Quantification of one Prenylated Flavanone from Eysenhardtia platycarpa and four derivatives in Ex Vivo Human Skin Permeation Samples Applying a Validated HPLC Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Extraction and Isolation of Plant Material
2.3. Semi-synthesis from Natural Prenylated Flavanone
2.4. Chromatographic Operating Conditions
2.5. Ex Vivo Human Skin Permeation
2.6. Prenylated Flavanone Extraction
2.7. Recovery from Human Skin Tissues and Prenylated Flavanone Retained
2.8. Analytical Method Validation
2.8.1. Standard Solutions for Calibration Curves
2.8.2. Linearity
2.8.3. Limit of Detection and Limit of Quantification
2.8.4. Repeatability, Accuracy, and Precision
2.8.5. Specificity
3. Results and Discussions
3.1. Analytical Method Validation
3.1.1. Linearity
3.1.2. Limit of Detection and Limit of Quantification
3.1.3. Repeatability, Accuracy, and Precision
3.1.4. Specificity
3.1.5. Recovery
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Sohn, H.Y.; Son, K.H.; Kwon, C.S.; Kwon, G.S.; Kang, S.S. Antimicrobial and Cytotoxic Activity of 18 Prenylated Flavonoids Isolated from Medicinal Plants: Morus alba L., Morus mongolica Schneider, Broussnetia papyrifera (L.) Vent, Sophora flavescens Ait and Echinosophora koreensis Nakai. Phytomedicine 2004, 11, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, R.; Wang, R.; Liu, X.; Xie, K.; Chen, D.; Dai, J. Biocatalytic Access to Diverse Prenyl Flavonoids by Combining a Regiospecific C-Prenyltransferase and a Stereospecific Chalcone Isomerase. Acta Pharm. Sínica 2018, 8, 678–686. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Mukwaya, E.; Wong, M.S.; Zhang, Y. A Systematic Review on Biological Activities of Prenylated Flavonoids. Pharm. Biol. 2014, 52, 655–660. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Kashiwada, Y.; Shibata, H.; Takaishi, Y. Prenylated Flavonoids from Desmodium caudatum and Evaluation of Their Anti-MRSA Activity. Phytochemistry 2012, 82, 136–142. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Venturelli, S.; Burkard, M.; Biendl, M.; Lauer, U.M.; Frank, J.; Busch, C. Prenylated Chalcones and Flavonoids for the Prevention and Treatment of Cancer. Nutrition 2016, 32, 1171–1178. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, Y.; Yang, J.; He, J.; Sun, J.; Chen, F.; Zhang, M.; Yang, B. Prenylated Flavonoids, Promising Nutraceuticals with Impressive Biological Activities. Trends Food Sci. Technol. 2015, 44, 93–104. [Google Scholar] [CrossRef]
- Gopi, S.; Amalraj, A. Introduction of Nanotechnology in Herbal Drugs and Nutraceutical: A Review. J. Nanomedine. Biotherapeutic Discov. 2016, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Narváez-Mastache, J.M.; Garduño-Ramírez, M.L.; Alvarez, L.; Delgado, G. Antihyperglycemic Activity and Chemical Constituents of Eysenhardtia platycarpa. J. Nat. Prod. 2006, 69, 1687–1691. [Google Scholar] [CrossRef]
- Narváez Mastache, J.M.; Soto, C.; Delgado, G. Antioxidant Evaluation of Eysenhardtia Species (Fabaceae): Relay Synthesis of 3- O -Acetyl-11 α, 12 α-Epoxy-Oleanan-28, 13 β-Olide Isolated from E. platycarpa and Its Protective Effect in Experimental Diabetes. Biol. Pharm. Bull. 2007, 30, 1503–1510. [Google Scholar] [CrossRef]
- Pérez Gutierrez, R.M.; García Baez, E. Evaluation of Antidiabetic, Antioxidant and Antiglycating Activities of the Eysenhardtia polystachya. Pharmacogn. Mag. 2014, 10, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Domínguez-Villegas, V.; Domínguez-Villegas, V.; García, M.L.; Calpena, A.; Clares-Naveros, B.; Garduño-Ramírez, M.L. Anti-Inflammatory, Antioxidant and Cytotoxicity Activities of Methanolic Extract and Prenylated Flavanones Isolated from Leaves of Eysehardtia platycarpa. Nat. Prod. Commun. 2013, 8, 177–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrade-Carrera, B.; Clares, B.; Noé, V.; Mallandrich, M.; Calpena, A.; García, M.; Garduño-Ramírez, M. Cytotoxic Evaluation of (2S)-5,7-Dihydroxy-6-Prenylflavanone Derivatives Loaded PLGA Nanoparticles against MiaPaCa-2 Cells. Molecules 2017, 22, 1553. [Google Scholar] [CrossRef] [Green Version]
- Alalaiwe, A.; Lin, C.; Hsiao, C.; Chen, E.; Lin, C. Development of Fl Avanone and Its Derivatives as Topical Agents against Psoriasis: The Prediction of Therapeutic e Ffi Ciency through Skin Permeation Evaluation and Cell-Based Assay. Int. J. Pharm. 2020, 581, 119256. [Google Scholar] [CrossRef]
- Pyrzynska, K.; Sentkowska, A. Recent Developments in the HPLC Separation of Phenolic Food Compounds. Crit. Rev. Anal. Chem. 2015, 45, 41–51. [Google Scholar] [CrossRef]
- Villiers, A.; De Venter, P.; Pasch, H. Recent Advances and Trends in the Liquid-Chromatography—Mass Spectrometry Analysis of Flavonoids. J. Chromatogr. A 2016, 1430, 16–78. [Google Scholar] [CrossRef]
- Sus, N.; Schlienz, J.; Calvo-Castro, L.A.; Burkard, M.; Venturelli, S.; Busch, C.; Frank, J. Validation of a Rapid and Sensitive Reversed-Phase Liquid Chromatographic Method for the Quantification of Prenylated Chalcones and Flavanones in Plasma and Urine. NFS J. 2018, 10, 1–9. [Google Scholar] [CrossRef]
- Abrego, G.; Alvarado, H.; Souto, E.B.; Guevara, B.; Halbaut, L.; Luisa, M.; Luisa, M.; Calpena, A.C. Biopharmaceutical pro Fi Le of Hydrogels Containing Pranoprofen-Loaded PLGA Nanoparticles for Skin Administration: In Vitro, Ex Vivo and in Vivo Characterization. Int. J. Pharm. 2016, 501, 350–361. [Google Scholar] [CrossRef]
- Causon, R. Validation of Chromatographic Methods in Biomedical Analysis Viewpoint and Discussion. J. Chromatogr. B Biomed. Sci. Appl. 1997, 689, 175–180. [Google Scholar] [CrossRef]
- EMA; Committee for Medicinal Products for Human Use. Guideline on Bioanalytical Method Validation. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 9 October 2019).
- Shabir, G.A. Validation of High-Performance Liquid Chromatography Methods for Pharmaceutical Analysis. J. Chromatogr. A 2003, 987, 57–66. [Google Scholar] [CrossRef]
- Alvarado, H.L.; Abrego, G.; Garduño-Ramirez, M.L.; Clares, B.; García, M.L.; Calpena, A.C. Development and Validation of a High-Performance Liquid Chromatography Method for the Quantification of Ursolic/Oleanic Acids Mixture Isolated from Plumeria obtusa. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2015, 983, 111–116. [Google Scholar] [CrossRef]
- Surve, D.H.; Jindal, A.B. Development and Validation of Reverse-Phase High-Performance Liquid Chromatographic (RP-HPLC) Method for Quantification of Efavirenz in Efavirenz-Enfuvirtide Co-Loaded Polymer-Lipid Hybrid Nanoparticles. J. Pharm. Biomed. Anal. 2019, 175, 112765. [Google Scholar] [CrossRef]
- Abrego, G.; Alvarado, H.L.; Calpena-Campmany, A.C. Analysis Pranoprofen Quantification in Ex Vivo Corneal and Scleral Permeation Samples: Analytical Validation. J. Pharm. Biomed. Anal. 2018, 160, 109–118. [Google Scholar]
- Rozet, E.; Marini, R.D.; Ziemons, E.; Boulanger, B.; Hubert, P. Advances in Validation, Risk and Uncertainty Assessment of Bioanalytical Methods. J. Pharm. Biomed. Anal. 2011, 55, 848–858. [Google Scholar] [CrossRef]
Compound | Linearity | LOD | LOQ | Accuracy | Precision | R.I.S | |
---|---|---|---|---|---|---|---|
R2 | p | RE (%) | RSD (%) | RSD (%) | |||
200–12.5 (μg/mL) | Mean (μg /mL) | 200 (μg /mL) | 200 (μg /mL) | ||||
12.5–1.56 (μg /mL) | ± SD (μg /mL) | 12.5 (μg /mL) | |||||
1.56 (μg /mL) | |||||||
1 | 0.9998 | 0.12 | 0.51 ± 0.13 | 1.53 ± 0.38 | −0.23 | 0.20 | 0.36 |
0.9991 | 0.08 | 0.59 | 0.24 | ||||
11.02 | 2.63 | ||||||
A | 0.9997 | 0.93 | 0.28 ± 0.10 | 0.84 ± 0.29 | −0.09 | 0.09 | 0.54 |
0.9997 | 0.08 | 0.63 | 0.21 | ||||
1.48 | 0.81 | ||||||
B | 0.9998 | 0.38 | 0.49 ± 0.12 | 1.48 ± 0.36 | 0.46 | 0.27 | 0.43 |
0.9990 | 0.47 | −0.13 | 0.36 | ||||
−7.91 | 2.92 | ||||||
C | 0.9999 | 0.63 | 0.48 ± 0.43 | 1.45 ± 1.30 | −0.19 | 0.29 | 0.37 |
0.9996 | 0.56 | 0.38 | 0.07 | ||||
4.15 | 1.12 | ||||||
D | 0.9999 | 0.53 | 0.30 ± 0.08 | 0.91 ± 0.24 | −0.01 | 0.21 | 0.32 |
0.9997 | 0.46 | 0.17 | 0.27 | ||||
3.74 | 0.42 |
Compound | 24 h Permeated Amount | Degree Of Permeation | Recovery | Skin Retention |
---|---|---|---|---|
Q (μg/cm2) | (%) | (%) | Qret (μg/g.cm2) | |
1 | 1.29 ± 0.12 | 2.15 | 46.20 ± 6.46 | 50.22 ± 7.51 |
A | NQ | NQ | 0.38 ± 0.05 | 321.52 ± 45.23 |
B | NQ | NQ | 3.43 ± 0.5 | 381.75 ± 57.26 |
C | 0.75 ± 0.07 | 1.26 | NQ | 23.78 ± 5.46 * |
D | 0.91 ± 0.08 | 1.52 | 38.1 ± 5.23 | 116.14 ± 17.24 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustos-Salgado, P.; Andrade-Carrera, B.; Garduño-Ramírez, M.L.; Alvarado, H.; Calpena-Campmany, A. Quantification of one Prenylated Flavanone from Eysenhardtia platycarpa and four derivatives in Ex Vivo Human Skin Permeation Samples Applying a Validated HPLC Method. Biomolecules 2020, 10, 889. https://doi.org/10.3390/biom10060889
Bustos-Salgado P, Andrade-Carrera B, Garduño-Ramírez ML, Alvarado H, Calpena-Campmany A. Quantification of one Prenylated Flavanone from Eysenhardtia platycarpa and four derivatives in Ex Vivo Human Skin Permeation Samples Applying a Validated HPLC Method. Biomolecules. 2020; 10(6):889. https://doi.org/10.3390/biom10060889
Chicago/Turabian StyleBustos-Salgado, Paola, Berenice Andrade-Carrera, María Luisa Garduño-Ramírez, Helen Alvarado, and Ana Calpena-Campmany. 2020. "Quantification of one Prenylated Flavanone from Eysenhardtia platycarpa and four derivatives in Ex Vivo Human Skin Permeation Samples Applying a Validated HPLC Method" Biomolecules 10, no. 6: 889. https://doi.org/10.3390/biom10060889
APA StyleBustos-Salgado, P., Andrade-Carrera, B., Garduño-Ramírez, M. L., Alvarado, H., & Calpena-Campmany, A. (2020). Quantification of one Prenylated Flavanone from Eysenhardtia platycarpa and four derivatives in Ex Vivo Human Skin Permeation Samples Applying a Validated HPLC Method. Biomolecules, 10(6), 889. https://doi.org/10.3390/biom10060889