum Albumin (HSA)
3. Results and Discussion
3.1. Characterization of MIP Particles
3.2. Membrane Optimization
3.3. Potential Stability
3.4. Electrochemical Impedance Spectrometry (EIS)
3.5. Selectivity Studies
3.6. Analytical Applications
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matsuoka, K.; Moroi, Y. Micelle formation of sodium deoxycholate and sodium ursodeoxycholate (Part 1). Biochim. Biophy. Acta (BBA)-Mol. Cell Biol. Lipids 2002, 1580, 189–199. [Google Scholar] [CrossRef]
- Wheeler, H.O. Secretion of bile acids by the liver and their role in the formation of hepatic bile. Arch. Intern. Med. 1972, 130, 533–541. [Google Scholar] [CrossRef]
- Sharma, P.; Varma, M.V.; Chawla, H.P.; Panchagnula, R.P. In situ and in vivo efficacy of peroral absorption enhancers in rats and correlation to in vitro mechanistic studies. Il Farmaco 2005, 60, 874–883. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Guo, R. Insights into cyclodextrin-modulated interactions between protein and surfactant at specific and nonspecific binding stages. J. Colloid Interface Sci. 2010, 351, 180–189. [Google Scholar] [CrossRef]
- Ramos Cabrer, P.; Alvarez-Parrilla, E.; Meijide, F.; Seijas, J.A.; Rodríguez Núñez, E.; Vázquez Tato, J. Complexation of sodium cholate and sodium deoxycholate by β-cyclodextrin and derivatives. Langmuir 1999, 15, 5489–5495. [Google Scholar] [CrossRef]
- Ravichandran, G.; Lakshiminarayanan, G.; Ragouramane, D. Apparent molar volume and ultrasonic studies on some bile salts in water–aprotic solvent mixtures. Fluid Phase Equilibria 2013, 356, 256–263. [Google Scholar] [CrossRef]
- Jover, A.; Meijide, F.; Núñez, E.R.; Tato, J.V.; Mosquera, M. Aggregation number for sodium deoxycholate from steady-state and time-resolved fluorescence. Langmuir 1997, 13, 161–164. [Google Scholar] [CrossRef]
- Kumar, K.; Chauhan, S. Volumetric, compressibility and viscometric studies on sodium cholate/sodium deoxycholate–amino acid interactions in aqueous medium. Thermochim. Acta 2015, 606, 12–24. [Google Scholar] [CrossRef]
- Abdalla, N.S.; Youssef, M.A.; Algarni, H.; Awwad, N.S.; Kamel, A.H. All Solid-State Poly (Vinyl Chloride) Membrane Potentiometric Sensor Integrated with Nano-Beads Imprinted Polymers for Sensitive and Rapid Detection of Bispyribac Herbicide as Organic Pollutant. Molecules 2019, 24, 712. [Google Scholar] [CrossRef] [Green Version]
- Galal Eldin, A.; Amr, A.E.; Kamel, A.H.; Hassan, S.S.M. Screen-printed Microsensors Using Polyoctyl-thiophene (POT) Conducting Polymer As Solid Transducer for Ultratrace Determination of Azides. Molecules 2019, 24, 1392. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.S.M.; Badr, I.H.A.; Kamel, A.H.; Mohamed, M.S. A Novel Poly (Vinyl Chloride) Matrix Membrane Sensor for Batch and Flow-injection Determination of Thiocyanate, Cyanide and Some Metal Ions. Anal. Sci. 2009, 25, 911–917. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, J.R.L.; Kamel, A.H.; Sales, M.G.F. FIA potentiometric system based on periodate polymeric membrane sensorsfor the assessment of ascorbic acid in commercial drinks. Food Chem. 2010, 120, 934–939. [Google Scholar] [CrossRef] [Green Version]
- Moreira, F.T.C.; Guerreiro, J.R.L.; Vera, L.O.; Azevedo, L.O.V.; Kamel, A.H.; Sales, M.G.F. New potentiometric sensors for the determination of tetracycline in biological samples: Batch and flow mode operations. Anal. Meth. 2010, 2, 2039. [Google Scholar] [CrossRef] [Green Version]
- Abdalla, N.S.; Amr, A.E.; El-Tantawy, A.S.M.; Al-Omar, M.A.; Kamel, A.H.; Khalifa, N.M. Tailor-Made Specific Recognition of Cyromazine Pesticide Integrated in a Potentiometric Strip Cell for Environmental and Food Analysis. Polymers 2019, 11, 1526–1536. [Google Scholar] [CrossRef] [Green Version]
- Hassan, S.S.M.; Amr, A.E.; Abd El-Naby, H.; El-Naggar, M.; Kamel, A.H.; Khalifa, N.M. Novel Aminoacridine Sensors Based on Molecularly Imprinted Hybrid Polymeric Membranes for Static and Hydrodynamic Drug Quality Control Monitoring. Materials 2019, 12, 3327–3340. [Google Scholar] [CrossRef] [Green Version]
- Ezzat, S.; Ahmed, M.A.; Amr, A.E.; Al-Omar, M.A.; Kamel, A.H.; Khalifa, N.M. Single-Piece All-Solid-State Potential Ion-Selective Electrodes Integrated with Molecularly Imprinted Polymers (MIPs) for Neutral 2, 4-Dichlorophenol Assessment. Materials 2019, 12, 2924–2936. [Google Scholar] [CrossRef] [Green Version]
- El-Naby, E.H.; Kamel, A.H. Potential transducers based man-tailored biomimetic sensors for selective recognition of dextromethorphan as an antitussive drug. Mat. Sci. Eng. C 2015, 54, 217–224. [Google Scholar] [CrossRef]
- Kamel, A.H.; Sayour, H.E.M. Flow-Through Assay of Quinine Using Solid Contact Potentiometric Sensors Based on Molecularly Imprinted Polymers. Electroanalysis 2009, 21, 2701–2708. [Google Scholar] [CrossRef]
- Kamel, A.H.; Soror, T.Y.; Al-Romian, F.M. Flow through potentiometric sensors based on molecularly imprinted polymers for selective monitoring of mepiquat residue, a quaternary ammonium herbicide. Anal. Meth. 2012, 4, 3007–3012. [Google Scholar] [CrossRef]
- Kamel, A.H.; Hassan, A.M.E. Solid Contact Potentiometric Sensors Based on Host-Tailored Molecularly Imprinted Polymers for Creatine Assessment. Int. J. Electrochem. Sci. 2016, 11, 8938–8949. [Google Scholar] [CrossRef]
- McNeel, K.E.; Siraj, N.; Negulescu, I.; Warner, I.S. Sodium deoxycholate/TRIS-based hydrogels for multipurpose solute delivery vehicles: Ambient release, drug release, and enantiopreferential release. Talanta 2018, 177, 66–73. [Google Scholar] [CrossRef]
- Shiigi, H.; Kijim, D.; Ikenaga, Y.; Hori, K.; Fukazawa, S.; Nagaoka, T. Molecular Recognition for Bile Acids Using a MolecularlyImprinted Overoxidized Polypyrrole Film. J. Electrochem. Soc. 2005, 152, H129–H134. [Google Scholar] [CrossRef]
- Kupai, J.; Razali, M.; Buyuktiryaki, S.; Kecili, R.; Szekely, G. Long-term stability and reusability of molecularly imprinted polymers. Polym. Chem. 2017, 8, 666–673. [Google Scholar] [CrossRef] [Green Version]
- Bobacka, J. Potential stability of all-solid-state ion-selective electrodes using conducting polymers as ion-to-electron transducers. Anal. Chem. 1999, 71, 4932–4937. [Google Scholar] [CrossRef]
- Bakker, E. Determination of improved selectivity coefficients of polymer membrane ion-selective electrodes by conditioning with a discriminated ion. J. Electrochem. Soc. 1996, 143, L83–L85. [Google Scholar] [CrossRef]
- Rudman, D.; Kendall, F.E. Bile acid content of human serum. II. The binding of cholanic acids by human plasma proteins. J. Clin. Investig. 1957, 36, 538–542. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Capote, K.; Tovell, K.; Holmes, D.; Dayton, J.; Higgins, T.N. Analytical evaluation of the Diazyme glycated serum protein assay on the siemens ADVIA 1800: Comparison of results against HbA1c for diagnosis and management of diabetes. J. Diabetes Sci. Technol. 2015, 9, 192–199. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.T.; Sheu, W.H.; Lin, S.Y. The impact of creatinine clearance rate, daily urinary albumin, and their joint effect on predicting death in diabetic inpatients after discharge: An observational study. Medicine 2016, 95, e2804. [Google Scholar] [CrossRef]
Sensor No. | MIP, mg | DOP, mg | Aliquat, mg | PVC, mg | Slope, mV/decade | Detection Limit, M | Correlation Coefficient, r2 |
---|---|---|---|---|---|---|---|
1 | - | 102 | 4 | 58 | −32.6 ± 0.7 | 3.5 × 10−3 | 0.997 |
2 | 5 | 102 | - | 58 | −41.6 ± 1.5 | 3.1 × 10−4 | 0.996 |
3 | 5 | 102 | 4 | 58 | −47.1 ± 1.2 | 2.5 × 10−4 | 0.999 |
4 | 10 | 102 | 4 | 58 | −48.8 ± 2.1 | 2.0 × 10−4 | 0.999 |
5 | 20 | 102 | 4 | 58 | −50.3 ± 1.4 | 7.5 × 10−5 | 0.997 |
6 | 30 | 102 | 4 | 58 | −60.1 ± 0.9 | 4.7 × 10−5 | 0.999 |
7 | 35 | 102 | 4 | 58 | −51.2 ± 0.1 | 1.0 × 10−4 | 0.998 |
Interfering Ion | * Log Kpotx,y NaDC/MIP-ISE |
---|---|
Cl− | −2.5 ± 0.7 |
SO4−2 | −3.2 ± 0.8 |
NO3− | −3.2 ± 0.3 |
PO43− | −1.9 ± 0.7 |
Glucose | −3.5 ± 0.2 |
CH3COO− | −2.2 ± 0.1 |
C2O42− | −1.7 ± 0.6 |
Cholesterol | −2.7 ± 0.3 |
Creatinine | −3.6 ± 0.4 |
Urate | −1.9 ± 0.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
H. Kamel, A.; Ezzat, S.; Ahmed, M.A.; Amr, A.E.-G.E.; A. Almehizia, A.; Al-Omar, M.A. Modified Potentiometric Screen-Printed Electrodes Based on Imprinting Character for Sodium Deoxycholate Determination. Biomolecules 2020, 10, 251. https://doi.org/10.3390/biom10020251
H. Kamel A, Ezzat S, Ahmed MA, Amr AE-GE, A. Almehizia A, Al-Omar MA. Modified Potentiometric Screen-Printed Electrodes Based on Imprinting Character for Sodium Deoxycholate Determination. Biomolecules. 2020; 10(2):251. https://doi.org/10.3390/biom10020251
Chicago/Turabian StyleH. Kamel, Ayman, Samar Ezzat, Mona A. Ahmed, Abd El-Galil E. Amr, Abdulrahman A. Almehizia, and Mohamed A. Al-Omar. 2020. "Modified Potentiometric Screen-Printed Electrodes Based on Imprinting Character for Sodium Deoxycholate Determination" Biomolecules 10, no. 2: 251. https://doi.org/10.3390/biom10020251
APA StyleH. Kamel, A., Ezzat, S., Ahmed, M. A., Amr, A. E. -G. E., A. Almehizia, A., & Al-Omar, M. A. (2020). Modified Potentiometric Screen-Printed Electrodes Based on Imprinting Character for Sodium Deoxycholate Determination. Biomolecules, 10(2), 251. https://doi.org/10.3390/biom10020251