The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders
Abstract
:1. Introduction
2. Saturated Fatty Acids (SFA)
3. Unsaturated Fatty Acids
3.1. Monounsaturated Fatty Acids (MUFA)
3.2. Polyunsaturated Fatty Acids (PUFA)
4. Omega-3 Polyunsaturated Fatty Acids
5. Omega-6 Polyunsaturated Fatty Acids
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- WHO Mortality Database. Available online: http://www.who.int/healthinfo/mortality_data/en/ (accessed on 25 May 2016).
- Townsend, N.; Wilson, L.; Bhatnagar, P.; Wickramasinghe, K.; Rayner, M.; Nichols, M. Cardiovascular disease in Europe: Epidemiological update 2016. Eur. Heart. J. 2016, 37, 3232–3245. [Google Scholar] [CrossRef] [PubMed]
- Bäck, M. Omega-3 fatty acids in atherosclerosis and coronary artery disease. Futur. Sci. OA 2017, 3, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siasos, G.; Tousoulis, D.; Oikonomou, E.; Zaromitidou, M.; Verveniotis, A.; Plastiras, A.; Kioufis, S.; Maniatis, K.; Miliou, A.; Siasou, Z.; et al. Effects of omega-3 fatty acids on endothelial function, arterial wall properties, inflammatory and fibrinolytic status in smokers: A cross over study. Int. J. Cardiol. 2013, 166, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Oh, P.C.; Koh, K.K.; Sakuma, I.; Lim, S.; Lee, Y.; Lee, S.; Lee, K.; Han, S.H.; Shin, E.K. Omega-3 fatty acid therapy dose-dependently and significantly decreased triglycerides and improved flow-mediated dilation, however, did not significantly improve insulin sensitivity in patients with hypertriglyceridemia. Int. J. Cardiol. 2014, 176, 696–702. [Google Scholar] [CrossRef]
- Hamazaki, K.; Iso, H.; Eshak, E.S.; Ikehara, S.; Ikeda, A.; Iwasaki, M.; Hamazaki, T.; Tsugane, S.; Tsugane, S.; Sawada, N.; et al. Plasma levels of n-3 fatty acids and risk of coronary heart disease among Japanese: The Japan Public Health Center-based (JPHC) study. Atherosclerosis 2018, 272, 226–232. [Google Scholar] [CrossRef]
- Chen, X.; Liu, L.; Palacios, G.; Gao, J.; Zhang, N.; Li, G.; Lu, J.; Song, T.; Zhang, Y.; Lv, H. Plasma metabolomics reveals biomarkers of the atherosclerosis. J. Sep. Sci. 2010, 33, 2776–2783. [Google Scholar] [CrossRef] [PubMed]
- Skeaff, C.M.; Miller, J. Dietary Fat and Coronary Heart Disease: Summary of Evidence from Prospective Cohort and Randomised Controlled Trials. Ann. Nutr. Metab. 2009, 55, 173–201. [Google Scholar] [CrossRef]
- Eckel, R.H.; Jakicic, J.M.; Ard, J.D.; De Jesus, J.M.; Hubbard, V.S.; Lee, I.-M.; Lichtenstein, A.H.; Loria, C.M.; Millen, B.E.; Nonas, C.A.; et al. 2013 AHA/ACC Guideline on Lifestyle Management to Reduce Cardiovascular Risk: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 2013, 129, 129–175. [Google Scholar] [CrossRef] [Green Version]
- Mensink, R.P. Effects of Saturated Fatty Acids on Serum Lipids and Lipoproteins: A Systematic Review and Regression Analysis; World Health Organization: Geneva, Switzerland, 2016; 72p. [Google Scholar]
- Benes, L.B.; Bassi, N.S.; Davidson, M.H. Omega-3 carboxylic acids monotherapy and combination with statins in the management of dyslipidemia. Vasc. Health Risk Manag. 2016, 12, 481–490. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Micha, R.; Wallace, S. Effects on Coronary Heart Disease of Increasing Polyunsaturated Fat in Place of Saturated Fat: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. PLoS Med. 2010, 7, 1–8. [Google Scholar] [CrossRef]
- Hooper, C.L.; Martin, N.; Abdelhamid, A.; Smith, G.D. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2015, 6, 1–171. [Google Scholar] [CrossRef] [PubMed]
- Pietinen, P.; Nissinen, A.; Vartiainen, E.; Tuomilehto, A.; Uusitalo, U.; Ketola, A.; Moisio, S.; Puska, P. Dietary changes in the North Karelia Project (1972–1982). Prev. Med. 1988, 17, 183–193. [Google Scholar] [CrossRef]
- Macri, E.V.; Lifshitz, F.; Alsina, E.; Juiz, N.; Zago, V.; Lezon, C.; Rodriguez, P.N.; Schreier, L.; Boyer, P.M.; Friedman, S.M. Monounsaturated fatty acids-rich diets in hypercholesterolemic-growing rats. Int. J. Food Sci. Nutr. 2015, 66, 400–408. [Google Scholar] [CrossRef]
- Alsina, E.; Macri, E.V.; Lifshitz, F.; Bozzini, C.; Rodriguez, P.N.; Boyer, P.M.; Friedman, S.M. Efficacy of phytosterols and fish-oil supplemented high-oleic-sunflower oil rich diets in hypercholesterolemic growing rats. Int. J. Food Sci. Nutr. 2016, 67, 441–453. [Google Scholar] [CrossRef]
- Covas, M.-I.; De La Torre, R.; Fitó, M. Virgin olive oil: A key food for cardiovascular risk protection. Br. J. Nutr. 2015, 113, 19–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keys, A. Seven Countries: A Multivariate Analysis of Death and Coronary Heart Disease; Harvard University Press: Cambridge, MA, USA, 1980. [Google Scholar]
- Farvid, M.S.; Ding, M.; Pan, A.; Sun, Q.; Chiuve, S.E.; Steffen, L.M.; Willett, W.C.; Hu, F.B. Dietary Linoleic Acid and Risk of Coronary Heart Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Circulation 2014, 130, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- McGuire, S. Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Washington, DC: US Departments of Agriculture and Health and Human Services, 2015. Adv. Nutr. 2016, 7, 202–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritz, K.S.; Petersen, D.R. An overview of the chemistry and biology of reactive aldehydes. Free. Radic. Boil. Med. 2012, 59, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Brown, H.A.; Marnett, L.J. Introduction to Lipid Biochemistry, Metabolism, and Signaling. Chem. Rev. 2011, 111, 5817–5820. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Cao, Y.; Tian, X.; Zeng, R.; Liao, D.F.; Cao, D. Oxidative Stress and Carbonyl Lesions in Ulcerative Colitis and Associated Colorectal Cancer. Oxidative Med. Cell. Longev. 2015, 2016, 1–15. [Google Scholar] [CrossRef]
- Surekha, R.H.; Srikanth, B.B.M.V.; Jharna, P.; Ramachandra, R.V.; Dayasagar, R.V.; Jyothy, A. Oxidative stress and total antioxidant status in myocardial infarction. Singap. Med. J. 2007, 48, 137–142. [Google Scholar]
- Bubnova, M.G. Diet, atherogenic hyperlipidemia and statins. J. CardioSomatics 2011, 2, 81–89. [Google Scholar]
- Chiu, S.; Williams, P.T.; Krauss, R.M. Effects of a very high saturated fat diet on LDL particles in adults with atherogenic dyslipidemia: A randomized controlled trial. PLoS ONE 2017, 12, e0170664. [Google Scholar] [CrossRef] [PubMed]
- Harvey, K.A.; Walker, C.L.; Pavlina, T.M.; Xu, Z.; Zaloga, G.P.; Siddiqui, R.A. Long-chain saturated fatty acids induce pro-inflammatory responses and impact endothelial cell growth. Clin. Nutr. 2010, 29, 492–500. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.; Eguchi, K.; Kono, N.; Fujiu, K.; Matsumoto, S.; Shibata, M.; Oishi-Tanaka, Y.; Komuro, I.; Arai, H.; Nagai, R.; et al. Saturated Fatty Acid Palmitate Aggravates Neointima Formation by Promoting Smooth Muscle Phenotypic Modulation Significance. Arter. Thromb. Vasc. Boil. 2013, 33, 2596–2607. [Google Scholar] [CrossRef] [Green Version]
- Meng, H.; Matthan, N.R.; Wu, D.; Li, L.; Rodríguez-Morató, J.; Cohen, R.; Galluccio, J.M.; Dolnikowski, G.G.; Lichtenstein, A.H. Comparison of diets enriched in stearic, oleic, and palmitic acids on inflammation, immune response, cardiometabolic risk factors, and fecal bile acid concentrations in mildly hypercholesterolemic postmenopausal women—Randomized crossover trial. Am. J. Clin. Nutr. 2019, 110, 305–315. [Google Scholar] [CrossRef]
- Ebbesson, S.O.; Tejero, M.E.; López-Alvarenga, J.C.; Harris, W.S.; Ebbesson, L.O.; Devereux, R.B.; Maccluer, J.W.; Wenger, C.; Laston, S.; Fabsitz, R.R.; et al. Individual saturated fatty acids are associated with different components of insulin resistance and glucose metabolism: The GOCADAN study. Int. J. Circumpolar Health 2010, 69, 344–351. [Google Scholar] [CrossRef]
- Li, Y.; Hruby, A.; Bernstein, A.M.; Ley, S.H.; Wang, D.D.; Chiuve, S.E.; Sampson, L.; Rexrode, K.M.; Rimm, E.B.; Willett, W.C.; et al. Saturated Fats Compared With Unsaturated Fats and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease: A Prospective Cohort Study. J. Am. Coll. Cardiol. 2015, 66, 1538–1548. [Google Scholar] [CrossRef] [Green Version]
- Chei, C.L.; Yamagishi, K.; Kitamura, A.; Kiyama, M.; Sankai, T.; Okada, T.; Imano, H.; Ohira, T.; Cui, R.; Umesawa, M.; et al. Serum Fatty Acid and Risk of Coronary Artery Disease—Circulatory Risk in Communities Study (CIRCS). Circ. J. 2018, 82, 3013–3020. [Google Scholar] [CrossRef] [Green Version]
- Kleber, M.E.; Delgado, G.; Dawczynski, C.; Lorkowski, S.; März, W.; Von Schacky, C. Saturated fatty acids and mortality in patients referred for coronary angiography—The Ludwigshafen Risk and Cardiovascular Health study. J. Clin. Lipidol. 2018, 12, 455–463. [Google Scholar] [CrossRef]
- Jin, J.; Lu, Z.; Li, Y.; Cowart, L.A.; Lopes-Virella, M.F.; Huang, Y. Docosahexaenoic acid antagonizes the boosting effect of palmitic acid on LPS inflammatory signaling by inhibiting gene transcription and ceramide synthesis. PLoS ONE 2018, 13, e0193343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hellmann, J.; Zhang, M.J.; Tang, Y.; Rane, M.; Bhatnagar, A.; Spite, M. Increased saturated fatty acids in obesity alter resolution of inflammation in part by stimulating prostaglandin production. J. Immunol. 2013, 191, 1383–1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, G.E.; Krämer, B.K.; Lorkowski, S.; März, W.; Von Schacky, C.; Kleber, M.E. Individual omega-9 monounsaturated fatty acids and mortality—The Ludwigshafen Risk and Cardiovascular Health Study. J. Clin. Lipidol. 2017, 11, 126–135. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Qian, Y.; Fang, Q.; Zhong, P.; Li, W.; Wang, L.; Fu, W.; Zhang, Y.; Xu, Z.; Li, X.; et al. Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nat. Commun. 2017, 8, 13997–14010. [Google Scholar] [CrossRef]
- Beauchamp, E.; Rioux, V.; Legrand, P. Acide myristique: Nouvelles fonctions de régulation et de signalisation. Med. Sci. 2009, 25, 57–63. [Google Scholar] [CrossRef] [Green Version]
- Bradbury, K.E.; Skeaff, C.M.; Green, T.J.; Gray, A.R.; Crowe, F.L. The serum fatty acids myristic acid and linoleic acid are better predictors of serum cholesterol concentrations when measured as molecular percentages rather than as absolute concentrations. Am. J. Clin. Nutr. 2009, 91, 398–405. [Google Scholar] [CrossRef]
- Fattore, E.; Bosetti, C.; Brighenti, F.; Agostoni, C.; Fattore, G. Palm oil and blood lipid–related markers of cardiovascular disease: A systematic review and meta-analysis of dietary intervention trials. Am. J. Clin. Nutr. 2014, 99, 1331–1350. [Google Scholar] [CrossRef] [Green Version]
- Flock, M.R.; Kris-Etherton, P.M. Diverse physiological effects of long-chain saturated fatty acids. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 133–140. [Google Scholar] [CrossRef]
- Mah, E.A.; Schulz, J.; Kaden, V.N.; Lawless, A.L.; Rotor, J.; Mantilla, L.B.; Liska, D.J. Cashew consumption reduces total and LDL cholesterol: A randomized, crossover, controlled-feeding trial. Am. J. Clin. Nutr. 2017, 105, 1070–1078. [Google Scholar] [CrossRef] [Green Version]
- Baer, D.J.; Novotny, J.A. Consumption of cashew nuts does not influence blood lipids or other markers of cardiovascular disease in humans: A randomized controlled trial. Am. J. Clin. Nutr. 2019, 109, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Praagman, J.; De Jonge, E.A.; Jong, J.C.K.-D.; Beulens, J.W.; Sluijs, I.; Schoufour, J.D.; Hofman, A.; Van Der Schouw, Y.T.; Franco, O.H. Dietary Saturated Fatty Acids and Coronary Heart Disease Risk in a Dutch Middle-Aged and Elderly Population. Arter. Thromb. Vasc. Boil. 2016, 36, 2011–2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praagman, J.; Beulens, J.W.; Alssema, M.; Zock, P.L.; Wanders, A.J.; Sluijs, I.; Van Der Schouw, Y. The association between dietary saturated fatty acids and ischemic heart disease depends on the type and source of fatty acid in the European Prospective Investigation into Cancer and Nutrition–Netherlands cohort1,2. Am. J. Clin. Nutr. 2016, 103, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Zong, G.; Li, Y.; Wanders, A.J.; Alssema, M.; Zock, P.L.; Willett, W.C.; Hu, F.B.; Sun, Q. Intake of individual saturated fatty acids and risk of coronary heart disease in US men and women: Two prospective longitudinal cohort studies. BMJ 2016, 355, 5796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praagman, J.; Vissers, L.E.; Mulligan, A.A.; Laursen, A.S.D.; Beulens, J.W.; Van Der Schouw, Y.T.; Wareham, N.J.; Hansen, C.P.; Khaw, K.T.; Jakobsen, M.U.; et al. Consumption of individual saturated fatty acids and the risk of myocardial infarction in a UK and a Danish cohort. Int. J. Cardiol. 2018, 279, 18–26. [Google Scholar] [CrossRef] [Green Version]
- Hunter, J.E.; Zhang, J.; Kris-Etherton, P.M. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review. Am. J. Clin. Nutr. 2009, 91, 46–63. [Google Scholar] [CrossRef] [Green Version]
- Mensink, R.P.; Zock, P.L.; Kester, A.D.M.; Katan, M.B. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: A meta-analysis of 60 controlled trials. Am. J. Clin. Nutr. 2003, 77, 1146–1155. [Google Scholar] [CrossRef]
- PREDIMED Study Investigators; Guasch-Ferré, M.; Babio, N.; Martinez-Gonzalez, M.A.; Corella, D.; Ros, E.; Martín-Peláez, S.; Estruch, R.; Arós, F.; Gómez-Gracia, E.; et al. Dietary fat intake and risk of cardiovascular disease and all-cause mortality in a population at high risk of cardiovascular disease. Am. J. Clin. Nutr. 2015, 102, 1563–1573. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, P.; Zhang, Y.; He, W.; Chen, X.; Chen, J.; He, L.; Mao, L.; Wu, F.; Jiao, J. Dietary Fats in Relation to Total and Cause-Specific Mortality in a Prospective Cohort of 521 120 Individuals With 16 Years of Follow-up. Circ. Res. 2019, 124, 757–768. [Google Scholar] [CrossRef]
- Müller, H.; Lindman, A.S.; Brantsæter, A.-L.; Pedersen, J.I. The Serum LDL/HDL Cholesterol Ratio Is Influenced More Favorably by Exchanging Saturated with Unsaturated Fat Than by Reducing Saturated Fat in the Diet of Women. J. Nutr. 2003, 133, 78–83. [Google Scholar] [CrossRef] [Green Version]
- Abel, S.; Schuhr, I.; Gelderblom, W.A. The Antioxidant Potential of Oleic Acid and Effect on Cell Survival in Carcinogenesis; ISSFAL: Maastricht, The Netherlands, 2010; 141p. [Google Scholar]
- Schwingshackl, L.; Strasser, B.; Hoffmann, G. Effects of Monounsaturated Fatty Acids on Cardiovascular Risk Factors: A Systematic Review and Meta-Analysis. Ann. Nutr. Metab. 2011, 59, 176–186. [Google Scholar] [CrossRef]
- Okada, T.; Furuhashi, N.; Kuromori, Y.; Miyashita, M.; Iwata, F.; Harada, K. Plasma palmitoleic acid content and obesity in children. Am. J. Clin. Nutr. 2005, 82, 747–750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frigolet, M.E.; Gutiérrez-Aguilar, R. The Role of the Novel Lipokine Palmitoleic Acid in Health and Disease. Adv. Nutr. 2017, 8, 173–181. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Cao, H.; King, I.B.; Lemaitre, R.N.; Song, X.; Siscovick, D.S.; Hotamisligil, G.S. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am. J. Clin. Nutr. 2010, 92, 1350–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delarue, J.; Magnan, C. Free fatty acids and insulin resistance. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Ebbesson, S.O.; Lopez-Alvarenga, J.C.; Okin, P.M.; Devereux, R.B.; Tejero, M.E.; Harris, W.S.; Ebbesson, L.O.; Maccluer, J.W.; Wenger, C.; Laston, S.; et al. Heart rate is associated with markers of fatty acid desaturation: The GOCADAN study. Int. J. Circumpolar Health 2012, 71, 17343–17350. [Google Scholar] [CrossRef]
- Ebbesson, S.O.; Voruganti, V.S.; Higgins, P.B.; Fabsitz, R.R.; Ebbesson, L.O.; Laston, S.; Harris, W.S.; Kennish, J.; Umans, B.D.; Wang, H.; et al. Fatty acids linked to cardiovascular mortality are associated with risk factors. Int. J. Circumpolar Health 2015, 74, 28055–28067. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, A.M.; Roizen, M.F.; Martinez, L. Purified palmitoleic acid for the reduction of high-sensitivity C-reactive protein and serum lipids: A double-blinded, randomized, placebo controlled study. J. Clin. Lipidol. 2014, 8, 612–617. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Núñez, B.; Dijck-Brouwer, D.J.; Muskiet, F.A. The relation of saturated fatty acids with low-grade inflammation and cardiovascular disease. J. Nutr. Biochem. 2016, 36, 1–20. [Google Scholar] [CrossRef]
- Yokoi, H.; Mizukami, H.; Nagatsu, A.; Tanabe, H.; Inoue, M. Hydroxy monounsaturated fatty acids as agonists for peroxisome proliferator-activated receptors. Boil. Pharm. Bull. 2010, 33, 854–861. [Google Scholar] [CrossRef] [Green Version]
- Perdomo, L.; Beneit, N.; Otero, Y.F.; Escribano, O.; Diaz-Castroverde, S.; Gómez-Hernández, A.; Benito, M. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc. Diabetol. 2015, 14, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Hlais, S.; El-Bistami, D.; El Rahi, B.; Mattar, M.A.; Obeid, O. Combined Fish Oil and High Oleic Sunflower Oil Supplements Neutralize their Individual Effects on the Lipid Profile of Healthy Men. Lipids 2013, 48, 853–861. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martínez, P.; García-Ríos, A.; Delgado, F.G.; Jiménez, F.P.; López-Miranda, J. Mediterranean diet rich in olive oil and obesity, metabolic syndrome and diabetes mellitus. Curr. Pharm. Des. 2011, 17, 769–777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, B.; Lee, H.-K.; Querfurth, H.W. Oleate prevents palmitate-induced mitochondrial dysfunction, insulin resistance and inflammatory signaling in neuronal cells. Biochim. Biophys. Acta Bioenerg. 2014, 1843, 1402–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvadó, L.; Coll, T.; Gómez-Foix, A.M.; Salmerón, E.; Barroso, E.; Palomer, X.; Vázquez-Carrera, M. Oleate prevents saturated-fatty-acid-induced ER stress, inflammation and insulin resistance in skeletal muscle cells through an AMPK-dependent mechanism. Diabetology 2013, 56, 1372–1382. [Google Scholar] [CrossRef]
- Jones, P.J.H.; Mackay, D.; Senanayake, V.K.; Pu, S.; Jenkins, D.J.A.; Connelly, P.; Lamarche, B.; Couture, P.; Kris-Etherton, P.M.; West, S.G.; et al. High-oleic canola oil consumption enriches LDL particle cholesteryl oleate content and reduces LDL proteoglycan binding in humans. Atherosclerosis 2014, 238, 231–238. [Google Scholar] [CrossRef] [Green Version]
- Harvey, K.A.; Walker, C.L.; Xu, Z.; Whitley, P.; Pavlina, T.M.; Hise, M.; Zaloga, G.P.; Siddiqui, R.A. Oleic acid inhibits stearic acid-induced inhibition of cell growth and pro-inflammatory responses in human aortic endothelial cells. J. Lipid Res. 2010, 51, 3470–3480. [Google Scholar] [CrossRef] [Green Version]
- Duarte, M.K.R.N.; De Araújo, J.N.G.; Duarte, V.H.R.; De Oliveira, K.M.; De Oliveira, J.M.; Carioca, A.A.F.; Bortolin, R.H.; Rezende, A.A.; Hirata, M.H.; Hirata, R.D.C.; et al. The relationship of the oleic acid level and ECHDC3 mRNA expression with the extent of coronary lesion. Lipids Health Dis. 2016, 15, 144–150. [Google Scholar] [CrossRef] [Green Version]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 Fatty Acids and Cardiovascular Disease. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Dyall, S.C. Long-chain omega-3 fatty acids and the brain: A review of the independent and shared effects of EPA, DPA and DHA. Front. Aging Neurosci. 2015, 7, 52–67. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Omega-3 polyunsaturated fatty acids and inflammatory processes: Nutrition or pharmacology? Br. J. Clin. Pharmacol. 2013, 75, 645–662. [Google Scholar] [CrossRef] [Green Version]
- Binia, A.; Vargas-Martínez, C.; Moreno, M.A.; Gosoniu, L.M.; Montoliu, I.; Gámez-Valdez, E.; Soria-Contreras, D.C.; Angeles-Quezada, A.; Gonzalez-Alberto, R.; Fernández, S.; et al. Improvement of cardiometabolic markers after fish oil intervention in young Mexican adults and the role of PPARα L162V and PPARγ2 P12A. J. Nutr. Biochem. 2017, 43, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Abdelhamid, A.; Brown, T.J.; Brainard, J.S.; Biswas, P.; Thorpe, G.C.; Moore, H.J.; Deane, K.; AlAbdulghafoor, F.K.; Summerbell, C.D.; Worthington, H.; et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 11, 1–745. [Google Scholar] [CrossRef]
- Aung, T.; Halsey, J.; Kromhout, D.; Gerstein, H.C.; Marchioli, R.; Tavazzi, L.; Geleijnse, J.M.; Rauch, B.; Ness, A.; Galan, P.; et al. Associations of Omega-3 Fatty Acid Supplement Use With Cardiovascular Disease Risks: Meta-analysis of 10 Trials Involving 77 917 Individuals. JAMA Cardiol. 2018, 3, 225–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The ASCEND Study Collaborative Group. Effects of n−3 Fatty Acid Supplements in Diabetes Mellitus. N. Engl. J. Med. 2018, 379, 1540–1550. [Google Scholar] [CrossRef] [PubMed]
- Manson, J.E.; Cook, N.R.; Lee, I.M.; Christen, W.; Bassuk, S.S.; Mora, S.; Gibson, H.; Albert, C.M.; Gordon, D.; Copeland, T.; et al. Marine Omega-3 Fatty Acids and Prevention of Vascular Disease and Cancer. N. Engl. J. Med. 2018, 380, 23–32. [Google Scholar] [CrossRef]
- Pan, A.; Chen, M.; Chowdhury, R.; Wu, J.H.Y.; Sun, Q.; Campos, H.; Mozaffarian, D.; Hu, F.B. α-Linolenic acid and risk of cardiovascular disease: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 96, 1262–1273. [Google Scholar] [CrossRef]
- Bloedon, L.T.; Balikai, S.; Chittams, J.; Cunnane, S.C.; Berlin, J.A.; Rader, D.J.; Szapary, P.O. Flaxseed and cardiovascular risk factors: Results from a double blind, randomized, controlled clinical trial. J. Am. Coll. Nutr. 2008, 27, 65–74. [Google Scholar] [CrossRef]
- Rajaram, S.; Haddad, E.H.; Mejia, A.; Sabaté, J. Walnuts and fatty fish influence different serum lipid fractions in normal to mildly hyperlipidemic individuals: A randomized controlled study. Am. J. Clin. Nutr. 2009, 89, 1657–1663. [Google Scholar] [CrossRef] [Green Version]
- Djoussé, L.; Folsom, A.R.; Province, M.A.; Hunt, S.C.; Ellison, R.C. Dietary linolenic acid and carotid atherosclerosis: The National Heart, Lung, and Blood Institute Family Heart Study. Am. J. Clin. Nutr. 2003, 77, 819–825. [Google Scholar] [CrossRef] [Green Version]
- Djoussé, L.; Arnett, D.K.; Carr, J.J.; Eckfeldt, J.H.; Hopkins, P.N.; Province, M.A.; Ellison, R.C. Dietary Linolenic Acid Is Inversely Associated With Calcified Atherosclerotic Plaque in the Coronary Arteries. Circulation 2005, 111, 2921–2926. [Google Scholar] [CrossRef] [Green Version]
- Sala-Vila, A.; Cofán, M.; Pérez-Heras, A.; Nuñez, I.; Gilabert, R.; Junyent, M.; Mateo-Gallego, R.; Cenarro, A.; Civeira, F.; Ros, E. Fatty acids in serum phospholipids and carotid intima-media thickness in Spanish subjects with primary dyslipidemia. Am. J. Clin. Nutr. 2010, 92, 186–193. [Google Scholar] [CrossRef]
- Park, Y.; Lim, J.; Kwon, Y.; Lee, J. Correlation of erythrocyte fatty acid composition and dietary intakes with markers of atherosclerosis in patients with myocardial infarction. Nutr. Res. 2009, 29, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Lemaitre, R.N.; King, I.B.; Sotoodehnia, N.; Rea, T.D.; Raghunathan, T.E.; Rice, K.M.; Lumley, T.S.; Knopp, R.H.; Cobb, L.A.; Copass, M.K.; et al. Red blood cell membrane α-linolenic acid and the risk of sudden cardiac arrest. Metabolism 2009, 58, 534–540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajaram, S. Health benefits of plant-derived α-linolenic acid. Am. J. Clin. Nutr. 2014, 100, 443–448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borow, K.M.; Nelson, J.R.; Mason, R.P. Biologic plausibility, cellular effects, and molecular mechanisms of eicosapentaenoic acid (EPA) in atherosclerosis. Atherosclerosis 2015, 242, 357–366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Itakura, H.; Yokoyama, M.; Matsuzaki, M.; Saito, Y.; Origasa, H.; Ishikawa, Y.; Oikawa, S.; Sasaki, J.; Hishida, H.; Kita, T.; et al. Relationships between plasma fatty acid composition and coronary artery disease. J. Atheroscler. Thromb. 2010, 18, 99–107. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2019, 380, 11–22. [Google Scholar] [CrossRef]
- Mason, R.P.; Jacob, R.F.; Corbalan, J.J.; Malinski, T. Combination Eicosapentaenoic Acid and Statin Treatment Reversed Endothelial Dysfunction in HUVECs Exposed to Oxidized LDL. J. Clin. Lipidol. 2014, 8, 342–343. [Google Scholar] [CrossRef]
- Ishida, T.; Naoe, S.; Nakakuki, M.; Kawano, H.; Imada, K. Eicosapentaenoic Acid Prevents Saturated Fatty Acid-Induced Vascular Endothelial Dysfunction: Involvement of Long-Chain Acyl-CoA Synthetase. J. Atheroscler. Thromb. 2015, 22, 1172–1185. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Lee, S.D.; Ou, H.C.; Lai, S.C.; Cheng, Y.-J. Eicosapentaenoic Acid Protects against Palmitic Acid-Induced Endothelial Dysfunction via Activation of the AMPK/eNOS Pathway. Int. J. Mol. Sci. 2014, 15, 10334–10349. [Google Scholar] [CrossRef] [Green Version]
- Mason, R.P.; Jacob, R.; Beauregard, G.; Rowe, J. Comparative Lipid Antioxidant Effects of Omega-3 Fatty Acids in Combination with HMG-CoA Reductase Inhibitors. J. Clin. Lipidol. 2011, 5, 201. [Google Scholar] [CrossRef]
- Mason, R.P.; Jacob, R.F. Eicosapentaenoic acid inhibits glucose-induced membrane cholesterol crystalline domain formation through a potent antioxidant mechanism. Biochim. Biophys. Acta Biomembr. 2015, 1848, 502–509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, S.-C.; Chiang, E.; Tsai, S.-Y.; Wang, F.-Y.; Pai, M.-H.; Syu, J.-N.; Cheng, C.-C.; Rodriguez, R.L.; Tang, F.-Y. Eicosapentaenoic acid induces neovasculogenesis in human endothelial progenitor cells by modulating c-kit protein and PI3-K/Akt/eNOS signaling pathways. J. Nutr. Biochem. 2014, 25, 934–945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budoff, M.J. Triglycerides and Triglyceride-Rich Lipoproteins in the Causal Pathway of Cardiovascular Disease. Am. J. Cardiol. 2016, 118, 138–145. [Google Scholar] [CrossRef] [Green Version]
- Gdula-Argasińska, J.; Czepiel, J.; Woźniakiewicz, A.; Wojtoń, K.; Grzywacz, A.; Woźniakiewicz, M.; Jurczyszyn, A.; Perucki, W.; Librowski, T. n-3 Fatty acids as resolvents of inflammation in the A549 cells. Pharmacol. Rep. 2015, 67, 610–615. [Google Scholar] [CrossRef] [Green Version]
- Nelson, J.R.; Wani, O.; May, H.; Budoff, M. Potential benefits of eicosapentaenoic acid on atherosclerotic plaques. Vasc. Pharmacol. 2017, 91, 1–9. [Google Scholar] [CrossRef]
- Cawood, A.L.; Ding, R.; Napper, F.L.; Young, R.H.; Williams, J.A.; Ward, M.J.; Gudmundsen, O.; Vige, R.; Payne, S.P.; Ye, S.; et al. Eicosapentaenoic acid (EPA) from highly concentrated n−3 fatty acid ethyl esters is incorporated into advanced atherosclerotic plaques and higher plaque EPA is associated with decreased plaque inflammation and increased stability. Atherosclerosis 2010, 212, 252–259. [Google Scholar] [CrossRef]
- Katoh, A.; Ikeda, H. Daily intake of eicosapentaenoic acid inhibits the progression of carotid intimal-media thickness in patients with dyslipidemia. Ther. Res. 2011, 32, 863–868. [Google Scholar]
- Maeda, K. Effect of highly purified eicosapentaenoic acid (EPA) for patients with multiple artery atherosclerotic risk factors and clinical usefulness of the ratio of serum EPA to arachidonic acid (AA) as the indicator of therapy effect of atherosclerosis. Ther. Res. 2014, 35, 177–182. [Google Scholar]
- Hasturk, H.; Abdallah, R.; Kantarci, A.; Nguyen, D.; Giordano, N.; Hamilton, J.; Van Dyke, T.E. Resolvin E1 (RvE1) Attenuates Atherosclerotic Plaque Formation in Diet and Inflammation-Induced Atherogenesis. Arter. Thromb. Vasc. Boil. 2015, 35, 1123–1133. [Google Scholar] [CrossRef] [Green Version]
- Spite, M.; Claria, J.; Serhan, C.N. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab. 2013, 19, 21–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adkins, Y.; Kelley, D.S. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J. Nutr. Biochem. 2010, 21, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Arora, R.R.; Singh, M.; Khosla, S. Eicosapentaenoic Acid Versus Docosahexaenoic Acid as Options for Vascular Risk Prevention. Am. J. Ther. 2016, 23, 905–910. [Google Scholar] [CrossRef] [PubMed]
- Phang, M.; Lazarus, S.; Wood, L.G.; Garg, M. Diet and Thrombosis Risk: Nutrients for Prevention of Thrombotic Disease. Semin. Thromb. Hemost. 2011, 37, 199–208. [Google Scholar] [CrossRef]
- Qi, K.; Fan, C.; Jiang, J.; Zhu, H.; Jiao, H.; Meng, Q.; Deckelbaum, R.J. Omega-3 fatty acid containing diets decrease plasma triglyceride concentrations in mice by reducing endogenous triglyceride synthesis and enhancing the blood clearance of triglyceride-rich particles. Clin. Nutr. 2008, 27, 424–430. [Google Scholar] [CrossRef]
- Honda, K.L.; Lamon-Fava, S.; Matthan, N.R.; Wu, D.; Lichtenstein, A.H. Docosahexaenoic acid differentially affects TNFα and IL-6 expression in LPS-stimulated RAW 264.7 murine macrophages. Prostaglandins Leukot. Essent. Fat. Acids 2015, 97, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Guo, A.; Ma, L.; Yu, H.; Zhang, L.; Meng, H.; Cui, Y.; Yu, F.; Yang, B. Docosahexenoic acid treatment ameliorates cartilage degeneration via a p38 MAPK-dependent mechanism. Int. J. Mol. Med. 2016, 37, 1542–1550. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.C.; Lii, C.K.; Wei, Y.L.; Li, C.C.; Lu, C.Y.; Liu, K.L.; Chen, H.-W. Docosahexaenoic acid inhibition of inflammation is partially via cross-talk between Nrf2/heme oxygenase 1 and IKK/NF-κB pathways. J. Nutr. Biochem. 2013, 24, 204–212. [Google Scholar] [CrossRef]
- Fahs, C.A.; Yan, H.; Ranadive, S.; Rossow, L.M.; Agiovlasitis, S.; Wilund, K.R.; Fernhall, B. The effect of acute fish-oil supplementation on endothelial function and arterial stiffness following a high-fat meal. Appl. Physiol. Nutr. Metab. 2010, 35, 294–302. [Google Scholar] [CrossRef]
- Asztalos, I.B.; Gleason, J.A.; Sever, S.; Gedik, R.; Asztalos, B.F.; Horvath, K.V.; Dansinger, M.L.; Lamon-Fava, S.; Schaefer, E.J.; Information, P.E.K.F.C. Effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular disease risk factors: A randomized clinical trial. Metabolism 2016, 65, 1636–1645. [Google Scholar] [CrossRef]
- Backes, J.M.; Anzalone, D.; Hilleman, D.; Catini, J. The clinical relevance of omega-3 fatty acids in the management of hypertriglyceridemia. Lipids Health Dis. 2016, 15, 118–130. [Google Scholar] [CrossRef] [Green Version]
- Otto, M.C.D.O.; Wu, J.H.Y.; Baylin, A.; Vaidya, D.; Rich, S.S.; Tsai, M.; Jacobs, D.R.; Mozaffarian, D. Circulating and Dietary Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Incidence of CVD in the Multi-Ethnic Study of Atherosclerosis. J. Am. Hear. Assoc. 2013, 2, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Kaur, G.; Cameron-Smith, D.; Garg, M.; Sinclair, A.J. Docosapentaenoic acid (22:5n−3): A review of its biological effects. Prog. Lipid Res. 2011, 50, 28–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drouin, G.; Rioux, V.; Legrand, P.; Gaetan, D.; Vincent, R.; Legrand, P. The n−3 docosapentaenoic acid (DPA): A new player in the n−3 long chain polyunsaturated fatty acid family. Biochimie 2019, 159, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Ma, J.; Campos, H.; Rexrode, K.M.; Albert, C.M.; Mozaffarian, D.; Hu, F.B. Blood concentrations of individual long-chain n−3 fatty acids and risk of nonfatal myocardial infarction. Am. J. Clin. Nutr. 2008, 88, 216–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, D.; Lemaitre, R.N.; King, I.B.; Song, X.; Spiegelman, D.; Sacks, F.M.; Rimm, E.B.; Siscovick, D.S. Circulating Long-Chain ω-3 Fatty Acids and Incidence of Congestive Heart Failure in Older Adults: The Cardiovascular Health Study. Ann. Intern. Med. 2011, 155, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Amano, T.; Matsubara, T.; Uetani, T.; Kato, M.; Kato, B.; Yoshida, T.; Harada, K.; Kumagai, S.; Kunimura, A.; Shinbo, Y.; et al. Impact of omega-3 polyunsaturated fatty acids on coronary plaque instability: An integrated backscatter intravascular ultrasound study. Atherosclerosis 2011, 218, 110–116. [Google Scholar] [CrossRef]
- Jackson, S.P. The growing complexity of platelet aggregation. Blood 2007, 109, 5087–5095. [Google Scholar] [CrossRef] [Green Version]
- Phang, M.; Garg, M.L.; Sinclair, A.J. Inhibition of platelet aggregation by omega-3 polyunsaturated fatty acids is gender specific—Redefining platelet response to fish oils. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 35–40. [Google Scholar] [CrossRef]
- Yazdi, P.G. A review of the biologic and pharmacologic role of docosapentaenoic acid n−3. F1000Research 2014, 2, 256–264. [Google Scholar] [CrossRef]
- Tribulova, N.; Bacova, B.S.; Benova, T.E.; Knezl, V.; Barancik, M.; Slezak, J. Omega-3 Index and Anti-Arrhythmic Potential of Omega-3 PUFAs. Nutrients 2017, 9, 1191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tortosa-Caparrós, E.; Navas-Carrillo, D.; Marín, F.; Orenes-Piñero, E. Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome. Crit. Rev. Food Sci. Nutr. 2016, 57, 3421–3429. [Google Scholar] [CrossRef]
- Chowdhury, R.; Warnakula, S.; Kunutsor, S.K.; Crowe, F.; Ward, H.A.; Johnson, L.; Franco, O.H.; Butterworth, A.S.; Forouhi, N.G.; Thompson, S.G.; et al. Association of dietary, circulating, and supplement fatty acids with coronary risk: A systematic review and meta-analysis. Ann. Intern. Med. 2014, 160, 398–406. [Google Scholar] [CrossRef] [PubMed]
- De Lorgeril, M.E. Essential Polyunsaturated Fatty Acids, Inflammation, Atherosclerosis and Cardiovascular Diseases. Alzheimer’s Dis. 2007, 42, 283–297. [Google Scholar] [CrossRef]
- Hooper, C.L.; Al-Khudairy, L.; Abdelhamid, A.; Rees, K.; Brainard, J.S.; Brown, T.; Ajabnoor, S.M.; O’Brien, A.T.; Winstanley, L.E.; Donaldson, D.H.; et al. Omega-6 fats for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2018, 7, 1–204. [Google Scholar] [CrossRef] [Green Version]
- Harris, W.S.; Shearer, G.C. Omega-6 Fatty Acids and Cardiovascular Disease. Circulation 2014, 130, 1562–1564. [Google Scholar] [CrossRef] [Green Version]
- Kłosiewicz-Latoszek, L.; Szostak, W.B.; Podolec, P. Nutrition Guidelines of Polish Forum of Circulation System Disease Prophylaxis. Available online: www.pfp.edu.pl (accessed on 30 April 2014).
- Allayee, H.; Roth, N.; Hodis, H.N. Polyunsaturated fatty acids and cardiovascular disease: Implications for nutrigenetics. J. Nutr. Nutr. 2009, 2, 140–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deckelbaum, R.J.; Calder, P.C. Dietary n−3 and n−6 fatty acids: Are there ‘bad’ polyunsaturated fatty acids? Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 123–124. [Google Scholar] [CrossRef]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Boil. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Blasbalg, T.L.; Hibbeln, J.R.; Ramsden, C.E.; Majchrzak, S.F.; Rawlings, R.R. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am. J. Clin. Nutr. 2011, 93, 950–962. [Google Scholar] [CrossRef] [Green Version]
- Serhan, C.N.; Yacoubian, S.; Yang, R. Anti-inflammatory and proresolving lipid mediators. Annu. Rev. Pathol. Mech. Dis. 2008, 3, 279–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, G.H.; Fritsche, K. Effect of Dietary Linoleic Acid on Markers of Inflammation in Healthy Persons: A Systematic Review of Randomized Controlled Trials. J. Acad. Nutr. Diet. 2012, 112, 1029–1041. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Cherubini, A.; Bandinelli, S.; Bartali, B.; Corsi, A.; Lauretani, F.; Martín, A.; Andres-Lacueva, C.; Senin, U.; Guralnik, J.M. Relationship of Plasma Polyunsaturated Fatty Acids to Circulating Inflammatory Markers. J. Clin. Endocrinol. Metab. 2006, 91, 439–446. [Google Scholar] [CrossRef] [PubMed]
- ERA-JUMP Study Group; Choo, J.; Ueshima, H.; Curb, J.D.; Shin, C.; Evans, R.W.; El-Saed, A.; Kadowaki, T.; Okamura, T.; Nakata, K.; et al. Serum n−6 fatty acids and lipoprotein subclasses in middle-aged men: The population-based cross-sectional ERA-JUMP Study. Am. J. Clin. Nutr. 2010, 91, 1195–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramsden, E.; Zamora, C.; Majchrzak-Hong, D.; Faurot, S.; Broste, K.R.; Frantz, S.K.; Davis, R.P.; Ringel, J.M.; Suchindran, A.; Hibbeln, C.M.; et al. Re-evaluation of the traditional diet-heart hypothesis: Analysis of recovered data from Minnesota Coronary Experiment (1968–1973). BMJ 2016, 353, 1246–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, W.S.; Poston, W.C.; Haddock, C.K. Tissue n−3 and n−6 fatty acids and risk for coronary heart disease events. Atherosclerosis 2007, 193, 1–10. [Google Scholar] [CrossRef]
- Sergeant, S.; Rahbar, E.; Chilton, F.H. Gamma-linolenic acid, Dihommo-gamma linolenic, Eicosanoids and Inflammatory Processes. Eur. J. Pharmacol. 2016, 785, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Białek, M.; Rutkowska, J. The importance of γ-linolenic acid in the prevention and treatment– Text: Electronic. Postepy Hig. Med. Dosw. 2015, 69, 892–904. [Google Scholar] [CrossRef]
- Nyalala, J.O.; Wang, J.; Dang, A.; Faas, F.H.; Smith, W.G. Hypertriglyceridemia and hypercholesterolemia: Effects of drug treatment on fatty acid composition of plasma lipids and membranes. Prostaglandins Leukot. Essent. Fat. Acids 2008, 78, 271–280. [Google Scholar] [CrossRef]
- Schwab, U.; Callaway, J.C.; Erkkilä, A.T.; Gynther, J.; Uusitupa, M.I.; Järvinen, T. Effects of hempseed and flaxseed oils on the profile of serum lipids, serum total and lipoprotein lipid concentrations and haemostatic factors. Eur. J. Nutr. 2006, 45, 470–477. [Google Scholar] [CrossRef]
- Das, U.N. Essential fatty acids and their metabolites in the context of hypertension. Hypertens. Res. 2010, 33, 782–785. [Google Scholar] [CrossRef] [PubMed]
- Dennis, E.A.; Cao, J.; Hsu, Y.H.; Magrioti, V.; Kokotos, G. Phospholipase A2Enzymes: Physical Structure, Biological Function, Disease Implication, Chemical Inhibition, and Therapeutic Intervention. Chem. Rev. 2011, 111, 6130–6185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, H.D.; Meisel, J.A.; De Meijer, V.E.; Gura, K.M.; Puder, M. The essentiality of arachidonic acid and docosahexaenoic acid. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanab, S.M.; Hafez, R.; Fouad, A.S. A review on algae and plants as potential source of arachidonic acid. J. Adv. Res. 2018, 11, 3–13. [Google Scholar] [CrossRef]
- Tallima, H.; El Ridi, R. Arachidonic acid: Physiological roles and potential health benefits—A review. J. Adv. Res. 2018, 11, 33–41. [Google Scholar] [CrossRef]
- Kawanabe, A.; Okamura, Y. Effects of unsaturated fatty acids on the kinetics of voltage-gated proton channels heterologously expressed in cultured cells. J. Physiol. 2016, 594, 595–610. [Google Scholar] [CrossRef]
- Sonnweber, T.; Tancevski, I.; Nairz, M.; Weiss, G.; Tancevski, I. Arachidonic Acid Metabolites in Cardiovascular and Metabolic Diseases. Int. J. Mol. Sci. 2018, 19, 3285. [Google Scholar] [CrossRef] [Green Version]
- Tsukamoto, I.; Sugawara, S. Low levels of linoleic acid and α-linolenic acid and high levels of arachidonic acid in plasma phospholipids are associated with hypertension. Biomed. Rep. 2017, 8, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Claria, J.; Nguyen, B.T.; Madenci, A.L.; Ozaki, C.K.; Serhan, C.N. Diversity of lipid mediators in human adipose tissue depots. Am. J. Physiol. Physiol. 2013, 304, 1141–1149. [Google Scholar] [CrossRef]
- Inoue, K.; Kishida, K.; Hirata, A.; Funahashi, T.; Shimomura, I. Low serum eicosapentaenoic acid / arachidonic acid ratio in male subjects with visceral obesity. Nutr. Metab. 2013, 10, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Wolters, M.; Pala, V.; Russo, P.; Risé, P.; Moreno, L.A.; De Henauw, S.; Mehlig, K.; Veidebaum, T.; Molnar, D.; Tornaritis, M.; et al. Associations of Whole Blood n−3 and n−6 Polyunsaturated Fatty Acids with Blood Pressure in Children and Adolescents–Results from the IDEFICS/I.Family Cohort. PLoS ONE 2016, 11, e0165981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
The Notation of Fatty Acid (Number of Carbon Atoms: Number π Bonds) | Trivial Name | Systematic Name (IUPAC) | Chemical Formula |
---|---|---|---|
12:0 | Lauric | Dodecanoic | CH3–(CH2)10–COOH |
14:0 | Myristic | Tetradecanoic | CH3–(CH2)12–COOH |
16:0 | Palmitic | Hexadecanoic | CH3–(CH2)14–COOH |
18:0 | Stearic | Octadecanoic | CH3–(CH2)16–COOH |
20:0 | Arachidic | Eicosanoic | CH3–(CH2)18–COOH |
22:0 | Behenic | Docosanoic | CH3–(CH2)20–COOH |
24:0 | Lignoceric | Tetracosanoic | CH3–(CH2)22–COOH |
The Notation of Fatty Acid (Number of Carbon Atoms: Number π Bonds) | Trivial Name | Systematic Name (IUPAC) | Chemical Formula |
---|---|---|---|
12:1 | Lauroleic | CIS-9-dodecenoic | CH3–CH2–CH=CH(CH2)7–COOH |
14:1 | Myristoleic | CIS-9-tetradecenoic | CH3–(CH2)3–CH=CH(CH2)7–COOH |
16:1 | Palmitoleic | CIS-9-hexadecenoic | CH3–(CH2)5–CH=CH–(CH2)7–COOH |
18:1 | Oleic | CIS-9-octadecenoic | CH3–(CH2)7–CH=CH–(CH2)7–COOH |
18:1 | Petroselinic | CIS-6-octadecenoic | CH3–(CH2)10–CH=CH–(CH2)4–COOH |
Vaccenic | CIS-11-octadecenoic | CH3–(CH2)5–CH=CH–(CH2)9–COOH | |
20:1 | Gadoleic | CIS-9-eicosanoic | CH3–(CH2)9–CH=CH–(CH2)7–COOH |
Gondoic | CIS-11-eicosenoic | CH3–(CH2)7–CH=CH–(CH2)9–COOH | |
22:1 | Erucic | CIS-13-docosanoic | CH3–(CH2)7–CH=CH–(CH2)11–COOH |
Cetoleinoic | CIS-11-docosanoic | CH3–(CH2)5–CH=CH3–(CH2)11–COOH | |
24:1 | Nervonic | CIS-15-tetracosenoic | CH3–(CH2)7–CH=CH(CH2)13–COOH |
The Notation of Fatty Acid (Number of Carbon Atoms: Number π Bonds) | Trivial Name | Systematic Name (IUPAC) | Chemical Formula |
---|---|---|---|
Dienoic Acids | |||
18:2 (ω-6) | Linoleic | 9,12-octadecadienoic | CH3–(CH2)4–CH=CH–CH2–CH=CH–(CH2)7–COOH |
20:2 (ω-6) | Eicosadienoic | 11,14-eicosadienoic | CH3–(CH2)4–CH=CH–CH2–CH=CH–(CH2)9–COOH |
Trienoic Acids | |||
18:3 (ω-3) | α-linolenic | 9,12,15-octadecatrienoic | CH3–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–(CH2)7–COOH |
18:3(ω-6) | γ-linolenic | 6,9,12-octadecatrienoic | CH3–(CH2)4–CH=CH–CH2–CH=CH–CH2–CH=CH–(CH2)4–COOH |
20:3 (ω-6) | Eicosatrienoic | Eicosatrienoic-5,8,11 | CH3–(CH2)7–CH=CH–CH2–CH=CH–CH2–CH=CH–(CH2)3–COOH |
Tetraenoic Acids | |||
20:4 (ω-6) | Arachidonic | 5,8,11,14-eicosatetraenoic | CH3–(CH2)4–CH=CH–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–(CH2)3–COOH |
Pentaenoic Acids | |||
20:5 (ω-3) | Timnodonic | Eicosapentaenoic-5,8,11,14,17 | CH3–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–(CH2)3–COOH |
22:5 (ω-3) | Clupanodonic | 7,10,13,16,19-docosapentaenoic | CH3–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–(CH2)5–COOH |
Hexaenoic Acids | |||
22:6 (ω-3) | Cervonic | Docosahexaenoic-4,7,10,13,16,19 | CH3–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–CH2–CH=CH–(CH2)2–COOH |
Fatty Acids | The Influence on the Cardiovascular System | Effect of Increasing the Level | Effect of Reducing the Level |
---|---|---|---|
Myristic acid (C14:0) | - | ↑ the risk of developing IHD; ↑ total cholesterol concentration [32,39] | |
Palmitic acid (C16:0) | - | ↑ production of pro-inflammatory cytokines and oxidants; promotes inflammation and the development of CVD [31,32,34,35,36,37] | ↓ LDL, glucose, arterial blood pressure normalizes [30] |
Stearic acid (C18:0) | ± | not correlate with a higher risk of IHD and MI; induces apoptosis and necrosis of endothelial cells; ↑ the risk of developing IHD [27,44,45,46,47,48] | does not have a significant influence on lipid metabolism [10,41] |
Palmitoleic acid (C16:1) | ± | ↓ cholesterol and TG concentrations; ↑ HDL cholesterol concentrations [56,57]; ↑ the risk of developing IHD [32] | |
Oleic acid (C18:1) | ± | can improve the blood lipid profile [65]; ↓ the risk of atherosclerosis [69]; ↑ TG concentrations; ↑ markers of inflammation; ↑ the risk of developing heart failure [36,71] | |
Linoleic acid (C18:2) | + | ↓ risk developing IHD and death from IHD [140,141]; does not affect the concentrations of inflammatory biomarkers [146,147] | ↑ risk of arterial hypertension [154,155,156] |
α-Linolenic acid (C18:3) | + | ↓ the risk of death from IHD; ↓ the levels of LDL and total cholesterol; ↑ the levels of HDL [80,81,82]; | ↑ development of IHD [88] |
γ-Linolenic acid (C18:3) | + | ↓ concentrations of TG, total cholesterol and LDL; ↑ of the HDL concentrations [145]; ↓ development of arterial hypertension [146] | ↑ TG concentrations [144] |
Arachidonic acid (C20:4) | - | ↑ of biomarkers of inflammation; risk of CVD [132,133,134]; ↑ risk of arterial hypertension [153,154,155,156]; ↑ the risk of atherosclerosis [151,152]; | |
Eicosapentaenoic acid (C20:5) | + | can improve the blood lipid profile [90,107]; ↓vascular inflammation; ↓ risk developing of major ischemic events, and death from IHD [91,107] | ↑ risk developing of IHD [124] |
Docosapentaenoic acid (C22:5) | + | ↓ prevalence of CVD; ↓ developing of congestive heart [119,120] | ↑ developing of plaques enriched with lipids; promote the frequency of unstable plaque formation leading to the development of acute coronary syndrome and MI [121]; ↑ risk developing of IHD [124] |
Docosahexaenoic acid (C22:6) | + | ↓ concentrations of TG; ↑ the HDL concentrations [109]; ↓ inflammation markers [110,111] | ↑ endothelial dysfunction [112,113]; ↑ risk developing of IHD [124] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shramko, V.S.; Polonskaya, Y.V.; Kashtanova, E.V.; Stakhneva, E.M.; Ragino, Y.I. The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules 2020, 10, 1127. https://doi.org/10.3390/biom10081127
Shramko VS, Polonskaya YV, Kashtanova EV, Stakhneva EM, Ragino YI. The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules. 2020; 10(8):1127. https://doi.org/10.3390/biom10081127
Chicago/Turabian StyleShramko, Viktoriya S., Yana V. Polonskaya, Elena V. Kashtanova, Ekaterina M. Stakhneva, and Yuliya I. Ragino. 2020. "The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders" Biomolecules 10, no. 8: 1127. https://doi.org/10.3390/biom10081127
APA StyleShramko, V. S., Polonskaya, Y. V., Kashtanova, E. V., Stakhneva, E. M., & Ragino, Y. I. (2020). The Short Overview on the Relevance of Fatty Acids for Human Cardiovascular Disorders. Biomolecules, 10(8), 1127. https://doi.org/10.3390/biom10081127