Post-Developmental Roles of Notch Signaling in the Nervous System
Abstract
:1. Introduction
2. Post-Developmental Notch Signaling in Behavior and Neural Physiology (Table 1)
2.1. Notch Signaling in Learning and Memory
2.2. Notch Signaling in Reward and Addiction
2.3. Notch Signaling in Sleep Homeostasis
2.4. Post-Developmental Notch Signaling in Other Behaviors
3. Mechanisms by Which Post-Developmental Notch Signaling Regulate Behavior (Table 2)
3.1. Notch Signaling is Regulated by Neuronal Activity
3.2. Post-Developmental Notch Signaling Regulates Neural and Synaptic Physiology
3.3. Post-Developmental Notch Signaling Regulates Neuronal Morphology
4. Notch Signaling in Neuronal Maintenance
5. Notch Signaling as a Modifier of Neurodegenerative Diseases (Table 3)
5.1. Alzheimer’s Disease (AD) and Related Dementia
5.2. Huntington’s Disease (HD)
5.3. Spinocerebellar Ataxia (SCA)
5.4. Amyotrophic Lateral Sclerosis (ALS)
5.5. Parkinson’s Disease (PD)
5.6. Prion Diseases
5.7. Multiple Sclerosis (MS) and Myelination-Related Disorders
5.8. Neurotoxic Environmental Factors
6. Conclusions and Future Directions
Funding
Acknowledgments
Conflicts of Interest
References
- Bolós, V.; Grego-Bessa, J.; de la Pompa, J.L. Notch signaling in development and cancer. Endocr. Rev. 2007, 28, 339–363. [Google Scholar] [CrossRef] [PubMed]
- Allenspach, E.J.; Maillard, I.; Aster, J.C.; Pear, W.S. Notch signaling in cancer. Cancer Biol. Ther. 2002, 1, 466–476. [Google Scholar] [CrossRef] [PubMed]
- Artavanis-Tsakonas, S.; Rand, M.D.; Lake, R.J. Notch signaling: Cell fate control and signal integration in development. Science 1999, 284, 770–776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kopan, R.; Ilagan, M.X.G. The Canonical Notch Signaling Pathway: Unfolding the Activation Mechanism. Cell 2009, 137, 216–233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Souza, B.; Meloty-Kapella, L.; Weinmaster, G. Canonical and non-canonical Notch ligands. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 92, pp. 73–129. [Google Scholar]
- Guruharsha, K.G.; Kankel, M.W.; Artavanis-Tsakonas, S. The Notch signalling system: Recent insights into the complexity of a conserved pathway. Nat. Rev. Genet. 2012, 13, 654–666. [Google Scholar] [CrossRef] [Green Version]
- Andersen, P.; Uosaki, H.; Shenje, L.T.; Kwon, C. Non-canonical Notch signaling: Emerging role and mechanism. Trends Cell Biol. 2012, 22, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Alfred, V.; Vaccari, T. Mechanisms of non-canonical signaling in health and disease: Diversity to take therapy up a notch? In Advances in Experimental Medicine and Biology; Borgreffe, T., Giaimo, B., Eds.; Springer: Cham, Switzerland, 2018; Volume 1066, pp. 187–204. [Google Scholar]
- Palmer, W.H.; Deng, W.M. Ligand-Independent Mechanisms of Notch Activity. Trends Cell Biol. 2015, 25, 697–707. [Google Scholar] [CrossRef] [Green Version]
- Salazar, J.L.; Yamamoto, S. Integration of Drosophila and human genetics to understand notch signaling related diseases. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2018; Volume 1066, pp. 141–185. [Google Scholar]
- Louvi, A.; Artavanis-Tsakonas, S. Notch and disease: A growing field. Semin. Cell Dev. Biol. 2012, 23, 473–480. [Google Scholar] [CrossRef] [Green Version]
- Reichrath, J.; Reichrath, S. Notch Pathway and Inherited Diseases: Challenge and Promise. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2020; Volume 1218, pp. 159–187. [Google Scholar]
- Artavanis-Tsakonas, S.; Muskavitch, M.A.T. Notch: The Past, the Present, and the Future. In Current Topics in Developmental Biology; Elsevier: Amsterdam, The Netherlands, 2010; Volume 92, pp. 1–29. [Google Scholar]
- Yoon, K.; Gaiano, N. Notch signaling in the mammalian central nervous system: Insights from mouse mutants. Nat. Neurosci. 2005, 8, 709–715. [Google Scholar] [CrossRef]
- Skeath, J.B.; Thor, S. Genetic control of Drosophila nerve cord development. Curr. Opin. Neurobiol. 2003, 13, 8–15. [Google Scholar] [CrossRef]
- Ahmad, I.; Zaqouras, P.; Artavanis-Tsakonas, S. Involvement of Notch-1 in mammalian retinal neurogenesis: Association of Notch-1 activity with both immature and terminally differentiated cells. Mech. Dev. 1995, 53, 73–85. [Google Scholar] [CrossRef]
- Berezovska, O.; Xia, M.Q.; Hyman, B.T. Notch is expressed in adult brain, is coexpressed with presenilin-1, and is altered in Alzheimer disease. J. Neuropathol. Exp. Neurol. 1998, 57, 738–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, D.F.; van Dijk, R.; Sluijs, J.A.; Nair, S.M.; Racchi, M.; Levelt, C.N.; van Leeuwen, F.W.; Hol, E.M. Activation of the Notch pathway in Down syndrome: Cross-talk of Notch and APP. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2005, 19, 1451–1458. [Google Scholar] [CrossRef]
- Cairney, C.J.; Sanguinetti, G.; Ranghini, E.; Chantry, A.D.; Nostro, M.C.; Bhattacharyya, A.; Svendsen, C.N.; Keith, W.N.; Bellantuono, I. A systems biology approach to Down syndrome: Identification of Notch/Wnt dysregulation in a model of stem cells aging. Biochim. Biophys. Acta 2009, 1792, 353–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer-Zirnsak, B.; Segebrecht, L.; Schubach, M.; Charles, P.; Alderman, E.; Brown, K.; Cadieux-Dion, M.; Cartwright, T.; Chen, Y.; Costin, C.; et al. Haploinsufficiency of the Notch Ligand DLL1 Causes Variable Neurodevelopmental Disorders. Am. J. Hum. Genet. 2019, 105, 631–639. [Google Scholar] [CrossRef] [Green Version]
- Braccioli, L.; Vervoort, S.J.; Adolfs, Y.; Heijnen, C.J.; Basak, O.; Pasterkamp, R.J.; Nijboer, C.H.; Coffer, P.J. FOXP1 Promotes Embryonic Neural Stem Cell Differentiation by Repressing Jagged1 Expression. Stem Cell Rep. 2017, 9, 1530–1545. [Google Scholar] [CrossRef] [Green Version]
- Tuand, K.; Stijnen, P.; Volders, K.; Declercq, J.; Nuytens, K.; Meulemans, S.; Creemers, J. Nuclear Localization of the Autism Candidate Gene Neurobeachin and Functional Interaction with the NOTCH1 Intracellular Domain Indicate a Role in Regulating Transcription. PLoS ONE 2016, 11, e0151954. [Google Scholar] [CrossRef] [Green Version]
- Krantz, I.D.; McCallum, J.; DeScipio, C.; Kaur, M.; Gillis, L.A.; Yaeger, D.; Jukofsky, L.; Wasserman, N.; Bottani, A.; Morris, C.A.; et al. Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B. Nat. Genet. 2004, 36, 631–635. [Google Scholar] [CrossRef]
- Nakayama, T.; Saitsu, H.; Endo, W.; Kikuchi, A.; Uematsu, M.; Haginoya, K.; Hino-fukuyo, N.; Kobayashi, T.; Iwasaki, M.; Tominaga, T.; et al. RBPJ is disrupted in a case of proximal 4p deletion syndrome with epilepsy. Brain Dev. 2014, 36, 532–536. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yuan, X.; Wang, Z.; Li, R. The canonical Wnt signaling pathway in autism. CNS Neurol. Disord. Drug Targets 2014, 13, 765–770. [Google Scholar] [CrossRef]
- Hormozdiari, F.; Penn, O.; Borenstein, E.; Eichler, E.E. The discovery of integrated gene networks for autism and related disorders. Genome Res. 2015, 25, 142–154. [Google Scholar] [CrossRef] [PubMed]
- Ghahramani Seno, M.M.; Hu, P.; Gwadry, F.G.; Pinto, D.; Marshall, C.R.; Casallo, G.; Scherer, S.W. Gene and miRNA expression profiles in autism spectrum disorders. Brain Res. 2011, 1380, 85–97. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Hemmings, G.P. The NOTCH4 locus is associated with susceptibility to schizophrenia. Nat. Genet. 2000, 25, 376–377. [Google Scholar] [CrossRef]
- Shayevitz, C.; Cohen, O.S.; Faraone, S.V.; Glatt, S.J. A re-review of the association between the NOTCH4 locus and schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2012, 159B, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Hoseth, E.Z.; Krull, F.; Dieset, I.; Morch, R.H.; Hope, S.; Gardsjord, E.S.; Steen, N.E.; Melle, I.; Brattbakk, H.-R.; Steen, V.M.; et al. Attenuated Notch signaling in schizophrenia and bipolar disorder. Sci. Rep. 2018, 8, 5349. [Google Scholar] [CrossRef] [PubMed]
- Dieset, I.; Djurovic, S.; Tesli, M.; Hope, S.; Mattingsdal, M.; Michelsen, A.; Joa, I.; Larsen, T.K.; Agartz, I.; Melle, I.; et al. Up-regulation of NOTCH4 gene expression in bipolar disorder. Am. J. Psychiatry 2012, 169, 1292–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, N.; Lei, L.; Wang, Y.; Yang, C.; Liu, Z.; Li, X.; Zhang, K. Preliminary comparison of plasma notch-associated microRNA-34b and -34c levels in drug naive, first episode depressed patients and healthy controls. J. Affect. Disord. 2016, 194, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.-Y.; Chen, F.; Xiao, P.; Zhang, X.-M.; Gao, X.-X. Silence of MiR-9 protects depression mice through Notch signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4961–4970. [Google Scholar] [CrossRef]
- Ho, D.M.; Artavanis-Tsakonas, S.; Louvi, A. The Notch pathway in CNS homeostasis and neurodegeneration. Wiley Interdiscip. Rev. Dev. Biol. 2020, 9, e358. [Google Scholar] [CrossRef]
- Engler, A.; Zhang, R.; Taylor, V. Notch and neurogenesis. In Advances in Experimental Medicine and Biology; Borgreffe, T., Giamo, B.D., Eds.; Springer: Cham, Switzerland, 2018; Volume 1066, pp. 223–234. [Google Scholar]
- Pierfelice, T.; Alberi, L.; Gaiano, N. Notch in the Vertebrate Nervous System: An Old Dog with New Tricks. Neuron 2011, 69, 840–855. [Google Scholar] [CrossRef] [Green Version]
- Ables, J.L.; Breunig, J.J.; Eisch, A.J.; Rakic, P. Not(ch) just development: Notch signalling in the adult brain. Nat. Rev. Neurosci. 2011, 12, 269–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Hernández, I.; Rhiner, C.; Moreno, E. Adult Neurogenesis in Drosophila. Cell Rep. 2013, 3, 1857–1865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeman, M.R.; Rowitch, D.H. Evolving Concepts of Gliogenesis: A Look Way Back and Ahead to the Next 25 Years. Neuron 2013, 80, 613–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, Y.; Schulz, R.A. Heart development in Drosophila. Semin. Cell Dev. Biol. 2007, 18, 3–15. [Google Scholar] [CrossRef]
- Ge, X.; Hannan, F.; Xie, Z.; Feng, C.; Tully, T.; Zhou, H.; Xie, Z.; Zhong, Y. Notch signaling in Drosophila long-term memory formation. Proc. Natl. Acad. Sci. USA 2004, 101, 10172–10176. [Google Scholar] [CrossRef] [Green Version]
- Presente, A.; Boyles, R.S.; Serway, C.N.; de Belle, J.S.; Andres, A.J. Notch is required for long-term memory in Drosophila. Proc. Natl. Acad. Sci. USA 2004, 101, 1764–1768. [Google Scholar] [CrossRef] [Green Version]
- Bastock, M.; Manning, A. The courtship of Drosophila melanogaster. Behaviour 1955, 8, 85–110. [Google Scholar] [CrossRef]
- Spieth, H.T. Courtship behavior in Drosophila. Annu. Rev. Entomol. 1974, 19, 385–405. [Google Scholar] [CrossRef]
- Connolly, K.; Cook, R. Rejection Responses by Female Drosophila melanogaster: Their Ontogeny, Causality and Effects upon the Behaviour of the Courting Male. Behaviour 1973, 44, 142–166. [Google Scholar]
- Pavlou, H.J.; Goodwin, S.F. Courtship behavior in Drosophila melanogaster: Towards a “courtship connectome”. Curr. Opin. Neurobiol. 2013, 23, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Farris, S.M. Evolution of insect mushroom bodies: Old clues, new insights. Arthropod Struct. Dev. 2005, 34, 211–234. [Google Scholar] [CrossRef]
- Eichler, K.; Li, F.; Litwin-Kumar, A.; Park, Y.; Andrade, I.; Schneider-Mizell, C.M.; Saumweber, T.; Huser, A.; Eschbach, C.; Gerber, B. The complete connectome of a learning and memory centre in an insect brain. Nature 2017, 548, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Costa, R.M.; Honjo, T.; Silva, A.J. Learning and memory deficits in Notch mutant mice. Curr. Biol. 2003, 13, 1348–1354. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Sun, K.; Shuai, Y.; Lin, R.; You, W.; Wang, L.; Zhong, Y. Suppressor of Hairless is required for long-term memory formation in Drosophila. J. Neurogenet. 2009, 23, 405–411. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Little, C.J.; Tremmel, D.M.; Yin, J.C.P.; Wesley, C.S. Notch-inducible hyperphosphorylated CREB and its ultradian oscillation in long-term memory formation. J. Neurosci. 2013, 33, 12825–12834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yin, J.C.P.; Wesley, C.S. Notch intracellular domain (NICD) suppresses long-term memory formation in adult Drosophila flies. Cell. Mol. Neurobiol. 2015, 35, 763–768. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.C.P.; Wallach, J.S.; Del Vecchio, M.; Wilder, E.L.; Zhou, H.; Quinn, W.G.; Tully, T. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell 1994, 79, 49–58. [Google Scholar] [CrossRef]
- Yin, J.C.P.; Tully, T. CREB and the formation of long-term memory. Curr. Opin. Neurobiol. 1996, 6, 264–268. [Google Scholar] [CrossRef]
- Jarome, T.J.; Helmstetter, F.J. Protein degradation and protein synthesis in long-term memory formation. Front. Mol. Neurosci. 2014, 7, 61. [Google Scholar] [CrossRef] [Green Version]
- Duvarci, S.; Nader, K.; LeDoux, J.E. De novo mRNA synthesis is required for both consolidation and reconsolidation of fear memories in the amygdala. Learn. Mem. 2008, 15, 747–755. [Google Scholar] [CrossRef] [Green Version]
- Dash, P.K.; Hochner, B.; Kandel, E.R. Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature 1990, 345, 718–721. [Google Scholar] [CrossRef] [PubMed]
- Tremmel, D.M.; Resad, S.; Little, C.J.; Wesley, C.S. Notch and PKC are involved in formation of the lateral region of the dorso-ventral axis in Drosophila embryos. PLoS ONE 2013, 8, e67789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brai, E.; Marathe, S.; Astori, S.; Fredj, N.B.; Perry, E.; Lamy, C.; Scotti, A.; Alberi, L. Notch1 Regulates Hippocampal Plasticity Through Interaction with the Reelin Pathway, Glutamatergic Transmission and CREB Signaling. Front. Cell. Neurosci. 2015, 9, 447. [Google Scholar] [CrossRef]
- Hallaq, R.; Volpicelli, F.; Cuchillo-Ibanez, I.; Hooper, C.; Mizuno, K.; Uwanogho, D.; Causevic, M.; Asuni, A.; To, A.; Soriano, S. The Notch intracellular domain represses CRE-dependent transcription. Cell. Signal. 2015, 27, 621–629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuno, M.; Horiuchi, J.; Tully, T.; Saitoe, M. The Drosophila cell adhesion molecule klingon is required for long-term memory formation and is regulated by Notch. Proc. Natl. Acad. Sci. USA 2009, 106, 310–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubnau, J.; Chiang, A.-S.; Grady, L.; Barditch, J.; Gossweiler, S.; McNeil, J.; Smith, P.; Buldoc, F.; Scott, R.; Certa, U.; et al. The staufen/pumilio pathway is involved in Drosophila long-term memory. Curr. Biol. 2003, 13, 286–296. [Google Scholar] [CrossRef]
- Matsuno, M.; Horiuchi, J.; Yuasa, Y.; Ofusa, K.; Miyashita, T.; Masuda, T.; Saitoe, M. Long-term memory formation in Drosophila requires training-dependent glial transcription. J. Neurosci. 2015, 35, 5557–5565. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, M.; Horiuchi, J.; Ofusa, K.; Masuda, T.; Saitoe, M. Inhibiting Glutamate Activity during Consolidation Suppresses Age-Related Long-Term Memory Impairment in Drosophila. iScience 2019, 15, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Sargin, D.; Botly, L.C.P.; Higgs, G.; Marsolais, A.; Frankland, P.W.; Egan, S.E.; Josselyn, S.A. Disrupting Jagged1–Notch signaling impairs spatial memory formation in adult mice. Neurobiol. Learn. Mem. 2013, 103, 39–49. [Google Scholar] [CrossRef]
- Sato, C.; Turkoz, M.; Dearborn, J.T.; Wozniak, D.F.; Kopan, R.; Hass, M.R. Loss of RBPj in postnatal excitatory neurons does not cause neurodegeneration or memory impairments in aged mice. PLoS ONE 2012, 7, e48180. [Google Scholar] [CrossRef]
- Zhuang, J.; Wei, Q.; Lin, Z.; Zhou, C. Effects of ADAM10 deletion on Notch-1 signaling pathway and neuronal maintenance in adult mouse brain. Gene 2015, 555, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Storozheva, Z.I.; Ratmirov, A.M.; Sherstnev, V. V Pattern of Notch2, Numb, and Cas8 Gene Expression in Relevant Structures of the Rat Brain during Formation of Spatial Memory. Bull. Exp. Biol. Med. 2017, 163, 785–788. [Google Scholar]
- De Robertis, E.M.; Sasai, Y. A common plan for dorsoventral patterning in Bilateria. Nature 1996, 380, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Hyman, S.E.; Malenka, R.C.; Nestler, E.J. Neural mechanisms of addiction: The role of reward-related learning and memory. Annu. Rev. Neurosci. 2006, 29, 565–598. [Google Scholar] [CrossRef] [Green Version]
- Kelley, A.E. Memory and addiction: Shared neural circuitry and molecular mechanisms. Neuron 2004, 44, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Benowitz, N.L. Nicotine addiction. N. Engl. J. Med. 2010, 362, 2295. [Google Scholar] [CrossRef]
- Hu, H. Reward and Aversion. Annu. Rev. Neurosci. 2016, 39, 297–324. [Google Scholar] [CrossRef] [Green Version]
- Nutt, D.J.; Lingford-Hughes, A.; Erritzoe, D.; Stokes, P.R.A. The dopamine theory of addiction: 40 years of highs and lows. Nat. Rev. Neurosci. 2015, 16, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Ryvkin, J.; Bentzur, A.; Zer-Krispil, S.; Shohat-Ophir, G. Mechanisms Underlying the Risk to Develop Drug Addiction, Insights From Studies in Drosophila melanogaster. Front. Physiol. 2018, 9, 327. [Google Scholar] [CrossRef]
- Park, A.; Ghezzi, A.; Wijesekera, T.P.; Atkinson, N.S. Genetics and genomics of alcohol responses in Drosophila. Neuropharmacology 2017, 122, 22–35. [Google Scholar] [CrossRef]
- Yamamoto, S.; Seto, E.S. Dopamine dynamics and signaling in Drosophila: An overview of genes, drugs and behavioral paradigms. Exp. Anim. 2014, 63, 107–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaun, K.R.; Azanchi, R.; Maung, Z.; Hirsh, J.; Heberlein, U. A Drosophila model for alcohol reward. Nat. Neurosci. 2011, 14, 612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petruccelli, E.; Feyder, M.; Ledru, N.; Jaques, Y.; Anderson, E.; Kaun, K.R. Alcohol activates scabrous-notch to influence associated memories. Neuron 2018, 100, 1209–1223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunez, K.M.; Azanchi, R.; Kaun, K.R. Cue-Induced Ethanol Seeking in Drosophila melanogaster Is Dose-Dependent. Front. Physiol. 2018, 9, 438. [Google Scholar] [CrossRef] [Green Version]
- Brand, M.; Campos-Ortega, J.A. Second-site modifiers of the split mutation of Notch define genes involved in neurogenesis in Drosophila melanogaster. Roux’s Arch. Dev. Biol. Off. Organ EDBO 1990, 198, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Baker, N.E.; Mlodzik, M.; Rubin, G.M. Spacing differentiation in the developing Drosophila eye: A fibrinogen-related lateral inhibitor encoded by scabrous. Science 1990, 250, 1370–1377. [Google Scholar] [CrossRef] [Green Version]
- Lee, E.C.; Yu, S.Y.; Hu, X.; Mlodzik, M.; Baker, N.E. Functional analysis of the fibrinogen-related scabrous gene from Drosophila melanogaster identifies potential effector and stimulatory protein domains. Genetics 1998, 150, 663–673. [Google Scholar]
- Lee, E.-C.; Yu, S.-Y.; Baker, N.E. The scabrous protein can act as an extracellular antagonist of notch signaling in the Drosophila wing. Curr. Biol. 2000, 10, 931–S2. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Fetchko, M.; Lai, Z.-C.; Baker, N.E. Scabrous and Gp150 are endosomal proteins that regulate Notch activity. Development 2003, 130, 2819–2827. [Google Scholar] [CrossRef] [Green Version]
- Charng, W.-L.; Yamamoto, S.; Jaiswal, M.; Bayat, V.; Xiong, B.; Zhang, K.; Sandoval, H.; David, G.; Gibbs, S.; Lu, H.-C.; et al. Drosophila Tempura, a novel protein prenyltransferase alpha subunit, regulates notch signaling via Rab1 and Rab11. PLoS Biol. 2014, 12, e1001777. [Google Scholar] [CrossRef]
- Giagtzoglou, N.; Li, T.; Yamamoto, S.; Bellen, H.J. Drosophila EHBP1 regulates Scabrous secretion during Notch-mediated lateral inhibition. J. Cell Sci. 2013, 126, 3686–3696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkow, N.D.; Wang, G.J.; Fowler, J.S.; Logan, J.; Hitzemann, R.; Ding, Y.S.; Pappas, N.; Shea, C.; Piscani, K. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol. Clin. Exp. Res. 1996, 20, 1594–1598. [Google Scholar] [CrossRef]
- Blum, K.; Noble, E.P.; Sheridan, P.J.; Montgomery, A.; Ritchie, T.; Jagadeeswaran, P.; Nogami, H.; Briggs, A.H.; Cohn, J.B. Allelic association of human dopamine D2 receptor gene in alcoholism. JAMA 1990, 263, 2055–2060. [Google Scholar] [CrossRef] [PubMed]
- Pitman, J.L.; McGill, J.J.; Keegan, K.P.; Allada, R. A dynamic role for the mushroom bodies in promoting sleep in Drosophila. Nature 2006, 441, 753–756. [Google Scholar] [CrossRef] [PubMed]
- Joiner, W.J.; Crocker, A.; White, B.H.; Sehgal, A. Sleep in Drosophila is regulated by adult mushroom bodies. Nature 2006, 441, 757–760. [Google Scholar] [CrossRef] [PubMed]
- Cirelli, C.; Bushey, D. Sleep and wakefulness in Drosophila melanogaster. Ann. N. Y. Acad. Sci. 2008, 1129, 323–329. [Google Scholar] [CrossRef] [Green Version]
- Walker, M.P.; Stickgold, R. Sleep, memory, and plasticity. Annu. Rev. Psychol. 2006, 57, 139–166. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.N.; Raizen, D.M. Notch signaling: A role in sleep and stress. Curr. Biol. 2011, 21, R397–R398. [Google Scholar] [CrossRef] [Green Version]
- Seugnet, L.; Suzuki, Y.; Merlin, G.; Gottschalk, L.; Duntley, S.P.; Shaw, P.J. Notch signaling modulates sleep homeostasis and learning after sleep deprivation in Drosophila. Curr. Biol. 2011, 21, 835–840. [Google Scholar] [CrossRef] [Green Version]
- Dobens, L.; Jaeger, A.; Peterson, J.S.; Raftery, L.A. Bunched sets a boundary for Notch signaling to pattern anterior eggshell structures during Drosophila oogenesis. Dev. Biol. 2005, 287, 425–437. [Google Scholar] [CrossRef]
- Levine, B.; Jean-Francois, M.; Bernardi, F.; Gargiulo, G.; Dobens, L. Notch signaling links interactions between the C/EBP homolog slow border cells and the GILZ homolog bunched during cell migration. Dev. Biol. 2007, 305, 217–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, K.; Chao, M.Y.; Somers, G.A.; Komatsu, H.; Corkins, M.E.; Larkins-Ford, J.; Tucey, T.; Dionne, H.M.; Walsh, M.B.; Beaumont, E.K.; et al. C. elegans Notch Signaling Regulates Adult Chemosensory Response and Larval Molting Quiescence. Curr. Biol. 2011, 21, 825–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raizen, D.M.; Zimmerman, J.E.; Maycock, M.H.; Ta, U.D.; You, Y.; Sundaram, M.V.; Pack, A.I. Lethargus is a Caenorhabditis elegans sleep-like state. Nature 2008, 451, 569–572. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhu, C.-T.; Skuja, L.L.; Hayden, D.J.; Hart, A.C. Genome-Wide Screen for Genes Involved in Caenorhabditis elegans Developmentally Timed Sleep. G3 (Bethesda) 2017, 7, 2907–2917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wadhwa, M.; Prabhakar, A.; Anand, J.P.; Ray, K.; Prasad, D.; Kumar, B.; Panjwani, U. Complement activation sustains neuroinflammation and deteriorates adult neurogenesis and spatial memory impairment in rat hippocampus following sleep deprivation. Brain. Behav. Immun. 2019, 82, 129–144. [Google Scholar] [CrossRef]
- Ding, M.; Li, P.; Wen, Y.; Zhao, Y.; Cheng, B.; Zhang, L.; Ma, M.; Cheng, S.; Liu, L.; Du, Y.; et al. Integrative analysis of genome-wide association study and brain region related enhancer maps identifies biological pathways for insomnia. Prog. Neuropsychopharmacol. Biol. Psychiatry 2018, 86, 180–185. [Google Scholar] [CrossRef]
- Yoon, K.-J.; Lee, H.-R.; Jo, Y.S.; An, K.; Jung, S.-Y.; Jeong, M.-W.; Kwon, S.-K.; Kim, N.-S.; Jeong, H.-W.; Ahn, S.-H. Mind bomb-1 is an essential modulator of long-term memory and synaptic plasticity via the Notch signaling pathway. Mol. Brain 2012, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Dias, B.G.; Goodman, J.V.; Ahluwalia, R.; Easton, A.E.; Andero, R.; Ressler, K.J. Amygdala-dependent fear memory consolidation via miR-34a and Notch signaling. Neuron 2014, 83, 906–918. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Kim, T.; Lee, H.-R.; Kong, Y.-Y.; Kaang, B.-K. Mind Bomb-2 Regulates Hippocampus-dependent Memory Formation and Synaptic Plasticity. Korean J. Physiol. Pharmacol. Off. J. Korean Physiol. Soc. Korean Soc. Pharmacol. 2015, 19, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Shang, Y.; Fu, J.; Zhang, T. Nicotine Significantly Improves Chronic Stress-Induced Impairments of Cognition and Synaptic Plasticity in Mice. Mol. Neurobiol. 2017, 54, 4644–4658. [Google Scholar] [CrossRef]
- Qian, W.; Hong, Y.; Zhu, M.; Zhou, L.; Li, H.; Li, H. Deletion of Numb/Numblike in glutamatergic neurons leads to anxiety-like behavior in mice. Brain Res. 2017, 1665, 36–49. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, T.; Yoshihara, T.; Ohtsuka, T.; Kageyama, R. Hes1 expression in mature neurons in the adult mouse brain is required for normal behaviors. Sci. Rep. 2019, 9, 8251. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-Y.; Li, L.; Liu, X.-H.; Gu, N.; Dong, H.-L.; Xiong, L. The spinal notch signaling pathway plays a pivotal role in the development of neuropathic pain. Mol. Brain 2012, 5, 23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, K.; Jia, Y.; Hu, Y.; Sun, Y.; Hou, L.; Wang, G. Activation of notch signaling mediates the induction and maintenance of mechanical allodynia in a rat model of neuropathic pain. Mol. Med. Rep. 2015, 12, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Qiao, F.; Sun, Y.; Wang, G.; Hou, L. Notch signaling activation is critical to the development of neuropathic pain. BMC Anesthesiol. 2015, 15, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.; Gao, J.; Wu, B.; Yan, N.; Li, H.; Ren, Y.; Kan, Y.; Liang, J.; Jiao, Y.; Yu, Y. Minocycline attenuates the development of diabetic neuropathy by inhibiting spinal cord Notch signaling in rat. Biomed. Pharmacother. 2017, 94, 380–385. [Google Scholar] [CrossRef]
- Manners, M.T.; Yohn, N.L.; Lahens, N.F.; Grant, G.R.; Bartolomei, M.S.; Blendy, J.A. Transgenerational inheritance of chronic adolescent stress: Effects of stress response and the amygdala transcriptome. Genes Brain. Behav. 2019, 18, e12493. [Google Scholar] [CrossRef]
- Al-Massri, K.F.; Ahmed, L.A.; El-Abhar, H.S. Pregabalin and lacosamide ameliorate paclitaxel-induced peripheral neuropathy via inhibition of JAK/STAT signaling pathway and Notch-1 receptor. Neurochem. Int. 2018, 120, 164–171. [Google Scholar] [CrossRef]
- Qin, B.; Li, Y.; Liu, X.; Gong, D.; Zheng, W. Notch activation enhances microglial CX3CR1/P38 MAPK pathway in rats model of vincristine-induced peripheral neuropathy. Neurosci. Lett. 2020, 715, 134624. [Google Scholar] [CrossRef]
- Sanna, M.D.; Borgonetti, V.; Galeotti, N. mu Opioid Receptor-Triggered Notch-1 Activation Contributes to Morphine Tolerance: Role of Neuron-Glia Communication. Mol. Neurobiol. 2020, 57, 331–345. [Google Scholar] [CrossRef]
- Garcia-Concejo, A.; Jimenez-Gonzalez, A.; Rodriguez, R.E. Opioid and Notch signaling pathways are reciprocally regulated through miR- 29a and miR-212 expression. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 2605–2612. [Google Scholar] [CrossRef] [PubMed]
- Conrad, D.; Wilker, S.; Schneider, A.; Karabatsiakis, A.; Pfeiffer, A.; Kolassa, S.; Freytag, V.; Vukojevic, V.; Vogler, C.; Milnik, A.; et al. Integrated genetic, epigenetic, and gene set enrichment analyses identify NOTCH as a potential mediator for PTSD risk after trauma: Results from two independent African cohorts. Psychophysiology 2020, 57, e13288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volders, K.; Nuytens, K.; Creemers, J.W.M. The autism candidate gene Neurobeachin encodes a scaffolding protein implicated in membrane trafficking and signaling. Curr. Mol. Med. 2011, 11, 204–217. [Google Scholar] [CrossRef]
- Wise, A.; Tenezaca, L.; Fernandez, R.W.; Schatoff, E.; Flores, J.; Ueda, A.; Zhong, X.; Wu, C.-F.; Simon, A.F.; Venkatesh, T. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns. J. Neurogenet. 2015, 29, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Bivort, B.L.; Guo, H.-F.; Zhong, Y. Notch signaling is required for activity-dependent synaptic plasticity at the Drosophila neuromuscular junction. J. Neurogenet. 2009, 23, 395–404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frolov, R.V.; Bagati, A.; Casino, B.; Singh, S. Potassium channels in drosophila: Historical breakthroughs, significance, and perspectives. J. Neurogenet. 2012, 26, 275–290. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.L. Physiology and biochemistry of Drosophila learning mutants. Physiol. Rev. 1996, 76, 299–317. [Google Scholar] [CrossRef]
- Golovin, R.M.; Broadie, K. Developmental experience-dependent plasticity in the first synapse of the Drosophila olfactory circuit. J. Neurophysiol. 2016, 116, 2730–2738. [Google Scholar] [CrossRef] [Green Version]
- Lieber, T.; Kidd, S.; Struhl, G. DSL-Notch signaling in the Drosophila brain in response to olfactory stimulation. Neuron 2011, 69, 468–481. [Google Scholar] [CrossRef] [Green Version]
- Alberi, L.; Liu, S.; Wang, Y.; Badie, R.; Smith-Hicks, C.; Wu, J.; Pierfelice, T.J.; Abazyan, B.; Mattson, M.P.; Kuhl, D. Activity-induced Notch signaling in neurons requires Arc/Arg3. 1 and is essential for synaptic plasticity in hippocampal networks. Neuron 2011, 69, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Fontes, M.M.; Guvenek, A.; Kawaguchi, R.; Zheng, D.; Huang, A.; Ho, V.M.; Chen, P.B.; Liu, X.; O’Dell, T.J.; Coppola, G.; et al. Activity-Dependent Regulation of Alternative Cleavage and Polyadenylation During Hippocampal Long-Term Potentiation. Sci. Rep. 2017, 7, 17377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brai, E.; Marathe, S.; Zentilin, L.; Giacca, M.; Nimpf, J.; Kretz, R.; Scotti, A.; Alberi, L. Notch1 activity in the olfactory bulb is odour-dependent and contributes to olfactory behaviour. Eur. J. Neurosci. 2014, 40, 3436–3449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannari, T.; Miyata, S. Activity-dependent Notch signalling in the hypothalamic-neurohypophysial system of adult mouse brains. J. Neuroendocrinol. 2014, 26, 497–509. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chan, S.L.; Miele, L.; Yao, P.J.; Mackes, J.; Ingram, D.K.; Mattson, M.P.; Furukawa, K. Involvement of Notch signaling in hippocampal synaptic plasticity. Proc. Natl. Acad. Sci. USA 2004, 101, 9458–9462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Wang, Y.; Worley, P.F.; Mattson, M.P.; Gaiano, N. The canonical N otch pathway effector RBP-J regulates neuronal plasticity and expression of GABA transporters in hippocampal networks. Hippocampus 2015, 25, 670–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlhaus, M.; Hermans, J.M.; Van Woerden, L.H.; Saiepour, M.H.; Nakazawa, K.; Mansvelder, H.D.; Heimel, J.A.; Levelt, C.N. Notch1 signaling in pyramidal neurons regulates synaptic connectivity and experience-dependent modifications of acuity in the visual cortex. J. Neurosci. 2008, 28, 10794–10802. [Google Scholar] [CrossRef]
- Wasser, C.R.; Herz, J. Reelin: Neurodevelopmental architect and homeostatic regulator of excitatory synapses. J. Biol. Chem. 2017, 292, 1330–1338. [Google Scholar] [CrossRef] [Green Version]
- Qiu, S.; Weeber, E.J. Reelin signaling facilitates maturation of CA1 glutamatergic synapses. J. Neurophysiol. 2007, 97, 2312–2321. [Google Scholar] [CrossRef]
- Salussolia, C.L.; Prodromou, M.L.; Borker, P.; Wollmuth, L.P. Arrangement of subunits in functional NMDA receptors. J. Neurosci. 2011, 31, 11295–11304. [Google Scholar] [CrossRef]
- Tohgo, A.; Eiraku, M.; Miyazaki, T.; Miura, E.; Kawaguchi, S.-Y.; Nishi, M.; Watanabe, M.; Hirano, T.; Kengaku, M.; Takeshima, H. Impaired cerebellar functions in mutant mice lacking DNER. Mol. Cell. Neurosci. 2006, 31, 326–333. [Google Scholar] [CrossRef]
- Saito, S.-Y.; Takeshima, H. DNER as key molecule for cerebellar maturation. Cerebellum 2006, 5, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Xu, X.; Gao, J.; Zhang, T.; Yang, Z. Hydrogen Sulfide Prevents Synaptic Plasticity from VD-Induced Damage via Akt/GSK-3beta Pathway and Notch Signaling Pathway in Rats. Mol. Neurobiol. 2016, 53, 4159–4172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturgeon, M.; Davis, D.; Albers, A.; Beatty, D.; Austin, R.; Ferguson, M.; Tounsel, B.; Liebl, F.L.W. The Notch ligand E3 ligase, Mind Bomb1, regulates glutamate receptor localization in Drosophila. Mol. Cell. Neurosci. 2016, 70, 11–21. [Google Scholar] [CrossRef]
- Chao, M.Y.; Larkins-Ford, J.; Tucey, T.M.; Hart, A.C. lin-12 Notch functions in the adult nervous system of C. elegans. BMC Neurosci. 2005, 6, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, Y.; Nishimune, H.; Hozumi, K.; Saga, Y.; Harada, A.; Yuzaki, M.; Iwatsubo, T.; Kopan, R.; Tomita, T. A novel non-canonical Notch signaling regulates expression of synaptic vesicle proteins in excitatory neurons. Sci. Rep. 2016, 6, 23969. [Google Scholar] [CrossRef]
- Sorkac, A.; DiIorio, M.A.; O’Hern, P.J.; Baskoylu, S.N.; Graham, H.K.; Hart, A.C. LIN-12/Notch Regulates GABA Signaling at the Caenorhabditis elegans Neuromuscular Junction. G3 (Bethesda) 2018, 8, 2825–2832. [Google Scholar] [CrossRef] [Green Version]
- Hortopan, G.A.; Dinday, M.T.; Baraban, S.C. Spontaneous seizures and altered gene expression in GABA signaling pathways in a mind bomb mutant zebrafish. J. Neurosci. 2010, 30, 13718–13728. [Google Scholar] [CrossRef]
- Hashimoto-Torii, K.; Torii, M.; Sarkisian, M.R.; Bartley, C.M.; Shen, J.; Radtke, F.; Gridley, T.; Sestan, N.; Rakic, P. Interaction between Reelin and Notch signaling regulates neuronal migration in the cerebral cortex. Neuron 2008, 60, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Aujla, P.K.; Bora, A.; Monahan, P.; Sweedler, J.V.; Raetzman, L.T. The Notch effector gene Hes1 regulates migration of hypothalamic neurons, neuropeptide content and axon targeting to the pituitary. Dev. Biol. 2011, 353, 61–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Z.; Li, P.-F.; Chen, R.-C.; Wang, J.; Wang, S.; Shen, Y.; Wu, X.; Fang, B.; Cheng, X.; Xiong, Z.-Q. ADAM10-Initiated Release of Notch Intracellular Domain Regulates Microtubule Stability and Radial Migration of Cortical Neurons. Cereb. Cortex 2017, 27, 919–932. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.R.; Benito, C.; Mirsky, R.; Jessen, K.R.; Baker, C.V.H. Neural crest Notch/Rbpj signaling regulates olfactory gliogenesis and neuronal migration. Genesis 2018, 56, e23215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, W.; Tian, X.; Yuan, B.; Chu, B.; Gao, F.; Wang, H. Rosuvastatin improves neurite extension in cortical neurons through the Notch 1/BDNF pathway. Neurol. Res. 2019, 41, 658–664. [Google Scholar] [CrossRef]
- Zhang, P.; Luo, X.; Guo, Z.; Xiong, A.; Dong, H.; Zhang, Q.; Liu, C.; Zhu, J.; Wang, H.; Yu, N.; et al. Neuritin Inhibits Notch Signaling through Interacted with Neuralized to Promote the Neurite Growth. Front. Mol. Neurosci. 2017, 10, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sestan, N.; Artavanis-Tsakonas, S.; Rakic, P. Contact-dependent inhibition of cortical neurite growth mediated by notch signaling. Science 1999, 286, 741–746. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Luo, M.; Zhao, Y.; Zhang, Y.; He, M.; Cai, W.; Liu, A. Fasudil Stimulates Neurite Outgrowth and Promotes Differentiation in C17.2 Neural Stem Cells by Modulating Notch Signalling but not Autophagy. Cell. Physiol. Biochem. 2015, 36, 531–541. [Google Scholar] [CrossRef] [PubMed]
- Bonini, S.A.; Ferrari-Toninelli, G.; Uberti, D.; Montinaro, M.; Buizza, L.; Lanni, C.; Grilli, M.; Memo, M. Nuclear factor kappaB-dependent neurite remodeling is mediated by Notch pathway. J. Neurosci. 2011, 31, 11697–11705. [Google Scholar] [CrossRef]
- Ferrari-Toninelli, G.; Bonini, S.A.; Uberti, D.; Napolitano, F.; Stante, M.; Santoro, F.; Minopoli, G.; Zambrano, N.; Russo, T.; Memo, M. Notch activation induces neurite remodeling and functional modifications in SH-SY5Y neuronal cells. Dev. Neurobiol. 2009, 69, 378–391. [Google Scholar] [CrossRef]
- Ferrari-Toninelli, G.; Bonini, S.A.; Bettinsoli, P.; Uberti, D.; Memo, M. Microtubule stabilizing effect of notch activation in primary cortical neurons. Neuroscience 2008, 154, 946–952. [Google Scholar] [CrossRef]
- Mishra-Gorur, K.; Rand, M.D.; Perez-Villamil, B.; Artavanis-Tsakonas, S. Down-regulation of Delta by proteolytic processing. J. Cell Biol. 2002, 159, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Levy, O.A.; Lah, J.J.; Levey, A.I. Notch signaling inhibits PC12 cell neurite outgrowth via RBP-J-dependent and -independent mechanisms. Dev. Neurosci. 2002, 24, 79–88. [Google Scholar] [CrossRef]
- Franklin, J.L.; Berechid, B.E.; Cutting, F.B.; Presente, A.; Chambers, C.B.; Foltz, D.R.; Ferreira, A.; Nye, J.S. Autonomous and non-autonomous regulation of mammalian neurite development by Notch1 and Delta1. Curr. Biol. 1999, 9, 1448–1457. [Google Scholar] [CrossRef] [Green Version]
- Berezovska, O.; McLean, P.; Knowles, R.; Frosh, M.; Lu, F.M.; Lux, S.E.; Hyman, B.T. Notch1 inhibits neurite outgrowth in postmitotic primary neurons. Neuroscience 1999, 93, 433–439. [Google Scholar] [CrossRef]
- Kuzina, I.; Song, J.K.; Giniger, E. How Notch establishes longitudinal axon connections between successive segments of the Drosophila CNS. Development 2011, 138, 1839–1849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, B.A.; Bermingham, N.A.; He, Y.; Sun, Y.; Jan, Y.N.; Zoghbi, H.Y.; Bellen, H.J. atonal regulates neurite arborization but does not act as a proneural gene in the Drosophila brain. Neuron 2000, 25, 549–561. [Google Scholar] [CrossRef] [Green Version]
- Endo, K.; Aoki, T.; Yoda, Y.; Kimura, K.; Hama, C. Notch signal organizes the Drosophila olfactory circuitry by diversifying the sensory neuronal lineages. Nat. Neurosci. 2007, 10, 153–160. [Google Scholar] [CrossRef]
- Langen, M.; Koch, M.; Yan, J.; De Geest, N.; Erfurth, M.-L.; Pfeiffer, B.D.; Schmucker, D.; Moreau, Y.; Hassan, B.A. Mutual inhibition among postmitotic neurons regulates robustness of brain wiring in Drosophila. Elife 2013, 2, e00337. [Google Scholar] [CrossRef]
- Li, P.; Collins, K.M.; Koelle, M.R.; Shen, K. LIN-12/Notch signaling instructs postsynaptic muscle arm development by regulating UNC-40/DCC and MADD-2 in Caenorhabditis elegans. Elife 2013, 2, e00378. [Google Scholar] [CrossRef]
- Pinto-Teixeira, F.; Koo, C.; Rossi, A.M.; Neriec, N.; Bertet, C.; Li, X.; Del-Valle-Rodriguez, A.; Desplan, C. Development of Concurrent Retinotopic Maps in the Fly Motion Detection Circuit. Cell 2018, 173, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Salama-Cohen, P.; Arevalo, M.-A.; Meier, J.; Grantyn, R.; Rodriguez-Tebar, A. NGF controls dendrite development in hippocampal neurons by binding to p75NTR and modulating the cellular targets of Notch. Mol. Biol. Cell 2005, 16, 339–347. [Google Scholar] [CrossRef] [Green Version]
- Redmond, L.; Oh, S.R.; Hicks, C.; Weinmaster, G.; Ghosh, A. Nuclear Notch1 signaling and the regulation of dendritic development. Nat. Neurosci. 2000, 3, 30–40. [Google Scholar] [CrossRef]
- Nishimura, T.; Yamaguchi, T.; Tokunaga, A.; Hara, A.; Hamaguchi, T.; Kato, K.; Iwamatsu, A.; Okano, H.; Kaibuchi, K. Role of numb in dendritic spine development with a Cdc42 GEF intersectin and EphB2. Mol. Biol. Cell 2006, 17, 1273–1285. [Google Scholar] [CrossRef] [PubMed]
- Salama-Cohen, P.; Arevalo, M.-A.; Grantyn, R.; Rodriguez-Tebar, A. Notch and NGF/p75NTR control dendrite morphology and the balance of excitatory/inhibitory synaptic input to hippocampal neurones through Neurogenin 3. J. Neurochem. 2006, 97, 1269–1278. [Google Scholar] [CrossRef] [PubMed]
- Breunig, J.J.; Silbereis, J.; Vaccarino, F.M.; Sestan, N.; Rakic, P. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc. Natl. Acad. Sci. USA 2007, 104, 20558–20563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon-Areces, J.; Dopazo, A.; Dettenhofer, M.; Rodriguez-Tebar, A.; Garcia-Segura, L.M.; Arevalo, M.-A. Formin1 mediates the induction of dendritogenesis and synaptogenesis by neurogenin3 in mouse hippocampal neurons. PLoS ONE 2011, 6, e21825. [Google Scholar] [CrossRef] [Green Version]
- Mertz, J.; Tan, H.; Pagala, V.; Bai, B.; Chen, P.-C.; Li, Y.; Cho, J.-H.; Shaw, T.; Wang, X.; Peng, J. Sequential Elution Interactome Analysis of the Mind Bomb 1 Ubiquitin Ligase Reveals a Novel Role in Dendritic Spine Outgrowth. Mol. Cell. Proteomics 2015, 14, 1898–1910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muroyama, Y.; Baba, A.; Kitagawa, M.; Saito, T. Olfactory Sensory Neurons Control Dendritic Complexity of Mitral Cells via Notch Signaling. PLoS Genet. 2016, 12, e1006514. [Google Scholar] [CrossRef]
- Wong, C.-M.; Wang, Y.; Lee, J.T.H.; Huang, Z.; Wu, D.; Xu, A.; Lam, K.S.L. Adropin is a brain membrane-bound protein regulating physical activity via the NB-3/Notch signaling pathway in mice. J. Biol. Chem. 2014, 289, 25976–25986. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Willer, J.R.; Scherer, P.C.; Panzer, J.A.; Kugath, A.; Skordalakes, E.; Gregg, R.G.; Willer, G.B.; Balice-Gordon, R.J. Neural and synaptic defects in slytherin, a zebrafish model for human congenital disorders of glycosylation. PLoS ONE 2010, 5, e13743. [Google Scholar] [CrossRef] [Green Version]
- Haussmann, I.U.; White, K.; Soller, M. Erect wing regulates synaptic growth in Drosophila by integration of multiple signaling pathways. Genome Biol. 2008, 9, R73. [Google Scholar] [CrossRef] [Green Version]
- Kidd, S.; Struhl, G.; Lieber, T. Notch is required in adult Drosophila sensory neurons for morphological and functional plasticity of the olfactory circuit. PLoS Genet. 2015, 11, e1005244. [Google Scholar] [CrossRef] [Green Version]
- Kidd, S.; Lieber, T. Mechanism of notch pathway activation and its role in the regulation of olfactory plasticity in Drosophila melanogaster. PLoS ONE 2016, 11, e0151279. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, M.; De Mattei, C.; Giniger, E. Molecular separation of two signaling pathways for the receptor, Notch. Dev. Biol. 2008, 313, 556–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giniger, E. Notch signaling and neural connectivity. Curr. Opin. Genet. Dev. 2012, 22, 339–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherrington, R.; Rogaev, E.I.; Liang, Y.; Rogaeva, E.A.; Levesque, G.; Ikeda, M.; Chi, H.; Lin, C.; Li, G.; Holman, K.; et al. Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 1995, 375, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Rogaev, E.I.; Sherrington, R.; Rogaeva, E.A.; Levesque, G.; Ikeda, M.; Liang, Y.; Chi, H.; Lin, C.; Holman, K.; Tsuda, T.; et al. Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature 1995, 376, 775–778. [Google Scholar] [CrossRef] [PubMed]
- Jakobsdottir, J.; van der Lee, S.J.; Bis, J.C.; Chouraki, V.; Li-Kroeger, D.; Yamamoto, S.; Grove, M.L.; Naj, A.; Vronskaya, M.; Salazar, J.L.; et al. Rare Functional Variant in TM2D3 is Associated with Late-Onset Alzheimer’s Disease. PLoS Genet. 2016, 12, e1006327. [Google Scholar] [CrossRef]
- Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 2019, 51, 414–430. [Google Scholar] [CrossRef] [Green Version]
- Joutel, A.; Corpechot, C.; Ducros, A.; Vahedi, K.; Chabriat, H.; Mouton, P.; Alamowitch, S.; Domenga, V.; Cecillion, M.; Marechal, E.; et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996, 383, 707–710. [Google Scholar] [CrossRef]
- Chabriat, H.; Joutel, A.; Dichgans, M.; Tournier-Lasserve, E.; Bousser, M.G. CADASIL. Lancet Neurol. 2009, 8, 643–653. [Google Scholar] [CrossRef]
- Joutel, A.; Andreux, F.; Gaulis, S.; Domenga, V.; Cecillon, M.; Battail, N.; Piga, N.; Chapon, F.; Godfrain, C.; Tournier-Lasserve, E. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients. J. Clin. Invest. 2000, 105, 597–605. [Google Scholar] [CrossRef]
- Koo, E.H.; Kopan, R. Potential role of presenilin-regulated signaling pathways in sporadic neurodegeneration. Nat. Med. 2004, 10, S26. [Google Scholar] [CrossRef] [PubMed]
- Woo, H.N.; Park, J.S.; Gwon, A.R.; Arumugam, T.V.; Jo, D.G. Alzheimer’s disease and Notch signaling. Biochem. Biophys. Res. Commun. 2009, 390, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Ethell, D.W. An amyloid-notch hypothesis for Alzheimer’s disease. Neuroscientist 2010, 16, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Presente, A.; Andres, A.; Nye, J.S. Requirement of Notch in adulthood for neurological function and longevity. Neuroreport 2001, 12, 3321–3325. [Google Scholar] [CrossRef] [PubMed]
- Vilkki, J.; Portin, P. Fine structure of flight muscles in different Notch mutants of Drosophila melanogaster reared at different temperatures. Roux’s Arch. Dev. Biol. 1987, 196, 12–15. [Google Scholar] [CrossRef]
- Chaturvedi, D.; Reichert, H.; Gunage, R.D.; VijayRaghavan, K. Identification and functional characterization of muscle satellite cells in Drosophila. Elife 2017, 6, e30107. [Google Scholar] [CrossRef]
- Micchelli, C.A.; Perrimon, N. Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 2006, 439, 475–479. [Google Scholar] [CrossRef]
- Bonfini, A.; Wilkin, M.B.; Baron, M. Reversible regulation of stem cell niche size associated with dietary control of Notch signalling. BMC Dev. Biol. 2015, 15. [Google Scholar] [CrossRef] [Green Version]
- Tanveer, R.; Gowran, A.; Noonan, J.; Keating, S.E.; Bowie, A.G.; Campbell, V.A. The endocannabinoid, anandamide, augments notch-1 signaling in cultured cortical neurons exposed to amyloid- β and in the cortex of aged rats. J. Biol. Chem. 2012, 287, 34709–34721. [Google Scholar] [CrossRef] [Green Version]
- Placanica, L.; Zhu, L.; Yue-Ming, L. Gender- and age-dependent γ-secretase activity in mouse brain and its implication in sporadic Alzheimer disease. PLoS ONE 2009, 4, e5088. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; Watanabe, H.; Wines-Samuelson, M.; Zhao, H.; Gridley, T.; Kopan, R.; Shen, J. Conditional deletion of Notch1 and Notch2 genes in excitatory neurons of postnatal forebrain does not cause neurodegeneration or reduction of Notch mRNAs and proteins. J. Biol. Chem. 2012, 287, 20356–20368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wangler, M.F.; Yamamoto, S.; Bellen, H.J. Fruit flies in biomedical research. Genetics 2015, 199, 639–653. [Google Scholar] [CrossRef]
- Michael Harnish, J.; Deal, S.L.; Chao, H.T.; Wangler, M.F.; Yamamoto, S. In vivo functional study of disease-associated rare human variants using drosophila. J. Vis. Exp. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Deal, S.L.; Yamamoto, S. Unraveling novel mechanisms of neurodegeneration through a large-scale forward genetic screen in Drosophila. Front. Genet. 2019, 9, 700. [Google Scholar] [CrossRef] [PubMed]
- Bellen, H.J.; Yamamoto, S. Morgan’s Legacy: Fruit Flies and the Functional Annotation of Conserved Genes. Cell 2015, 163, 12–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wangler, M.F.; Yamamoto, S.; Chao, H.T.; Posey, J.E.; Westerfield, M.; Postlethwait, J.; Hieter, P.; Boycott, K.M.; Campeau, P.M.; Bellen, H.J.; et al. Model organisms facilitate rare disease diagnosis and therapeutic research. Genetics 2017, 207, 9–27. [Google Scholar] [CrossRef] [PubMed]
- Bondi, M.W.; Edmonds, E.C.; Salmon, D.P. Alzheimer’s disease: Past, present, and future. J. Int. Neuropsychol. Soc. 2017, 23, 818–831. [Google Scholar] [CrossRef] [Green Version]
- Borchelt, D.R.; Thinakaran, G.; Eckman, C.B.; Lee, M.K.; Davenport, F.; Ratovitsky, T.; Prada, C.M.; Kim, G.; Seekins, S.; Yager, D.; et al. Familial Alzheimer’s disease-linked presenilin I variants elevate aβ1- 42/1-40 ratio in vitro and in vivo. Neuron 1996, 17, 1005–1013. [Google Scholar] [CrossRef] [Green Version]
- Saura, C.A.; Choi, S.-Y.; Beglopoulos, V.; Malkani, S.; Zhang, D.; Rao, B.S.S.; Chattarji, S.; Kelleher, R.J.; Kandel, E.R.; Duff, K.; et al. Loss of Presenilin Function Causes Impairments of Memory and Synaptic Plasticity Followed by Age-Dependent Neurodegeneration. Neuron 2004, 42, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Tabuchi, K.; Chen, G.; Südhof, T.C.; Shen, J. Conditional forebrain inactivation of nicastrin causes progressive memory impairment and age-related neurodegeneration. J. Neurosci. 2009, 29, 7290–7301. [Google Scholar] [CrossRef]
- Kang, J.; Shin, S.; Perrimon, N.; Shen, J. An evolutionarily conserved role of presenilin in neuronal protection in the aging drosophila brain. Genetics 2017, 206, 1479–1493. [Google Scholar] [CrossRef] [Green Version]
- Amtul, Z.; Lewis, P.A.; Piper, S.; Crook, R.; Baker, M.; Findlay, K.; Singleton, A.; Hogg, M.; Younkin, L.; Younkin, S.G.; et al. A Presenilin 1 Mutation Associated with Familial Frontotemporal Dementia Inhibits γ-Secretase Cleavage of APP and Notch. Neurobiol. Dis. 2002, 9, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, R.; Jiménez, F.; Dietrich, U.; Campos-Ortega, J.A. On the phenotype and development of mutants of early neurogenesis inDrosophila melanogaster. Wilhelm Roux’s Arch. Dev. Biol. 1983, 192, 62–74. [Google Scholar] [CrossRef]
- Das, P.; Salazar, J.L.; Li-Kroeger, D.; Yamamoto, S.; Nakamura, M.; Sasamura, T.; Inaki, M.; Masuda, W.; Kitagawa, M.; Yamakawa, T.; et al. Maternal almondex, a neurogenic gene, is required for proper subcellular Notch distribution in early Drosophila embryogenesis. Dev. Growth Differ. 2020, 62, 80–93. [Google Scholar] [CrossRef] [Green Version]
- Michellod, M.-A.; Randsholt, N.B. Implication of the Drosophila beta-amyloid peptide binding-like protein AMX in Notch signaling during early neurogenesis. Brain Res. Bull. 2008, 75, 305–309. [Google Scholar] [CrossRef]
- Oh, S.Y.; Ellenstein, A.; Chen, C.D.; Hinman, J.D.; Berg, E.A.; Costello, C.E.; Yamin, R.; Neve, R.L.; Abraham, C.R. Amyloid precursor protein interacts with notch receptors. J. Neurosci. Res. 2005, 82, 32–42. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.D.; Oh, S.Y.; Hinman, J.D.; Abraham, C.R. Visualization of APP dimerization and APP-Notch2 heterodimerization in living cells using bimolecular fluorescence complementation. J. Neurochem. 2006, 97, 30–43. [Google Scholar] [CrossRef] [PubMed]
- Fassa, A.; Mehta, P.; Efthimiopoulos, S. Notch 1 interacts with the amyloid precursor protein in a numb-independent manner. J. Neurosci. Res. 2005, 82, 214–224. [Google Scholar] [CrossRef] [PubMed]
- Galeano, P.; Leal, M.C.; Ferrari, C.C.; Dalmasso, M.C.; Martino Adami, P.V.; Farías, M.I.; Casabona, J.C.; Puntel, M.; Do Carmo, S.; Smal, C.; et al. Chronic Hippocampal Expression of Notch Intracellular Domain Induces Vascular Thickening, Reduces Glucose Availability, and Exacerbates Spatial Memory Deficits in a Rat Model of Early Alzheimer. Mol. Neurobiol. 2018, 55, 8637–8650. [Google Scholar] [CrossRef]
- Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; et al. Huntington disease. Nat. Rev. Dis. Prim. 2015, 1, 1–21. [Google Scholar] [CrossRef]
- Calpena, E.; López Del Amo, V.; Chakraborty, M.; Llamusí, B.; Artero, R.; Espinós, C.; Galindo, M.I. The Drosophila junctophilin gene is functionally equivalent to its four mammalian counterparts and is a modifier of a Huntingtin poly-Q expansion and the Notch pathway. Dis. Model. Mech. 2018, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landstrom, A.P.; Beavers, D.L.; Wehrens, X.H.T. The junctophilin family of proteins: From bench to bedside. Trends Mol. Med. 2014, 20, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Eid, J.P.; Arias, A.M.; Robertson, H.; Hime, G.R.; Dziadek, M. The Drosophila STIM1 orthologue, dSTIM, has roles in cell fate specification and tissue patterning. BMC Dev. Biol. 2008, 8, 104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, G.; Cheung, I.; Shulha, H.P.; Coelho, J.E.; Li, P.; Dong, X.; Jakovcevski, M.; Wang, Y.; Grigorenko, A.; Jiang, Y.; et al. Epigenetic dysregulation of hairy and enhancer of split 4 (HES4) is associated with striatal degeneration in postmortem Huntington brains. Hum. Mol. Genet. 2015, 24, 1441–1456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulson, H.L. The spinocerebellar ataxias. J. Neuro-Ophthalmol. 2009, 29, 227–237. [Google Scholar] [CrossRef] [Green Version]
- Klockgether, T.; Mariotti, C.; Paulson, H.L. Spinocerebellar ataxia. Nat. Rev. Dis. Prim. 2019, 5. [Google Scholar] [CrossRef]
- Banfi, S.; Servadio, A.; Chung, M.Y.; Kwiatkowski, T.J.; McCall, A.E.; Duvick, L.A.; Shen, Y.; Roth, E.J.; Orr, H.T.; Zoghbi, H.Y. Identification and characterization of the gene causing type 1 spinocerebellar ataxia. Nat. Genet. 1994, 7, 513–520. [Google Scholar] [CrossRef]
- Tong, X.; Gui, H.; Jin, F.; Heck, B.W.; Lin, P.; Ma, J.; Fondell, J.D.; Tsai, C.-C. Ataxin-1 and Brother of ataxin-1 are components of the Notch signalling pathway. EMBO Rep. 2011, 12, 428–435. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Jegga, A.G.; Zhang, M.; Deng, J.; Liu, J.; Gordon, C.B.; Aronow, B.J.; Lu, L.J.; Zhang, B.; Ma, J. A Drosophila model of the neurodegenerative disease SCA17 reveals a role of RBP-J/Su(H) in modulating the pathological outcome. Hum. Mol. Genet. 2011, 20, 3424–3436. [Google Scholar] [CrossRef] [Green Version]
- Shukla, J.P.; Deshpande, G.; Shashidhara, L.S. Ataxin 2-binding protein 1 is a context-specific positive regulator of Notch signaling during neurogenesis in Drosophila melanogaster. Dev. 2017, 144, 905–915. [Google Scholar] [CrossRef] [Green Version]
- Klein, A.L.; Zilian, O.; Suter, U.; Taylor, V. Murine numb regulates granule cell maturation in the cerebellum. Dev. Biol. 2004, 266, 161–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, A.R.; An, H.T.; Ko, J.; Kang, S. Ataxin-1 regulates epithelial-mesenchymal transition of cervical cancer cells. Oncotarget 2017, 8, 18248–18259. [Google Scholar] [CrossRef] [PubMed]
- Zarei, S.; Carr, K.; Reiley, L.; Diaz, K.; Guerra, O.; Altamirano, P.F.; Pagani, W.; Lodin, D.; Orozco, G.; Chinea, A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 2015, 6, 171. [Google Scholar] [CrossRef]
- Van Damme, P.; Robberecht, W.; Van Den Bosch, L. Modelling amyotrophic lateral sclerosis: Progress and possibilities. DMM Dis. Model. Mech. 2017, 10, 537–549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, D.; Abdallah, A.; Li, Z.; Lu, Y.; Almeida, S.; Gao, F.B. FTD/ALS-associated poly(GR) protein impairs the Notch pathway and is recruited by poly(GA) into cytoplasmic inclusions. Acta Neuropathol. 2015, 130, 525–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swindell, W.R.; Bojanowski, K.; Kindy, M.S.; Chau, R.M.W.; Ko, D. GM604 regulates developmental neurogenesis pathways and the expression of genes associated with amyotrophic lateral sclerosis. Transl. Neurodegener. 2018, 7, 30. [Google Scholar] [CrossRef]
- Zhan, L.; Hanson, K.A.; Kim, S.H.; Tare, A.; Tibbetts, R.S. Identification of Genetic Modifiers of TDP-43 Neurotoxicity in Drosophila. PLoS ONE 2013, 8, e57214. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.Y.; Ren, M.; Jiang, H.Z.; Wang, J.; Jiang, H.Q.; Yin, X.; Qi, Y.; Wang, X.D.; Dong, G.T.; Wang, T.H.; et al. Notch pathway is activated in cell culture and mouse models of mutant SOD1-related familial amyotrophic lateral sclerosis, with suppression of its activation as an additional mechanism of neuroprotection for lithium and valproate. Neuroscience 2015, 301, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Nonneman, A.; Criem, N.; Lewandowski, S.A.; Nuyts, R.; Thal, D.R.; Pfrieger, F.W.; Ravits, J.; Van Damme, P.; Zwijsen, A.; Van Den Bosch, L.; et al. Astrocyte-derived Jagged-1 mitigates deleterious Notch signaling in amyotrophic lateral sclerosis. Neurobiol. Dis. 2018, 119, 26–40. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Prim. 2017, 3, 1–21. [Google Scholar] [CrossRef]
- Bandres-Ciga, S.; Diez-Fairen, M.; Kim, J.J.; Singleton, A.B. Genetics of Parkinson’s disease: An introspection of its journey towards precision medicine. Neurobiol. Dis. 2020, 137, 104782. [Google Scholar] [CrossRef]
- Crews, L.; Mizuno, H.; Desplats, P.; Rockenstein, E.; Adame, A.; Patrick, C.; Winner, B.; Winkler, J.; Masliah, E. α-synuclein alters Notch-1 expression and neurogenesis in mouse embryonic stem cells and in the hippocampus of transgenic mice. J. Neurosci. 2008, 28, 4250–4260. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Kobayashi, Y.; Inoshita, T.; Meng, H.; Arano, T.; Uemura, K.; Asano, T.; Yoshimi, K.; Zhang, C.L.; Matsumoto, G.; et al. The Parkinson’s Disease-Associated Protein Kinase LRRK2 Modulates Notch Signaling through the Endosomal Pathway. PLoS Genet. 2015, 11, e1005503. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Wong, C.; Gao, S.M.; Zhang, R.; Sun, R.; Li, Y.; Song, Y. The retromer complex safeguards against neural progenitor-derived tumorigenesis by regulating notch receptor trafficking. Elife 2018, 7, e38181. [Google Scholar] [CrossRef] [PubMed]
- Scheckel, C.; Aguzzi, A. Prions, prionoids and protein misfolding disorders. Nat. Rev. Genet. 2018, 19, 405–418. [Google Scholar] [CrossRef] [Green Version]
- Ishikura, N.; Clever, J.L.; Bouzamondo-Bernstein, E.; Samayoa, E.; Prusiner, S.B.; Huang, E.J.; DeArmond, S.J. Notch-1 activation and dendritic atrophy in prion disease. Proc. Natl. Acad. Sci. USA 2005, 102, 886–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippi, M.; Bar-Or, A.; Piehl, F.; Preziosa, P.; Solari, A.; Vukusic, S.; Rocca, M.A. Multiple sclerosis. Nat. Rev. Dis. Prim. 2018, 4, 1–27. [Google Scholar] [CrossRef]
- Mathieu, P.A.; Almeira Gubiani, M.F.; Rodríguez, D.; Gómez Pinto, L.I.; Calcagno, M. de L.; Adamo, A.M. Demyelination-Remyelination in the Central Nervous System: Ligand-Dependent Participation of the Notch Signaling Pathway. Toxicol. Sci. 2019, 171, 172–192. [Google Scholar] [CrossRef]
- Aparicio, E.; Mathieu, P.; Pereira Luppi, M.; Almeira Gubiani, M.F.; Adamo, A.M. The notch signaling pathway: Its role in focal CNS demyelination and apotransferrin-induced remyelination. J. Neurochem. 2013, 127, 819–836. [Google Scholar] [CrossRef]
- Hu, Q.-D.; Ang, B.-T.; Karsak, M.; Hu, W.-P.; Cui, X.-Y.; Duka, T.; Takeda, Y.; Chia, W.; Sankar, N.; Ng, Y.-K. F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. Cell 2003, 115, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Hammond, T.R.; Gadea, A.; Dupree, J.; Kerninon, C.; Nait-Oumesmar, B.; Aguirre, A.; Gallo, V. Astrocyte-derived endothelin-1 inhibits remyelination through notch activation. Neuron 2014, 81, 588–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, H.; Zhao, J.G.; Yan, J.Q.; Du, G.Q.; Fu, Q.Z.; Shi, J.; Yang, Y.H.; Du, X.W.; Bai, X.L. Effect of Notch1 gene on remyelination in multiple sclerosis in mouse models of acute demyelination. J. Cell. Biochem. 2018, 119, 9284–9294. [Google Scholar] [CrossRef] [PubMed]
- Stidworthy, M.F.; Genoud, S.; Li, W.-W.; Leone, D.P.; Mantei, N.; Suter, U.; Franklin, R.J.M. Notch1 and Jagged1 are expressed after CNS demyelination, but are not a major rate-determining factor during remyelination. Brain 2004, 127, 1928–1941. [Google Scholar] [CrossRef] [PubMed]
- Adriani, M.; Nytrova, P.; Mbogning, C.; Hässler, S.; Medek, K.; Jensen, P.E.H.; Creeke, P.; Warnke, C.; Ingenhoven, K.; Hemmer, B.; et al. Monocyte NOTCH2 expression predicts IFN-β immunogenicity in multiple sclerosis patients. JCI Insight 2018, 3, e99274. [Google Scholar] [CrossRef] [PubMed]
- Sandy, A.R.; Stoolman, J.; Malott, K.; Pongtornpipat, P.; Segal, B.M.; Maillard, I. Notch Signaling Regulates T Cell Accumulation and Function in the Central Nervous System during Experimental Autoimmune Encephalomyelitis. J. Immunol. 2013, 191, 1606–1613. [Google Scholar] [CrossRef] [Green Version]
- Eixarch, H.; Mansilla, M.J.; Costa, C.; Kunkel, S.L.; Montalban, X.; Godessart, N.; Espejo, C. Inhibition of delta-like ligand 4 decreases Th1/Th17 response in a mouse model of multiple sclerosis. Neurosci. Lett. 2013, 541, 161–166. [Google Scholar] [CrossRef]
- Tsugane, S.; Takizawa, S.; Kaneyama, T.; Ichikawa, M.; Yagita, H.; Kim, B.S.; Koh, C.S. Therapeutic effects of anti-Delta1 mAb on Theiler’s murine encephalomyelitis virus-induced demyelinating disease. J. Neuroimmunol. 2012, 252, 66–74. [Google Scholar] [CrossRef]
- Bassil, R.; Zhu, B.; Lahoud, Y.; Riella, L.V.; Yagita, H.; Elyaman, W.; Khoury, S.J. Notch Ligand Delta-Like 4 Blockade Alleviates Experimental Autoimmune Encephalomyelitis by Promoting Regulatory T Cell Development. J. Immunol. 2011, 187, 2322–2328. [Google Scholar] [CrossRef] [Green Version]
- Givogri, M.I.; Costa, R.M.; Schonmann, V.; Silva, A.J.; Campagnoni, A.T.; Bongarzone, E.R. Central nervous system myelination in mice with deficient expression of Notch1 receptor. J. Neurosci. Res. 2002, 67, 309–320. [Google Scholar] [CrossRef]
- Reynolds, N.D.; Lukacs, N.W.; Long, N.; Karpus, W.J. Delta-Like Ligand 4 Regulates Central Nervous System T Cell Accumulation during Experimental Autoimmune Encephalomyelitis. J. Immunol. 2011, 187, 2803–2813. [Google Scholar] [CrossRef] [Green Version]
- Keerthivasan, S.; Suleiman, R.; Lawlor, R.; Roderick, J.; Bates, T.; Minter, L.; Anguita, J.; Juncadella, I.; Nickoloff, B.J.; Le Poole, I.C.; et al. Notch Signaling Regulates Mouse and Human Th17 Differentiation. J. Immunol. 2011, 187, 692–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jurynczyk, M.; Jurewicz, A.; Raine, C.S.; Selmaj, K. Notch3 Inhibition in Myelin-Reactive T Cells Down-Regulates Protein Kinase Cθ and Attenuates Experimental Autoimmune Encephalomyelitis. J. Immunol. 2008, 180, 2634–2640. [Google Scholar] [CrossRef] [PubMed]
- Marathe, S.; Liu, S.; Brai, E.; Kaczarowski, M.; Alberi, L. Notch signaling in response to excitotoxicity induces neurodegeneration via erroneous cell cycle reentry. Cell Death Differ. 2015, 22, 1775–1784. [Google Scholar] [CrossRef] [Green Version]
- Bland, C.; Rand, M.D. Methylmercury induces activation of Notch signaling. Neurotoxicology 2006, 27, 982–991. [Google Scholar] [CrossRef]
- Engel, G.L.; Rand, M.D. The Notch target E(spl)mδ is a muscle-specific gene involved in methylmercury toxicity in motor neuron development. Neurotoxicol. Teratol. 2014, 43, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Engel, G.L.; Delwig, A.; Rand, M.D. The effects of methylmercury on Notch signaling during embryonic neural development in Drosophila melanogaster. Toxicol. Vitr. 2012, 26, 485–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamm, C.; Duckworth, J.K.; Hermanson, O.; Ceccatelli, S. Methylmercury inhibits differentiation of rat neural stem cells via Notch signalling. Neuroreport 2008, 19, 339–343. [Google Scholar] [CrossRef]
- Alattia, J.; Kuraishi, T.; Dimitrov, M.; Chang, I.; Lemaitre, B.; Fraering, P.C. Mercury is a direct and potent γ-secretase inhibitor affecting Notch processing and development in Drosophila. FASEB J. 2011, 25, 2287–2295. [Google Scholar] [CrossRef]
- Tofighi, R.; Wan Ibrahim, W.; Rebellato, P.; Andersson, P.; Uhlén, P.; Ceccatelli, S. Non-dioxin-like polychlorinated biphenyls interfere with neuronal differentiation of embryonic neural stem cells. Toxicol. Sci. 2012, 125, 187–195. [Google Scholar] [CrossRef] [Green Version]
- Hoelting, L.; Scheinhardt, B.; Bondarenko, O.; Schildknecht, S.; Kapitza, M.; Tanavde, V.; Tan, B.; Lee, Q.Y.; Mecking, S.; Leist, M.; et al. A 3-dimensional human embryonic stem cell (hESC)-derived model to detect developmental neurotoxicity of nanoparticles. Arch. Toxicol. 2013, 87, 721–733. [Google Scholar] [CrossRef] [Green Version]
- Kyriazis, G.A.; Belal, C.; Madan, M.; Taylor, D.G.; Wang, J.; Wei, Z.; Pattisapu, J.V.; Chan, S.L. Stress-induced switch in numb isoforms enhances notch-dependent expression of subtype-specific transient receptor potential channel. J. Biol. Chem. 2010, 285, 6811–6825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, M.; Tan, Y.; Liu, G.; Liu, L.; Cao, F.; Liu, J.; Jiang, P.; Xu, Y. Effects of the Notch signalling pathway on hyperoxia-induced immature brain damage in newborn mice. Neurosci. Lett. 2017, 653, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Ferraris, P.; Cochet, M.; Hamel, R.; Gladwyn-Ng, I.; Alfano, C.; Diop, F.; Garcia, D.; Talignani, L.; Montero-Menei, C.N.; Nougairède, A.; et al. Zika virus differentially infects human neural progenitor cells according to their state of differentiation and dysregulates neurogenesis through the Notch pathway. Emerg. Microbes Infect. 2019, 8, 1003–1016. [Google Scholar] [CrossRef] [PubMed]
- Harsh, S.; Fu, Y.; Kenney, E.; Han, Z.; Eleftherianos, I. Zika virus non-structural protein NS4A restricts eye growth in Drosophila through regulation of JAK/STAT signaling. Dis. Model. Mech. 2020, 13, dmm.040816. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Learning and Memory | ||||
Models | Genes | Alleles | Phenotypes | |
Drosophila | N | Nts1 and Nts2 (temperature-sensitive LOF), RNAi, and NΔcdc10rpts (dominant negative) | Disruption of long-term memory formation. | (Ge et al., 2004, Presente et al., 2004) |
Drosophila | N | Nnd-1 and Nnd-3 (temperature-sensitive GOF) | Upregulation of a long-term memory (LTM) mediator, CREB (cAMP response element binding protein). | (Zhang et al., 2013) |
Drosophila | N | hs-NICD (overexpression of active form of Notch) | Disruption of long-term memory formation. | (Zhang et al., 2015) |
Drosophila | Su(H) | Su(H)IB115 and Su(H)HG36 (LOF), and hs-Su(H) (Overexpression) | Disruption of long-term memory formation. | (Song et al., 2009) |
Drosophila | klg | klgrus (LOF) | Impairment of Notch-dependent long-term memory formation. | (Matsuno et al., 2009) |
Mouse | Jag1 | Heterozygous null mutants | Impairment of spatial memory formation. | (Sargin et al., 2013) |
Mouse | Adam10 | Adam10flox/flox conditional KO | Impairment of learning and memory in the Morris water-maze. | (Zhuang et al., 2015) |
Mouse | Rbpj | Rbpjflox/flox conditional KO | Defects in long-term potentiation and in learning and memory. | (Liu et al., 2015) |
Models | Genes | Key findings | ||
Rat | Notch2 | High expression of Notch2 in hippocampus and cerebellum upon establishment of long-term spatial memory. | (Storozheva et al., 2017) | |
Reward and Addiction | ||||
Models | Genes | Alleles | Phenotypes | |
Drosophila | sca | sca5-120 and scaBP-2 (LOF) | Impairment of reward memory of alcohol. | (Kaun et al., 2011) |
Drosophila | sca | sca5-120 and scaBP-2 (LOF) and RNAi | Reduced Notch activation and reward memory of alcohol. | (Petruccelli et al., 2018) |
Drosophila | N | RNAi | Impairment of alcohol associative preference. | (Petruccelli et al., 2018) |
Drosophila | Su(H) | RNAi | Impairment of alcohol associative preference. | (Petruccelli et al., 2018) |
Sleep homeostasis | ||||
Models | Genes | Alleles | Phenotypes | |
Drosophila | N | Nspl-1 (GOF) | Disruption of sleeping homeostasis after sleep deprivation. | (Seugnet et al., 2011) |
Drosophila | Dl | Overexpression | Disruption of sleeping homeostasis after sleep deprivation. | (Seugnet et al., 2011) |
Drosophila | bun | bunBG0162, bunKG06590, bunKG00456, bunKG00392 (LOF) and Df(2L)prd1.7 (Deficiency) | Defects in sleep rebound after sleep deprivation. | (Seugnet et al., 2011) |
Models | Key Findings | |||
C. elegans | osm-7, osm-11, lin-12, glp-1 | Notch signaling induces a lethargus-like quiescence state in adult worms and regulates developmental lethargus. | (Singh et al., 2011) |
Notch Signaling is Regulated by Neuronal Activity | |||
Models | Genes | Key Findings | |
Drosophila | N | Notch activation is induced in olfactory receptor neurons (ORN) in response to a selective stimulus in a Delta ligand-dependent fashion. | (Lieber et al., 2011) |
Mouse | Notch1 | Notch1 and Jag1 are found at the synapse in somatosensory cortex and hippocampus in a Arc (a.k.a. Arg3.1)-dependent manner. Neuronal activation triggers proteolytic cleavage of Notch1, leading to increases in Notch receptors (NICD). | (Alberi et al., 2011) |
Mouse | Notch1 | Neural activity-dependent alternative cleavage and polyadenylation impacts Notch signaling at the transcript level of Notch1 mRNA in hippocampus. | (Fontes et al., 2017) |
Mouse | Notch1 | Olfactory stimulation activates Notch activity in mitral cells of the mouse olfactory bulb. | (Brai et al., 2014) |
Mouse | Notch3 and Dll4 | Neuronal activity-dependent reduction of DLL4 expression and proteolytic cleavage of Notch3 occur in the hypothalamic-neurohypophysial system. | (Mannari and Miyata, 2014) |
Post-Developmental Notch Signaling Regulates Neural and Synaptic Physiology | |||
Models | Genes | Key Findings | |
Mouse | Notch1 | Expression of antisense RNA of Notch causes impaired LTP (long term potentiation) and enhanced LTD (long term depression) at hippocampal CA1 synapses. | (Wang et al., 2004; Alberi et al., 2011) |
Mouse | Mib-1 | Mib1-mediated Notch signaling controls synaptic plasticity and memory formation in hippocampus. | (Yoon et al., 2012) |
Mouse | Mib-2 | Mib2 regulates synaptic plasticity and spatial memory via the Notch signaling. | (Kim et al., 2015) |
Mouse | Notch1 | Postnatally overexpressed Notch1 signaling reduces LTP in the visual cortex. | (Dahlhaus et al., 2008) |
Mouse | Notch1 | Notch1 regulates the hippocampal synaptic plasticity through the interactions with the Reelin Pathway, glutamate, and CREB signaling pathways. | (Brai et al., 2015) |
Mouse | Notch1, Notch2, Jag1 and Dll1 | Non-canonical Notch signaling positively regulates the expressions of VGLUT1 and Synaptophysin 1. | (Hayashi et al., 2016) |
Mouse | Notch1 and Rbpj | Notch1-Rbpj regulates the expression of GABA (Gamma-AminoButyric Acid) transporters such as Slc6a12 and Slc6a13 in CA1 neurons. | (Liu et al., 2015) |
C. elegans | lin-12 | LIN-12/Notch regulates synaptic activity by modulating GABA signaling at the neuromuscular junction. | (Sorkac et al., 2018) |
Post-Developmental Notch Signaling Regulates Neuronal Morphology | |||
Models | Genes | Key Findings | |
Drosophila | N | Non-canonical Notch promotes glomeruli volume increase. Then, canonical Notch regulates glomeruli volume and plasticity. | (Kidd et al., 2015; Kidd and Lieber, 2016) |
Neurodegenerative Diseases | Relevant Human Genes Linked to Notch Signaling | Fly Homologs of Human Genes |
---|---|---|
Alzheimer’s disease (AD) | PSEN1 PSEN2 NCT TM2D3 ADAM10 | Psn Psn Nct amx kuz |
Huntington’s disease (HD) and HD-like disease 2 | JPH3 HES4 | jp h |
Spinocerebellar ataxia 1 (SCA1) | RBPJ HES6 ATXN1 ATXN1L (Brother of ATXN1) | Su(H) E(spl)mβ Atx-1 Atx-1 |
Spinocerebellar ataxia 17 (SCA17) | RBPJ | Su(H) |
Amyotrophic lateral sclerosis (ALS) | NOTCH1 NOTCH2 NOTCH3 NOTCH4 JAG1 | N N N N Ser |
Parkinson’s disease (PD) | LRRK2 VPS35 | Lrrk Vps35 |
Prion diseases | NOTCH1 | N |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar, J.L.; Yang, S.-A.; Yamamoto, S. Post-Developmental Roles of Notch Signaling in the Nervous System. Biomolecules 2020, 10, 985. https://doi.org/10.3390/biom10070985
Salazar JL, Yang S-A, Yamamoto S. Post-Developmental Roles of Notch Signaling in the Nervous System. Biomolecules. 2020; 10(7):985. https://doi.org/10.3390/biom10070985
Chicago/Turabian StyleSalazar, Jose L., Sheng-An Yang, and Shinya Yamamoto. 2020. "Post-Developmental Roles of Notch Signaling in the Nervous System" Biomolecules 10, no. 7: 985. https://doi.org/10.3390/biom10070985
APA StyleSalazar, J. L., Yang, S. -A., & Yamamoto, S. (2020). Post-Developmental Roles of Notch Signaling in the Nervous System. Biomolecules, 10(7), 985. https://doi.org/10.3390/biom10070985