Applications of Compounds from Coffee Processing By-Products
Abstract
:1. Introduction
2. Materials and Methods
3. Nutritional Value and Health Promoting Properties
4. Safety and Regulatory Status
5. Food Applications of Coffee Processing By-Products
5.1. Research Proposals
5.1.1. Cascara
5.1.2. Mucilage
5.1.3. Parchment
5.1.4. Silverskin
5.1.5. Spent Coffee Grounds
- Nutraceuticals. SCGs have been proposed as a protective agent against the onset and of chronic inflammatory diseases, such as inflammatory bowel disease and rheumatoid arthritis. This protective effect is associated to metabolites produced by colonic fermentation of SCGs (SCFAs), which exhibited strong antiinflammatory potential by suppressing nitric oxide production and inhibiting inflammatory mediators such as IL-10, CCL-17, CXCL9, IL-1β, and IL-5 cytokines [51];
- Food ingredient. Our research group has patented the use of SCGs as a food ingredient rich in antioxidant dietary fiber for bakery products (Figure 6). This ingredient could be directly applied in the manufacture of pastry and confectionery foods such as bread, cookies, and breakfast cereals, among others, making it a simple, low-cost alternative [49,106,107];
- Novel beverages. A distilled beverage with a coffee aroma was developed by aqueous extraction of aromatic compounds from SCGs, supplemented with sugar and the production of ethanol [108];
- Food preservative. The addition of SCGs to meat and other foods were shown to provide antioxidant properties inhibiting lipid oxidation, and also antimicrobial properties reducing pathogenic bacterial growth and, therefore, spoiling of food [25];
- Skincare products. An emulsion containing 35% of oil extracted from SCGs presented promising characteristics as a sunscreen. This formulation is industrial-scalable and suitable for topical use according to the rheological, mechanical and safety assessment [109];
- Animal feed. SCGs may be used as an alternative to conventional feed ingredients because of their nutrient composition and relatively low cost [110];
- Biodiesel. This is one of the most popular research topics surrounding SCGs for energy use. It consists of first extracting the oils present in SCGs, and transesterifying them into Fatty Acid Methyl Esters (FAME), commonly referred to as biodiesel [111];
- Bioethanol. The oil-free SCGs from biodiesel production can be reused as a source of carbohydrates for ethanol production by fermentation [111];
- Solid biofuel. SCGs can be used alone or mixed with other biomasses such as pine sawdust, and then this mixture can be submitted to pelletization. Pellets produced from SCGs were comparable to other biomass materials, but still had higher particle emissions than alternatives such as pure sawdust [112];
- Composting and fertilizer. Direct application of SCGs to soils was found to be damaging due to their high C/N ratio, phenol content and acidity. Positive results have been obtained from studies on the effect of mixing SCGs with other organic wastes in different ratios [113];
- Materials for construction industry. SCGs were mixed with other waste materials such as recycled glass, bagasse ash or fly ash in order to produce materials with high compressive strengths, suitable for use as a subgrade material [114];
- Bioplastics. Triglycerides extracted from SCGs using a green chemistry approach, based on supercritical CO2 extraction, seem to be promising candidates for the production of bioplastics [115];
- Adsorbent of contaminants. SCGs were proven to be an effective adsorbent for a wide range of contaminants such as metal ions, dyes and bioactive compounds present in water [105].
5.2. Commercially Available Products
5.2.1. Cascara
5.2.2. Mucilage
5.2.3. Parchment
5.2.4. Silverskin and Spent Coffee Grounds
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Esquivel, P.; Jiménez, V.M. Functional properties of coffee and coffee by-products. Food Res. Int. 2012, 46, 488–495. [Google Scholar] [CrossRef]
- Mussatto, S.I.; Machado, E.M.S.; Martins, S.; Teixeira, J.A. Production, Composition, and Application of Coffee and Its Industrial Residues. Food Bioprocess Technol. 2011, 4, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Alves, R.C.; Rodrigues, F.; Nunes, M.A.A.; Vinha, A.F.; Oliveira, M.B.P.P. State of the art in coffee processing by-products. In Handbook of Coffee Processing By-Products: Sustainable Applications; Galanakis, C., Ed.; Academic Press-Elsevier: London, UK, 2017; pp. 1–26. ISBN 978-0-12-811290-8. [Google Scholar]
- Murthy, P.S.; Madhava Naidu, M. Sustainable management of coffee industry by-products and value addition—A review. Resour. Conserv. Recycl. 2012, 66, 45–58. [Google Scholar] [CrossRef]
- del Castillo, M.D.; Fernandez-Gomez, B.; Martinez-Saez, N.; Iriondo-DeHond, A.; Mesa, M.D. Coffee By-Products. In Coffee: Production, Quality and Chemistry; Farah, A., Ed.; Royal Society of Chemistry: Oxfordshire, UK, 2019; ISBN 9781782620044. [Google Scholar]
- International Coffee Organization. Total Production by All Exporting Countries; International Coffee Organization: London, UK, 2019. [Google Scholar]
- Ferrão, J.E.M. O Café, A Bebida Negra Dos Sonhos Claros; Chaves Ferreira-Publicações S. A: Lisboa, Portugal, 2009. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Global Food Losses and Food Waste—Extent, Causes and Prevention; FAO: Rome, Italy, 2011; ISBN 9789251072059. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). Development of a Code of Conduct on Food Loss and Food Waste Prevention; FAO: Rome, Italy, 2019. [Google Scholar]
- Baiano, A. Recovery of biomolecules from food wastes—A review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, L.S.; Franca, A.S. An Overview of the Potential Uses for Coffee Husks. In Coffee in Health and Disease Prevention; Elsevier Inc.: London, UK, 2014; pp. 283–291. ISBN 9780124167162. [Google Scholar]
- Janissen, B.; Huynh, T. Chemical composition and value-adding applications of coffee industry by-products: A review. Resour. Conserv. Recycl. 2018, 128, 110–117. [Google Scholar] [CrossRef]
- Nguyen, A.D.; Tran, T.D.; Vo, T.P.K. Evaluation of Coffee Husk Compost for Improving Soil Fertility and Sustainable Coffee Production in Rural Central Highland of Vietnam. Resour. Environ. 2013, 3, 77–82. [Google Scholar]
- Iriondo-DeHond, A.; Elizondo, A.S.; Iriondo-DeHond, M.; Ríos, M.B.; Mufari, R.; Mendiola, J.A.; Ibañez, E.; Castillo, M.D. Assessment of Healthy and Harmful Maillard Reaction Products in a Novel Coffee Cascara Beverage: Melanoidins and Acrylamide. Foods 2020, 9, 620. [Google Scholar] [CrossRef]
- Sadeghian-Khalajabadi, S.; Mejía-Muñoz, B.; Arcila-Pulgarín, J. Composición elemetal de fruto de café y extracción de nutrientes por las cosechas en la zona cafetera de Colombia. Cenicafé 2006, 57, 251–261. [Google Scholar]
- Elías, L.G. Chemical Composition of Coffee-Berry By-Products. In Coffee Pulp: Composition, Technology and Utilization; International Development Research Centre: Ottawa, ON, Canada, 1979; pp. 11–16. ISBN 0-88936-190-8. [Google Scholar]
- Puerta-Quintero, G.I.; Ríos-Arias, S. Composición Química Del Mucílago De Café, Según El Tiempo De Fermentación Y Refrigeración. Cenicafé 2011, 2, 23–40. [Google Scholar]
- Braham, J.E.; Bressani, R. Pulpa de café. Composición, Tecnología y Utilización; Centro Internacional de Investigaciones para el Desarrollo: Bogotá, Colombia, 1978; ISBN 088936172X. [Google Scholar]
- Benitez, V.; Rebollo-Hernanz, M.; Hernanz, S.; Chantres, S.; Aguilera, Y.; Martin-Cabrejas, M.A. Coffee parchment as a new dietary fiber ingredient: Functional and physiological characterization. Food Res. Int. 2019, 122, 105–113. [Google Scholar] [CrossRef]
- Bekalo, S.A.; Reinhardt, H.W. Fibers of coffee husk and hulls for the production of particleboard. Mater. Struct. Constr. 2010, 43, 1049–1060. [Google Scholar] [CrossRef]
- Mirón-Mérida, V.A.; Yáñez-Fernández, J.; Montañez-Barragán, B.; Barragán Huerta, B.E. Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films. LWT 2019, 101, 167–174. [Google Scholar] [CrossRef]
- Mesías, M.; Navarro, M.; Martínez-Saez, N.; Ullate, M.; del Castillo, M.D.; Morales, F.J. Antiglycative and carbonyl trapping properties of the water soluble fraction of coffee silverskin. Food Res. Int. 2014, 62, 1120–1126. [Google Scholar] [CrossRef] [Green Version]
- Costa, A.S.G.; Alves, R.C.; Vinha, A.F.; Costa, E.; Costa, C.S.G.; Nunes, M.A.; Almeida, A.A.; Santos-Silva, A.; Oliveira, M.B.P.P. Nutritional, chemical and antioxidant/pro-oxidant profiles of silverskin, a coffee roasting by-product. Food Chem. 2018, 267, 28–35. [Google Scholar] [CrossRef]
- Iriondo-DeHond, A.; Rios, M.B.; Herrera, T.; Rodriguez-Bertos, A.; Nuñez, F.; San Andres, M.I.; Sanchez-Fortun, S.; del Castillo, M.D. Coffee Silverskin Extract: Nutritional Value, Safety and Effect on Key Biological Functions. Nutrients 2019, 11, 2693. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Zamora, A.; Pastoriza, S.; Rufián-Henares, J.A. Revalorization of coffee by-products. Prebiotic, antimicrobial and antioxidant properties. LWT Food Sci. Technol. 2015, 61, 12–18. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Loarca-Piña, G.; Vergara-Castañeda, H.; Oomah, B.D. Spent coffee grounds: A review on current research and future prospects. Trends Food Sci. Technol. 2015, 45, 24–36. [Google Scholar] [CrossRef]
- Cruz, R.; Cardoso, M.M.; Fernandes, L.; Oliveira, M.; Mendes, E.; Baptista, P.; Morais, S.; Casal, S. Espresso coffee residues: A valuable source of unextracted compounds. J. Agric. Food Chem. 2012, 60, 7777–7784. [Google Scholar] [CrossRef]
- Iriondo-DeHond, M.; Iriondo-DeHond, A.; Herrera, T.; Fernández-Fernández, A.M.; Sorzano, C.O.S.; Miguel, E.; del Castillo, M.D. Sensory Acceptance, Appetite Control and Gastrointestinal Tolerance of Yogurts Containing Coffee-Cascara Extract and Inulin. Nutrients 2020, 12, 627. [Google Scholar] [CrossRef] [Green Version]
- Murthy, P.S.; Manjunatha, M.R.; Sulochannama, G.; Madhava Naidu, M. Extraction, Characterization and Bioactivity of Coffee Anthocyanins. Eur. J. Biol. Sci. 2012, 4, 13–19. [Google Scholar]
- Secret Cherry Tea Superfood Coffee Cherry Tea. Available online: https://www.secretcherrytea.com/ (accessed on 3 October 2019).
- Heeger, A.; Kosińska-Cagnazzo, A.; Cantergiani, E.; Andlauer, W. Bioactives of coffee cherry pulp and its utilisation for production of Cascara beverage. Food Chem. 2016, 221, 969–975. [Google Scholar] [CrossRef] [PubMed]
- Magoni, C.; Bruni, I.; Guzzetti, L.; Dell’Agli, M.; Sangiovanni, E.; Piazza, S.; Regonesi, M.E.; Maldini, M.; Spezzano, R.; Caruso, D.; et al. Valorizing coffee pulp by-products as anti-inflammatory ingredient of food supplements acting on IL-8 release. Food Res. Int. 2018, 112, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Rebollo-Hernanz, M.; Zhang, Q.; Aguilera, Y.; Martín-Cabrejas, M.A.; Gonzalez de Mejia, E. Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation, mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling pathways. Food Chem. Toxicol. 2019, 132, 110672. [Google Scholar] [CrossRef] [PubMed]
- Natucafé, S.A.S. Coffee Mucilage Concentrate. Available online: http://natucafe.co/coffee-mucilage-concentrate.php (accessed on 3 October 2019).
- Borrelli, R.C.; Esposito, F.; Napolitano, A.; Ritieni, A.; Fogliano, V. Characterization of a new potential functional ingredient: Coffee silverskin. J. Agric. Food Chem. 2004, 52, 1338–1343. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Saez, N.; Ullate, M.; Martin-Cabrejas, M.A.; Martorell, P.; Genovés, S.; Ramon, D.; Del Castillo, M.D. A novel antioxidant beverage for body weight control based on coffee silverskin. Food Chem. 2014, 150, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo, M.D.; Fernandez-Gomez, B.; Ullate, M.; Mesa, M.D. Use of Products of the Husk of Coffee for the Prevention and Treatment of the Diseases that form the Metabolic Syndrome and the Risk Factors Thereof. International Patent Application No. PCT/ES2015/070915, 23 June 2016. [Google Scholar]
- Fernandez-Gomez, B.; Lezama, A.; Amigo-Benavent, M.; Ullate, M.; Herrero, M.; Martín, M.Á.; Mesa, M.D.; del Castillo, M.D. Insights on the health benefits of the bioactive compounds of coffee silverskin extract. J. Funct. Foods 2016, 25, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Gomez, B.; Ramos, S.; Goya, L.; Mesa, M.D.; del Castillo, M.D.; Martín, M.Á. Coffee silverskin extract improves glucose-stimulated insulin secretion and protects against streptozotocin-induced damage in pancreatic INS-1E beta cells. Food Res. Int. 2016, 89, 1015–1022. [Google Scholar] [CrossRef] [Green Version]
- Napolitano, A.; Fogliano, V.; Tafuri, A.; Ritieni, A. Natural occurrence of ochratoxin A and antioxidant activities of green and roasted coffees and corresponding byproducts. J. Agric. Food Chem. 2007, 55, 10499–10504. [Google Scholar] [CrossRef]
- Ballesteros, L.F.; Teixeira, J.A.; Mussatto, S.I. Chemical, Functional, and Structural Properties of Spent Coffee Grounds and Coffee Silverskin. Food Bioprocess Technol. 2014, 7, 3493–3503. [Google Scholar] [CrossRef] [Green Version]
- Iriondo-DeHond, A.; Aparicio García, N.; Velazquez Escobar, F.; San Andres, M.I.; Sanchez-Fortun, S.; Blanch, G.P.; Fernandez-Gomez, B.; Guisantes Batan, E.; del Castillo, M.D. Validation of coffee by-products as novel food ingredients. Innov. Food Sci. Emerg. Technol. 2019, 51, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Bessada, S.M.F.; Alves, R.C.; Costa, A.S.G.; Nunes, M.A.; Oliveira, M.B.P.P. Coffea canephora silverskin from different geographical origins: A comparative study. Sci. Total Environ. 2018, 645, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Bessada, S.M.F.; Alves, R.C.; Oliveira, M.B.P.P.; Applications, C. Coffee Silverskin: A Review on Potential Cosmetic Applications. Cosmetics 2018, 5, 5. [Google Scholar] [CrossRef] [Green Version]
- Castillo, M.D.; Ibañez, M.E. Applications of Products of Coffee Silverskin in Anti-Ageing Cosmetic and Functional Food. International Patent Application No. WO 2013/004873, 10 January 2013. [Google Scholar]
- Rodrigues, F.; Sarmento, B.; Amaral, M.H.; Oliveira, M.B.P.P. Exploring the antioxidant potentiality of two food by-products into a topical cream: Stability, in vitro and in vivo evaluation. Drug Dev. Ind. Pharm. 2016, 42, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Iriondo-DeHond, A.; Martorell, P.; Genovés, S.; Ramón, D.; Stamatakis, K.; Fresno, M.; Molina, A.; Del Castillo, M.D. Coffee Silverskin Extract Protects against Accelerated Aging Caused by Oxidative Agents. Molecules 2016, 21, 721. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Sánchez, K.; Martinez-Saez, N.; Rebollo-Hernanz, M.; del Castillo, M.D.; Gaytán-Martínez, M.; Campos-Vega, R. In vitro health promoting properties of antioxidant dietary fiber extracted from spent coffee (Coffee arabica L.) grounds. Food Chem. 2018, 261, 253–259. [Google Scholar] [CrossRef]
- Martinez-Saez, N.; Tamargo García, A.; Domínguez Pérez, I.; Rebollo-Hernanz, M.; Mesías, M.; Morales, F.J.; Martín-Cabrejas, M.A.; del Castillo, M.D. Use of spent coffee grounds as food ingredient in bakery products. Food Chem. 2017, 216, 114–122. [Google Scholar] [CrossRef]
- Campos-Vega, R.; Vázquez-Sánchez, K.; López-Barrera, D.; Loarca-Piña, G.; Mendoza-Díaz, S.; Oomah, B.D. Simulated gastrointestinal digestion and in vitro colonic fermentation of spent coffee (Coffea arabica L.): Bioaccessibility and intestinal permeability. Food Res. Int. 2015, 77, 156–161. [Google Scholar] [CrossRef]
- López-Barrera, D.M.; Vázquez-Sánchez, K.; Loarca-Piña, M.G.F.; Campos-Vega, R. Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chem. 2016, 212, 282–290. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. Regulation (EC) No 1924/2006 on Nutrition and Health Claims Made on Foods. Off. J. Eur. Union 2006, 404, 9–25. [Google Scholar]
- European Council. Council Directive of 24 September 1990 on nutrition labelling for foodstuffs (90/496/ EEC). Off. J. Eur. Union 1990, 276, 40–44. [Google Scholar]
- Guglielmetti, A.; Fernandez-Gomez, B.; Zeppa, G.; Del Castillo, M.D. Nutritional Quality, Potential Health Promoting Properties and Sensory Perception of an Improved Gluten-Free Bread Formulation Containing Inulin, Rice Protein and Bioactive Compounds Extracted from Coffee Byproducts. Pol. J. Food Nutr. Sci. 2019, 69, 157–166. [Google Scholar] [CrossRef]
- Hwang, S.J.; Kim, Y.W.; Park, Y.; Lee, H.J.; Kim, K.W. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide- stimulated RAW 264.7 cells. Inflamm. Res. 2014, 63, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.H.; Kim, K.J.; Ryu, S.J.; Lee, B.Y. Caffeine prevents LPS-induced inflammatory responses in RAW264.7 cells and zebrafish. Chem. Biol. Interact. 2016, 248, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, Y.; Rebollo-Hernanz, M.; Cañas, S.; Taladrid, D.; Martín-Cabrejas, M.A. Response surface methodology to optimise the heat-assisted aqueous extraction of phenolic compounds from coffee parchment and their comprehensive analysis. Food Funct. 2019, 10, 4739–4750. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi-Hattori, K.; Mogi, A.; Matsumoto, Y.; Takita, T. Effect of caffeine on the body fat and lipid metabolism of rats fed on a high-fat diet. Biosci. Biotechnol. Biochem. 2005, 69, 2219–2223. [Google Scholar] [CrossRef] [Green Version]
- Cho, A.S.; Jeon, S.M.; Kim, M.J.; Yeo, J.; Seo, K.I.L.; Choi, M.S.; Lee, M.K. Chlorogenic acid exhibits anti-obesity property and improves lipid metabolism in high-fat diet-induced-obese mice. Food Chem. Toxicol. 2010, 48, 937–943. [Google Scholar] [CrossRef]
- Moreira, A.S.P.; Nunes, F.M.; Domingues, M.R.; Coimbra, M.A. Coffee melanoidins: Structures, mechanisms of formation and potential health impacts. Food Funct. 2012, 3, 903. [Google Scholar] [CrossRef]
- Fernandez-Gomez, B.; Ullate, M.; Picariello, G.; Ferranti, P.; Mesa, M.D.; del Castillo, M.D. New knowledge on the antiglycoxidative mechanism of chlorogenic acid. Food Funct. 2015, 6, 2081–2090. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Gómez, B. Sustainable Use of Coffee Silverskin as a Natural Source of Bioactive Compounds for Diabetes. Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid, Spain, April 2016. [Google Scholar]
- Karthikesan, K.; Pari, L.; Menon, V.P. Combined treatment of tetrahydrocurcumin and chlorogenic acid exerts potential antihyperglycemic effect on streptozotocin-nicotinamide-induced diabetic rats. Gen. Physiol. Biophys. 2010, 29, 23–30. [Google Scholar] [CrossRef]
- Del Castillo, M.D.; Iriondo-DeHond, A.; Martinez-Saez, N.; Fernandez-Gomez, B.; Iriondo-DeHond, M.; Zhou, J.-R. Chapter 6—Applications of recovered compounds in food products. In Handbook of Coffee Processing By-Products; Academic Press: London, UK, 2017; pp. 171–194. ISBN 9780128112908. [Google Scholar]
- Iriondo-DeHond, A.; Haza, A.I.; Ávalos, A.; del Castillo, M.D.; Morales, P.; Avalos, A.; del Castillo, M.D.M.D.; Morales, P. Validation of coffee silverskin extract as a food ingredient by the analysis of cytotoxicity and genotoxicity. Food Res. Int. 2017, 100, 791–797. [Google Scholar] [CrossRef] [Green Version]
- Tores de la Cruz, S.; Iriondo-DeHond, A.; Herrera, T.; Lopez-Tofiño, Y.; Galvez-Robleño, C.; Prodanov, M.; Velazquez-Escobar, F.; Abalo, R.; Castillo, M.D. del An Assessment of the Bioactivity of Coffee Silverskin Melanoidins. Foods 2019, 8, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinez-Saez, N.; Hochkogler, C.; Somoza, V.; del Castillo, M. Biscuits with No Added Sugar Containing Stevia, Coffee Fibre and Fructooligosaccharides Modifies α-Glucosidase Activity and the Release of GLP-1 from HuTu-80 Cells and Serotonin from Caco-2 Cells after In Vitro Digestion. Nutrients 2017, 9, 694. [Google Scholar] [CrossRef] [PubMed]
- Iriondo-DeHond, A.; Cornejo, F.S.; Fernandez-Gomez, B.; Vera, G.; Guisantes-Batan, E.; Alonso, S.G.; Andres, M.I.S.; Sanchez-Fortun, S.; Lopez-Gomez, L.; Uranga, J.A.; et al. Bioaccesibility, Metabolism, and Excretion of Lipids Composing Spent Coffee Grounds. Nutrients 2019, 11, 1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, H.; van der, A.D.L.; Boshuizen, H.C.; Forouhi, N.G.; Wareham, N.J.; Halkjær, J.; Tjønneland, A.; Overvad, K.; Jakobsen, M.U.; Boeing, H.; et al. Dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am. J. Clin. Nutr. 2010, 91, 329–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, K.A.; Kushi, L.H.; Jacobs, D.R.; Slavin, J.; Sellers, T.A.; Folsom, A.R. Carbohydrates, dietary fiber, and incident type 2 diabetes in older women. Am. J. Clin. Nutr. 2000, 71, 921–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA. Panel on Dietetic Products Guidance on the preparation and presentation of an application for authorisation of a novel food in the context of Regulation (EU) 2015/2283. EFSA J. 2016, 14, 11. [Google Scholar]
- Klingel, T.; Kremer, J.I.; Gottstein, V.; Rajcic de Rezende, T.; Schwarz, S.; Lachenmeier, D.W. A Review of Coffee By-Products Including Leaf, Flower, Cherry, Husk, Silver Skin, and Spent Grounds as Novel Foods within the European Union. Foods 2020, 9, 665. [Google Scholar] [CrossRef]
- Farah, A. Coffee Constituents. Coffee Emerg. Health Eff. Dis. Prev. 2012, 1, 21–58. [Google Scholar]
- European Food Safety Authority (EFSA). Scientific Opinion on the safety of caffeine. EFSA J. 2015, 13, 1–21. [Google Scholar]
- Pedreschi, F.; Mariotti, M.S.; Granby, K. Current issues in dietary acrylamide: Formation, mitigation and risk assessment. J. Sci. Food Agric. 2014, 94, 9–20. [Google Scholar] [CrossRef]
- Garcia-Serna, E.; Martinez-Saez, N.; Mesias, M.; Morales, F.J.; Castillo, M.D. Del Use of Coffee Silverskin and Stevia to Improve the Formulation of Biscuits. Pol. J. Food Nutr. Sci. 2014, 64, 243–251. [Google Scholar] [CrossRef] [Green Version]
- European Food Safety Authority. Scientific Opinion on acrylamide in food. EFSA J. 2015, 13, 4104. [Google Scholar]
- European Commission. Commission Regulation (EC) No 123/2005 of 26 January 2005 amending Regulation (EC) No 466/2001 as regards ochratoxin A. Off. J. Eur. Union 2005, 2005, 2004–2006. [Google Scholar]
- Toschi, T.G.; Cardenia, V.; Bonaga, G.; Mandrioli, M.; Rodriguez-estrada, M.T. Coffee Silverskin: Characterization, Possible Uses, and Safety Aspects. J. Agric. Food Chem. 2014, 62, 10836–10844. [Google Scholar] [CrossRef]
- Ferraz, M.B.M.; Farah, A.; Iamanaka, B.T.; Perrone, D.; Copetti, M.V.; Marques, V.X.; Vitali, A.A.; Taniwaki, M.H. Kinetics of ochratoxin A destruction during coffee roasting. Food Control 2010, 21, 872–877. [Google Scholar] [CrossRef]
- Suárez-Quiroz, M.; De Louise, B.; Gonzalez-Rios, O.; Barel, M.; Guyot, B.; Schorr-Galindo, S.; Guiraud, J.P. The impact of roasting on the ochratoxin a content of coffee. Int. J. Food Sci. Technol. 2005, 40, 605–611. [Google Scholar] [CrossRef]
- Heimbach, J.T.; Marone, P.A.; Hunter, J.M.; Nemzer, B.V.; Stanley, S.M.; Kennepohl, E. Safety studies on products from whole coffee fruit. Food Chem. Toxicol. 2010, 48, 2517–2525. [Google Scholar] [CrossRef]
- Gouvea, B.M.; Torres, C.; Franca, A.S.; Oliveira, L.S.; Oliveira, E.S. Feasibility of ethanol production from coffee husks. Biotechnol. Lett. 2009, 31, 1315–1319. [Google Scholar] [CrossRef]
- Murthy, P.S.; Naidu, M.M.; Srinivas, P. Production of α-amylase under solid-state fermentation utilizing coffee waste. J. Chem. Technol. Biotechnol. 2009, 84, 1246–1249. [Google Scholar] [CrossRef]
- Oliveira, W.E.; Franca, A.S.; Oliveira, L.S.; Rocha, S.D. Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions. J. Hazard. Mater. 2008, 152, 1073–1081. [Google Scholar] [CrossRef]
- Mazzafera, P. Degradation of caffeine by microorganisms and potential use of decaffeinated coffee husk and pulp in animal feeding. Sci. Agric. 2002, 59, 815–821. [Google Scholar] [CrossRef] [Green Version]
- Murthy, P.S.; Naidu, M.M. Recovery of Phenolic Antioxidants and Functional Compounds from Coffee Industry By-Products. Food Bioprocess Technol. 2012, 5, 897–903. [Google Scholar] [CrossRef]
- Ramirez Velez, A.; Jaramillo Lopez, J.C. Process for Obtaining Honey and/or Flour of Coffee from the Pulp or Husk and the Mucilage of the Coffee Bean. U.S. Patent Publication No. 20150017270, 15 January 2015. [Google Scholar]
- Moreno, J.; Cozzano, S.; Mercedes Pérez, A.; Arcia, P.; Curutchet, A. Coffee Pulp Waste as a Functional Ingredient: Effect on Salty Cookies Quality. J. Food Nutr. Res. 2019, 7, 632–638. [Google Scholar] [CrossRef] [Green Version]
- Hartati, I.; Wahid, U.; Riwayati, I.; Wahid, U.; Kurniasari, L.; Wahid, U.; Hartati, I. Potential production of food colorant from coffee pulp. Pros. SNST Fak. Tek. 2012, 1, 66–71. [Google Scholar]
- Prata, E.R.; Oliveira, L.S. Fresh coffee husks as potential sources of anthocyanins. LWT Food Sci. Technol. 2007, 40, 1555–1560. [Google Scholar] [CrossRef]
- Jelderks, J.; Zimmermann, U. Caskai. Available online: https://caskai.com/ (accessed on 16 March 2020).
- Rios, M.B.; Iriondo-deHond, A.; Iriondo-deHond, M.; Herrera, T.; Velasco, D.; Gomez-Alonso, S.; Callejo, M.J.; del Castillo, M.D. Effect of Coffee Cascara Dietary Fiber on the Physicochemical, Nutritional and Sensory Properties of a Gluten-Free Bread Formulation. Molecules 2020, 25, 1358. [Google Scholar] [CrossRef] [Green Version]
- Rathinavelu, R.; Graziosi, G. Potential alternative use of coffee wastes and by-products. Coffee Organ. 2005, 1967, 1–4. [Google Scholar]
- Gonzalez, B. Uso sostenible del pergamino de café como ingrediente alimentario en la elaboración de pan libre de gluten con alto contenido en fibra. Bachelor’s Thesis, Universidad Autónoma de Madrid, Madrid, Spain, 2016. [Google Scholar]
- Cubero-Castillo, E.; Bonilla-Leiva, A.R.; García-Velasques, E. Coffee Berry Processing By-Product Valorization: Coffee Parchment as a Potential Fiber Source to Enrich Bakery Goods Abstract. J. Food Nutr. Popul. Health 2017, 1, 1–7. [Google Scholar]
- Apuzzo, J. Cellulosic Composition Containing Coffee Parchment Cellulose and Uses Thereof. International Patent Publication No. WO2018/136763Al, 28 July 2018. [Google Scholar]
- Barrett, A. Cellulose Film Packaging Gains Popularity with Plastic Reduction Initiatives. Available online: https://bioplasticsnews.com/2019/02/22/cellulose-film-packaging-gains-popularity-with-plastic-reduction-initiatives/ (accessed on 3 October 2019).
- Yang, J.; Ching, Y.C.; Chuah, C.H. Applications of lignocellulosic fibers and lignin in bioplastics: A review. Polymers 2019, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Ateş, G.; Elmacı, Y. Physical, chemical and sensory characteristics of fiber-enriched cakes prepared with coffee silverskin as wheat flour substitution. J. Food Meas. Charact. 2019, 13, 755–763. [Google Scholar] [CrossRef]
- Pourfarzad, A.; Mahdavian-Mehr, H.; Sedaghat, N. Coffee silverskin as a source of dietary fiber in bread-making: Optimization of chemical treatment using response surface methodology. LWT Food Sci. Technol. 2013, 50, 599–606. [Google Scholar] [CrossRef]
- Ateş, G.; Elmacı, Y. Coffee silverskin as fat replacer in cake formulations and its effect on physical, chemical and sensory attributes of cakes. LWT 2018, 90, 519–525. [Google Scholar] [CrossRef]
- Angeloni, S.; Scortichini, S.; Fiorini, D.; Sagratini, G.; Vittori, S.; Neiens, S.D.; Steinhaus, M.; Zheljazkov, V.D.; Maggi, F.; Caprioli, G. Characterization of Odor-Active Compounds, Polyphenols, and Fatty Acids in Coffee Silverskin. Molecules 2020, 25, 2993. [Google Scholar] [CrossRef] [PubMed]
- Mata, T.M.; Martins, A.A.; Caetano, N.S. Bio-refinery approach for spent coffee grounds valorization. Bioresour. Technol. 2018, 247, 1077–1084. [Google Scholar] [CrossRef]
- McNutt, J.; He, Q. (Sophia) Spent coffee grounds: A review on current utilization. J. Ind. Eng. Chem. 2019, 71, 78–88. [Google Scholar] [CrossRef]
- Del Castillo, M.D.; Martinez-Saez, N.; Ullate, M. Healthy Bakery Products with High Level of Dietary Antioxidant Fibre. International Patent Application No. WO2014128320A1, 28 January 2014. [Google Scholar]
- Oseguera-Castro, K.Y.; Madrid, J.A.; Martínez Madrid, M.J.; García, O.P.; Del Castillo, M.D.; Campos-Vega, R. Antioxidant dietary fiber isolated from spent coffee (Coffea arabica L.) grounds improves chronotype and circadian locomotor activity in young adults. Food Funct. 2019, 10, 4546–4556. [Google Scholar] [CrossRef]
- Sampaio, A.; Dragone, G.; Vilanova, M.; Oliveira, J.M.; Teixeira, J.A.; Mussatto, S.I. Production, chemical characterization, and sensory profile of a novel spirit elaborated from spent coffee ground. LWT Food Sci. Technol. 2013, 54, 557–563. [Google Scholar] [CrossRef] [Green Version]
- Marto, J.; Gouveia, L.F.; Chiari, B.G.; Paiva, A.; Isaac, V.; Pinto, P.; Simões, P.; Almeida, A.J.; Ribeiro, H.M. The green generation of sunscreens: Using coffee industrial sub-products. Ind. Crop. Prod. 2016, 80, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.; Jung, J.K.; Seo, S. Evaluation of nutritional and economic feed values of spent coffee grounds and Artemisia princeps residues as a ruminant feed using in vitro ruminal fermentation. PeerJ 2015, 3, e1343. [Google Scholar] [CrossRef] [Green Version]
- Rocha, M.V.P.; de Matos, L.J.B.L.; Lima, L.P.D.; Figueiredo, P.M.D.S.; Lucena, I.L.; Fernandes, F.A.N.; Gonçalves, L.R.B. Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds. Bioresour. Technol. 2014, 167, 343–348. [Google Scholar] [CrossRef]
- Limousy, L.; Jeguirim, M.; Labbe, S.; Balay, F.; Fossard, E. Performance and emissions characteristics of compressed spent coffee ground/wood chip logs in a residential stove. Energy Sustain. Dev. 2015, 28, 52–59. [Google Scholar] [CrossRef]
- Ronga, D.; Pane, C.; Zaccardelli, M.; Pecchioni, N. Use of Spent Coffee Ground Compost in Peat-Based Growing Media for the Production of Basil and Tomato Potting Plants. Commun. Soil Sci. Plant Anal. 2016, 47, 356–368. [Google Scholar] [CrossRef]
- Arulrajah, A.; Kua, T.-A.; Horpibulsuk, S.; Mirzababaei, M.; Chinkulkijniwat, A. Recycled glass as a supplementary filler material in spent coffee grounds geopolymers. Constr. Build. Mater. 2017, 151, 18–27. [Google Scholar] [CrossRef]
- Williamson, K.; Hatzakis, E. NMR analysis of roasted coffee lipids and development of a spent ground coffee application for the production of bioplastic precursors. Food Res. Int. 2019, 119, 683–692. [Google Scholar] [CrossRef]
- Supracafé, S.A. Tabi Fruit. Available online: https://www.supracafe.com/conoces-la-infusion-de-cascara-de-cafe-supracafe-maximiza-su-sostenibilidad-con-tabifruit/ (accessed on 19 March 2020).
- Weiss, B. Bai. Available online: https://www.drinkbai.com/ (accessed on 18 March 2020).
- Schorr, S.M. KonaRed. Available online: https://www.konared.com/ (accessed on 18 March 2020).
- Pectcof, B.V. Unlocking the Potential of Coffee Pulp. Available online: https://pectcof.com/ (accessed on 4 October 2019).
- Belliveau, D. The Coffee Cherry Co. Available online: https://coffeecherryco.com/ (accessed on 24 March 2020).
- Clifton, T. Cascara Chocolate Bar. Available online: https://modcup.com/product/cascara-chocolate-bar/ (accessed on 18 March 2020).
- Future Ceuticals. Available online: https://www.futureceuticals.com/ (accessed on 4 October 2019).
- Kaffee Form. Available online: https://www.kaffeeform.com/de/ (accessed on 19 September 2019).
- Chen, J.S. Café®. Available online: http://www.scafefabrics.com/en-global/home/index (accessed on 4 October 2019).
- Massachusetts Institute of Technology Ministry of Supply. Available online: https://ministryofsupply.com/ (accessed on 4 October 2019).
- Bio-bean Coffee Logs. Available online: https://www.bio-bean.com/coffee-logs/#hero (accessed on 4 October 2019).
- Fairweather, A. Green Cup. Available online: http://greencup.co.uk/recycling-upcycling/ (accessed on 4 October 2019).
- McMillan, R. Rosalie Mcmillan. Available online: http://www.rosaliemcmillan.com/ (accessed on 4 October 2019).
By-Product | Cascara | Mucilage | Parchment | Silverskin | Spent Coffee Grounds |
---|---|---|---|---|---|
Origin | Producing countries | Producing countries | Producing countries | Worldwide | Worldwide |
Type of processing | Dry/wet | Wet | Wet | Dry/wet | Dry/wet |
Processing step | Pulping | Fermentation | Hulling | Roasting | Brewing |
Kg by-product/100 kg cherry */bean ** | 39–45 * | 22 * | 39 * | 2.08 ** | 65 ** |
Macronutrients | |||||
Carbohydrates (%) | 45–89 | 45.8 | 0.45 | 44 | 82 |
Total fiber (%) | 18–32 | 0.9 | 89–91 | 62.4 | 60.5 |
Lipids (%) | 0.5–3 | 0.12 | 0.6 | 2.2 | 10–29 |
Protein (%) | 4–12 | 0.93 | 0.4 | 16.2–18.6 | 13.6–16.9 |
Protein energy value (%) | 9.4 | 1.9 | 0.8 | 18.8 | 11.1 |
Micronutrients | |||||
Ash (%) | 3–10 | 0.43 | 0.5–1 | 5–7 | 1.3–1.6 |
Magnesium (mg/100 g) | 20.8–420 | 88 | 49 | 2002 | 220.1 |
Sodium (mg/100 g) | 100–266.6 | - | - | 5.32 | 20.1 |
Potassium (mg/100 g) | 2284–2460 | 1282 | 11 | 4977 | 882.4 |
Calcium (mg/100 g) | 54.8–554 | 370 | 190 | 584 | 34.9 |
Iron (mg/100 g) | 4.3–15 | 30.2 | 3.3 | 41.8 | 4.6 |
Vitamin C (mg/100 g) | 69.8 | - | - | 110 | - |
Bioactive Compounds | |||||
Tannins (%) | 1.8–9.3 | - | - | 0.02 | 0.02 |
Caffeine (%) | 1.2 | - | 0.1 | 1.4 | 0.4 |
CGAs (%) | 10.7–12.6 | - | - | 15.8 | 11.5 |
Melanoidins (%) | 15 | - | - | 17–23 | 13–25 |
References | [11,12,13,14,15] | [14,16,17] | [14,18,19,20,21] | [11,22,23,24] | [11,25,26,27] |
By-Product | Nutrition Claims 1 | Health-Promoting Properties |
---|---|---|
Cascara | High in fiber 2 Low in fat 3 Source of potassium, calcium, magnesium and vitamin C 4 | Anti-diabetic [28,29] Antioxidant [13,30,31] Anti-inflammatory [32,33] |
Mucilage | Low in fat Source of potassium, calcium and magnesium | Antioxidant [34] |
Parchment | High in fiber Low in fat Source of calcium and magnesium | Hypoglycemic [19] Hypolipidemic [19] |
Silverskin | High in fiber Low in fat Source of proteins 5 Source of potassium, magnesium, calcium and vitamin C | Prebiotic [25,35] Anti-obesity [36] Anti-diabetic [37,38,39] Antioxidant [39,40,41,42,43] Anti-inflammatory [33,44] Skin health [44,45,46,47] |
Spent coffee grounds | High in fiber Source of proteins Source of potassium and magnesium | Prebiotic [25] Anti-diabetic [48] Antioxidant [1,25,49,50] Anti-inflammatory [51] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iriondo-DeHond, A.; Iriondo-DeHond, M.; del Castillo, M.D. Applications of Compounds from Coffee Processing By-Products. Biomolecules 2020, 10, 1219. https://doi.org/10.3390/biom10091219
Iriondo-DeHond A, Iriondo-DeHond M, del Castillo MD. Applications of Compounds from Coffee Processing By-Products. Biomolecules. 2020; 10(9):1219. https://doi.org/10.3390/biom10091219
Chicago/Turabian StyleIriondo-DeHond, Amaia, Maite Iriondo-DeHond, and María Dolores del Castillo. 2020. "Applications of Compounds from Coffee Processing By-Products" Biomolecules 10, no. 9: 1219. https://doi.org/10.3390/biom10091219
APA StyleIriondo-DeHond, A., Iriondo-DeHond, M., & del Castillo, M. D. (2020). Applications of Compounds from Coffee Processing By-Products. Biomolecules, 10(9), 1219. https://doi.org/10.3390/biom10091219