The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients and Skin Images
2.2. Training of a Deep Learning Model
2.3. Test-Time Augmentation
2.4. Model Validation and Verification
3. Results
3.1. Six-Class Classification of FRCNN, BCDs, and TRNs
3.2. Two-Class Classification of FRCNN, BCDs, and TRNs
3.3. Two-Class Classification of FRCNN, BCDs, and TRNs
3.4. Summary of Classification Conducted by FRCNN, BCDs, and TRNs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schadendorf, D.; van Akkooi, A.C.J.; Berking, C.; Griewank, K.G.; Gutzmer, R.; Hauschild, A.; Stang, A.; Roesch, A.; Ugurel, S. Melanoma. Lancet 2018, 392, 971–984. [Google Scholar] [CrossRef]
- Nasr-Esfahani, E.; Samavi, S.; Karimi, N.; Soroushmehr, S.M.; Jafari, M.H.; Ward, K.; Najarian, K. Melanoma detection by analysis of clinical images using convolutional neural network. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2016, 2016, 1373–1376. [Google Scholar] [PubMed]
- Brinker, T.J.; Hekler, A.; Enk, A.H.; Klode, J.; Hauschild, A.; Berking, C.; Schilling, B.; Haferkamp, S.; Schadendorf, D.; Frohling, S.; et al. A convolutional neural network trained with dermoscopic images performed on par with 145 dermatologists in a clinical melanoma image classification task. Eur. J. Cancer 2019, 111, 148–154. [Google Scholar] [CrossRef] [Green Version]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Fujisawa, Y.; Otomo, Y.; Ogata, Y.; Nakamura, Y.; Fujita, R.; Ishitsuka, Y.; Watanabe, R.; Okiyama, N.; Ohara, K.; Fujimoto, M. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br. J. Dermatol. 2018. [Google Scholar] [CrossRef]
- Bilgic, S.A.; Cicek, D.; Demir, B. Dermoscopy in differential diagnosis of inflammatory dermatoses and mycosis fungoides. Int. J. Dermatol. 2020, 59, 843–850. [Google Scholar] [CrossRef]
- Morris, C.R.; Hurst, E.A. Extramammary Paget’s Disease: A Review of the Literature Part II: Treatment and Prognosis. Derm. Surg. 2020, 46, 305–311. [Google Scholar] [CrossRef]
- Marques, E.; Chen, T.M. Actinic Keratosis; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Asada, K.; Kobayashi, K.; Joutard, S.; Tubaki, M.; Takahashi, S.; Takasawa, K.; Komatsu, M.; Kaneko, S.; Sese, J.; Hamamoto, R. Uncovering Prognosis-Related Genes and Pathways by Multi-Omics Analysis in Lung Cancer. Biomolecules 2020, 10, 524. [Google Scholar] [CrossRef] [Green Version]
- Hamamoto, R.; Komatsu, M.; Takasawa, K.; Asada, K.; Kaneko, S. Epigenetics Analysis and Integrated Analysis of Multiomics Data, Including Epigenetic Data, Using Artificial Intelligence in the Era of Precision Medicine. Biomolecules 2020, 10, 62. [Google Scholar] [CrossRef] [Green Version]
- Yamada, M.; Saito, Y.; Imaoka, H.; Saiko, M.; Yamada, S.; Kondo, H.; Takamaru, H.; Sakamoto, T.; Sese, J.; Kuchiba, A.; et al. Development of a real-time endoscopic image diagnosis support system using deep learning technology in colonoscopy. Sci. Rep. 2019, 9, 14465. [Google Scholar] [CrossRef] [Green Version]
- Yasutomi, S.; Arakaki, T.; Hamamoto, R. Shadow Detection for Ultrasound Images Using Unlabeled Data and Synthetic Shadows. arXiv 2019, arXiv:1908.01439. [Google Scholar]
- Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Stathaki, T. Faster R-CNN for Robust Pedestrian Detection Using Semantic Segmentation Network. Front. Neurorobot. 2018, 12, 64. [Google Scholar] [CrossRef] [PubMed]
- Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 24–27. [Google Scholar]
- Shao, F.; Wang, X.; Meng, F.; Zhu, J.; Wang, D.; Dai, J. Improved Faster R-CNN Traffic Sign Detection Based on a Second Region of Interest and Highly Possible Regions Proposal Network. Sensors 2019, 19, 2288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.Q.; Zheng, J.C.; Sun, S.D.; Yang, C.F.; Liu, J. Optimized YOLOv3 Algorithm and Its Application inTraffic Flow Detections. Appl. Sci. 2020, 10, 3079. [Google Scholar] [CrossRef]
- Xiao, M.; Xiao, N.; Zeng, M.; Yuan, Q. Optimized Convolutional Neural Network-Based Object Recognition for Humanoid Robot. J. Robot. Autom. 2020, 4, 122–130. [Google Scholar]
- Kuok, C.P.; Horng, M.H.; Liao, Y.M.; Chow, N.H.; Sun, Y.N. An effective and accurate identification system of Mycobacterium tuberculosis using convolution neural networks. Microsc. Res. Tech. 2019, 82, 709–719. [Google Scholar] [CrossRef]
- Rosati, R.; Romeo, L.; Silvestri, S.; Marcheggiani, F.; Tiano, L.; Frontoni, E. Faster R-CNN approach for detection and quantification of DNA damage in comet assay images. Comput. Biol. Med. 2020, 123, 103912. [Google Scholar] [CrossRef]
- Goyal, M.; Reeves, N.D.; Rajbhandari, S.; Yap, M.H. Robust Methods for Real-Time Diabetic Foot Ulcer Detection and Localization on Mobile Devices. IEEE J. Biomed. Health Inform. 2019, 23, 1730–1741. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.; Caban, J.; Ebadollahi, S.; Laine, A. Interactive segmentation in multimodal med-ical imagery using a bayesian transductive learning approach. Med. Imaging 2009 Comput.-Aided Diagn. 2009, 7260, 72601W. [Google Scholar]
- Wan, S.; Mak, M.W.; Kung, S.Y. Transductive Learning for Multi-Label Protein Subchloroplast Localization Prediction. IEEE/Acm Trans. Comput. Biol. Bioinform. 2017, 14, 212–224. [Google Scholar] [CrossRef]
- Buechi, R.; Faes, L.; Bachmann, L.M.; Thiel, M.A.; Bodmer, N.S.; Schmid, M.K.; Job, O.; Lienhard, K.R. Evidence assessing the diagnostic performance of medical smartphone apps: A systematic review and exploratory meta-analysis. Bmj Open 2017, 7, e018280. [Google Scholar] [CrossRef]
- Ngoo, A.; Finnane, A.; McMeniman, E.; Tan, J.M.; Janda, M.; Soyer, H.P. Efficacy of smartphone applications in high-risk pigmented lesions. Australas J. Dermatol. 2018, 59, e175–e182. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Gupta, S.K. Recent advancement in the early detection of melanoma using computerized tools: An image analysis perspective. Ski. Res. Technol. 2018. [Google Scholar] [CrossRef]
- Wu, W.; Yin, Y.; Wang, X.; Xu, D. Face Detection With Different Scales Based on Faster R-CNN. IEEE Trans. Cybern 2019, 49, 4017–4028. [Google Scholar] [CrossRef]
- Li, H.; Weng, J.; Shi, Y.; Gu, W.; Mao, Y.; Wang, Y.; Liu, W.; Zhang, J. An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images. Sci. Rep. 2018, 8, 6600. [Google Scholar] [CrossRef]
- Ji, Y.; Zhang, S.; Xiao, W. Electrocardiogram Classification Based on Faster Regions with Convolutional Neural Network. Sensors 2019, 19, 2558. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Qian, N. On the momentum term in gradient descent learning algorithms. Neural Netw. 1999, 12, 145–151. [Google Scholar] [CrossRef]
- Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.-Y.; Berg, A. SSD: Single Shot MultiBox Detector. In European Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2016; pp. 21–37. [Google Scholar]
- Tokui, S.; Oono, K.; Hido, S.; Clayton, J. Chainer: A next-generation open source framework for deep learning. In Proceedings of the Workshop on Machine Learning Systems (LearningSys) in the Twenty-Ninth Annual Conference on Neural Information Processing Systems, Montreal, QC, Canada, 7 December 2015. [Google Scholar]
- Niitani, Y.; Ogawa, T.; Saito, S.; Saito, M. ChainerCV: A library for deep learning in computer vision. In Proceedings of the 25th ACM International Conference on Multimedia, Mountain View, CA, USA, 23–27 October 2017; pp. 1217–1220. [Google Scholar]
- Nishino, R.; Loomis, S.H.C. CuPy: A numpy-compatible library for nvidia gpu calculations. In Proceedings of the Workshop on Machine Learning Systems (LearningSys) in the Thirty-first Annual Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4 December 2017. [Google Scholar]
- Haenssle, H.A.; Fink, C.; Schneiderbauer, R.; Toberer, F.; Buhl, T.; Blum, A.; Kalloo, A.; Hassen, A.B.H.; Thomas, L.; Enk, A.; et al. Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann. Oncol. 2018, 29, 1836–1842. [Google Scholar] [CrossRef]
- Cui, X.; Wei, R.; Gong, L.; Qi, R.; Zhao, Z.; Chen, H.; Song, K.; Abdulrahman, A.A.A.; Wang, Y.; Chen, J.Z.S.; et al. Assessing the effectiveness of artificial intelligence methods for melanoma: A retrospective review. J. Am. Acad. Dermatol. 2019, 81, 1176–1180. [Google Scholar] [CrossRef] [PubMed]
- Kassianos, A.P.; Emery, J.D.; Murchie, P.; Walter, F.M. Smartphone applications for melanoma detection by community, patient and generalist clinician users: A review. Br. J. Dermatol. 2015, 172, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Wolf, J.A.; Moreau, J.F.; Akilov, O.; Patton, T.; English, J.C., 3rd; Ho, J.; Ferris, L.K. Diagnostic inaccuracy of smartphone applications for melanoma detection. Jama Dermatol. 2013, 149, 422–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udrea, A.; Mitra, G.D.; Costea, D.; Noels, E.C.; Wakkee, M.; Siegel, D.M.; de Carvalho, T.M.; Nijsten, T.E.C. Accuracy of a smartphone application for triage of skin lesions based on machine learning algorithms. J. Eur. Acad. Dermatol. Venereol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, Y.; Yoshikawa, S.; Minagawa, A.; Takenouchi, T.; Yokota, K.; Uchi, H.; Noma, N.; Nakamura, Y.; Asai, J.; Kato, J.; et al. Classification of 3097 patients from the Japanese melanoma study database using the American joint committee on cancer eighth edition cancer staging system. J. Dermatol. Sci. 2019, 94, 284–289. [Google Scholar] [CrossRef] [Green Version]
- American Cancer Society. Cancer Facts & Figures 2020. Am. Cancer Soc. J. 2020. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2020/cancer-facts-and-figures-2020.pdf (accessed on 1 June 2020).
- Fujisawa, Y.; Yoshikawa, S.; Minagawa, A.; Takenouchi, T.; Yokota, K.; Uchi, H.; Noma, N.; Nakamura, Y.; Asai, J.; Kato, J.; et al. Clinical and histopathological characteristics and survival analysis of 4594 Japanese patients with melanoma. Cancer Med. 2019, 8, 2146–2156. [Google Scholar] [CrossRef]
- Gorry, C.; McCullagh, L.; Barry, M. Economic Evaluation of Systemic Treatments for Advanced Melanoma: A Systematic Review. Value Health 2020, 23, 52–60. [Google Scholar] [CrossRef] [Green Version]
- Krige, J.E.; Isaacs, S.; Hudson, D.A.; King, H.S.; Strover, R.M.; Johnson, C.A. Delay in the diagnosis of cutaneous malignant melanoma. A prospective study in 250 patients. Cancer 1991, 68, 2064–2068. [Google Scholar] [CrossRef]
- Richard, M.A.; Grob, J.J.; Avril, M.F.; Delaunay, M.; Gouvernet, J.; Wolkenstein, P.; Souteyrand, P.; Dreno, B.; Bonerandi, J.J.; Dalac, S.; et al. Delays in diagnosis and melanoma prognosis (I): The role of patients. Int. J. Cancer 2000, 89, 271–279. [Google Scholar] [CrossRef]
- Tyler, I.; Rivers, J.K.; Shoveller, J.A.; Blum, A. Melanoma detection in British Columbia, Canada. J. Am. Acad. Dermatol. 2005, 52, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, Y. Japanese Melanoma Study: Annual Report 2017. Jpn. Ski. Cancer Soc. 2017. Available online: http://www.skincancer.jp/report-skincancer_melanoma_2017.pdf (accessed on 31 December 2017).
- Forbes, L.J.; Warburton, F.; Richards, M.A.; Ramirez, A.J. Risk factors for delay in symptomatic presentation: A survey of cancer patients. Br. J. Cancer 2014, 111, 581–588. [Google Scholar] [CrossRef]
- Melanoma of the Skin 2019. In Cancer Stat Facts; National Cancer Institute: Bethesda, MD, USA, 2019.
- Liu, W.; Wang, Z.; Liu, X.; Zeng, N.; Liu, Y.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Cao, C.; Wang, B.; Zhang, W.; Zeng, X.; Yan, X.; Feng, Z.; Liu, Y.; Wu, Z. An improved faster R-CNN for small object detection. IEEE Access 2019, 7, 106838–106846. [Google Scholar] [CrossRef]
FRCNN | ||||||||
---|---|---|---|---|---|---|---|---|
Prediction | ||||||||
True diagnosis | MM | BCC | Nevus | SK | H/H | SL | Total | |
MM | 327 | 9 | 48 | 21 | 0 | 3 | 408 | |
BCC | 6 | 108 | 12 | 6 | 0 | 0 | 132 | |
Nevus | 42 | 6 | 967 | 30 | 3 | 0 | 1048 | |
SK | 21 | 9 | 36 | 223 | 0 | 0 | 289 | |
H/H | 3 | 0 | 18 | 0 | 57 | 0 | 78 | |
SL | 0 | 0 | 0 | 3 | 0 | 42 | 45 | |
Total | 399 | 132 | 1081 | 283 | 60 | 45 | 2000 | |
BCDs | ||||||||
Prediction | ||||||||
True diagnosis | MM | BCC | Nevus | SK | H/H | SL | Total | |
MM | 340 | 12 | 22 | 26 | 3 | 5 | 408 | |
BCC | 10 | 104 | 3 | 14 | 1 | 0 | 132 | |
Nevus | 131 | 11 | 823 | 68 | 11 | 4 | 1048 | |
SK | 18 | 24 | 17 | 225 | 0 | 5 | 289 | |
H/H | 9 | 1 | 6 | 1 | 61 | 0 | 78 | |
SL | 0 | 1 | 0 | 7 | 0 | 37 | 45 | |
Total | 508 | 153 | 871 | 341 | 76 | 51 | 2000 | |
TRNs | ||||||||
Prediction | ||||||||
True diagnosis | MM | BCC | Nevus | SK | H/H | SL | Total | |
MM | 327 | 15 | 42 | 12 | 8 | 4 | 408 | |
BCC | 22 | 87 | 6 | 12 | 5 | 0 | 132 | |
Nevus | 136 | 17 | 812 | 57 | 20 | 6 | 1048 | |
SK | 26 | 17 | 37 | 191 | 1 | 17 | 289 | |
H/H | 8 | 1 | 16 | 2 | 51 | 0 | 78 | |
SL | 1 | 0 | 3 | 7 | 0 | 34 | 45 | |
Total | 520 | 137 | 916 | 281 | 85 | 61 | 2000 |
TEST # | FRCNN | BCD | TRN |
---|---|---|---|
1 | 90.00% | 84.00% | 76.50% |
2 | 82.50% | 86.00% | 72.00% |
3 | 84.50% | 83.50% | 74.50% |
4 | 90.00% | 79.00% | 74.50% |
5 | 83.00% | 78.00% | 73.00% |
6 | 86.50% | 85.50% | 75.00% |
7 | 88.00% | 70.50% | 79.00% |
8 | 86.50% | 79.50% | 75.00% |
9 | 82.50% | 73.50% | 78.00% |
10 | 88.50% | 75.50% | 73.50% |
FRCNN | ||||
---|---|---|---|---|
Prediction | ||||
malignant | benign | Total | ||
True diagnosis | malignant | 450 | 90 | 540 |
benign | 81 | 1379 | 1460 | |
Total | 531 | 1469 | 2000 | |
BCDs | ||||
Prediction | ||||
malignant | benign | Total | ||
True diagnosis | malignant | 466 | 74 | 540 |
benign | 195 | 1265 | 1460 | |
Total | 661 | 1339 | 2000 | |
TRNs | ||||
Prediction | ||||
malignant | benign | Total | ||
True diagnosis | malignant | 451 | 89 | 540 |
benign | 206 | 1254 | 1460 | |
Total | 657 | 1343 | 2000 |
TEST # | FRCNN | BCD | TRN |
---|---|---|---|
1 | 93.50% | 89.50% | 85.00% |
2 | 88.50% | 92.00% | 86.00% |
3 | 91.00% | 89.00% | 85.00% |
4 | 93.50% | 87.00% | 80.50% |
5 | 89.50% | 84.50% | 85.50% |
6 | 91.50% | 91.50% | 85.50% |
7 | 92.50% | 83.50% | 89.00% |
8 | 92.00% | 86.50% | 86.50% |
9 | 89.50% | 81.50% | 86.00% |
10 | 93.00% | 80.50% | 83.50% |
FRCNN | BCDs | TRNs | |
---|---|---|---|
Accuracy (six classes) | 86.2 | 79.5 | 75.1 |
Accuracy (two classes) | 91.5 | 86.6 | 85.3 |
Sensitivity | 83.3 | 86.3 | 83.5 |
Specificity | 94.5 | 86.6 | 85.9 |
False negative | 16.7 | 13.7 | 16.5 |
False positive | 5.5 | 13.4 | 14.1 |
Positive predictive value | 84.7 | 70.5 | 68.5 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jinnai, S.; Yamazaki, N.; Hirano, Y.; Sugawara, Y.; Ohe, Y.; Hamamoto, R. The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning. Biomolecules 2020, 10, 1123. https://doi.org/10.3390/biom10081123
Jinnai S, Yamazaki N, Hirano Y, Sugawara Y, Ohe Y, Hamamoto R. The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning. Biomolecules. 2020; 10(8):1123. https://doi.org/10.3390/biom10081123
Chicago/Turabian StyleJinnai, Shunichi, Naoya Yamazaki, Yuichiro Hirano, Yohei Sugawara, Yuichiro Ohe, and Ryuji Hamamoto. 2020. "The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning" Biomolecules 10, no. 8: 1123. https://doi.org/10.3390/biom10081123
APA StyleJinnai, S., Yamazaki, N., Hirano, Y., Sugawara, Y., Ohe, Y., & Hamamoto, R. (2020). The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning. Biomolecules, 10(8), 1123. https://doi.org/10.3390/biom10081123