Confounders in Identification and Analysis of Inflammatory Biomarkers in Cardiovascular Diseases
Abstract
:1. Introduction
2. In vivo Preanalytical Confounders
2.1. Demographic Factors
2.1.1. Age and Sex
2.1.2. Obesity
2.2. Epidemiological
2.2.1. Arthritis
2.2.2. Diabetes
2.2.3. Autoimmune Disorders
2.2.4. Depression
2.2.5. Metabolic Syndrome
2.3. Substance Use-Related Factors
2.3.1. Caffeine Use
2.3.2. Alcohol
2.3.3. Smoking
2.4. Medication-Related Factors
2.4.1. Antidepressants
2.4.2. Nonsteroidal Anti-Inflammatory Drugs (NSAIDs) and Anticoagulants
2.4.3. Statins and Anti-Hypertensive Medications
3. In vitro Preanalytical Confounding Factors
3.1. Incubation, Storage, and Collection
3.2. Diurnal Variability
3.3. Centrifugation and Heat Denaturation
3.4. Epitope Masking and/or Assay Specific Variability
4. Analytical Confounding Factors
4.1. Within-Subject Correlation
4.2. Reproducibility Issues
4.3. Selection Bias
4.4. Data Analysis Concerns
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lopez, E.O.; Ballard, B.D.; Jan, A. Cardiovascular Disease. In StatPearls; 2020. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535419/ (accessed on 28 September 2021).
- Schnabel, R.B.; Yin, X.; Larson, M.; Yamamoto, J.F.; Fontes, J.D.; Kathiresan, S.; Rong, J.; Levy, D.; Keaney, J.; Wang, T.; et al. Multiple Inflammatory Biomarkers in Relation to Cardiovascular Events and Mortality in the Community. Arter. Thromb. Vasc. Biol. 2013, 33, 1728–1733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, X.-M.; Liu, Y.-J.; Huang, Y.; Yu, H.-J.; Yuan, S.; Tang, B.-W.; Wang, P.-G.; He, Q.-Q. Dietary total flavonoids intake and risk of mortality from all causes and cardiovascular disease in the general population: A systematic review and meta-analysis of cohort studies. Mol. Nutr. Food Res. 2017, 61, 1601003. [Google Scholar] [CrossRef] [PubMed]
- Reis, A.H. On the etiology of cardiovascular diseases: A new framework for understanding literature results. Med. Hypotheses 2016, 92, 94–99. [Google Scholar] [CrossRef] [PubMed]
- Paritala, P.K.; Yarlagadda, P.K.; Wang, J.; Gu, Y.; Li, Z. Numerical investigation of atherosclerotic plaque rupture using optical coherence tomography imaging and XFEM. Eng. Fract. Mech. 2018, 204, 531–541. [Google Scholar] [CrossRef]
- Babaniamansour, P.; Mohammadi, M.; Babaniamansour, S.; Aliniagerdroudbari, E. The Relation between Atherosclerosis Plaque Composition and Plaque Rupture. J. Med. Signals Sens. 2020, 10, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Mury, P.; Chirico, E.N.; Mura, M.; Millon, A.; Canet-Soulas, E.; Pialoux, V. Oxidative Stress and Inflammation, Key Targets of Atherosclerotic Plaque Progression and Vulnerability: Potential Impact of Physical Activity. Sports Med. 2018, 48, 2725–2741. [Google Scholar] [CrossRef] [PubMed]
- Geovanini, G.R.; Libby, P. Atherosclerosis and inflammation: Overview and updates. Clin. Sci. 2018, 132, 1243–1252. [Google Scholar] [CrossRef]
- Zhu, Y.; Xian, X.; Wang, Z.; Bi, Y.; Chen, Q.; Han, X.; Tang, D.; Chen, R. Research Progress on the Relationship between Atherosclerosis and Inflammation. Biomolecules 2018, 8, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirillo, A.; Norata, G.D.; Catapano, A.L. LOX-1, OxLDL, and Atherosclerosis. Mediat. Inflamm. 2013, 2013, 152786. [Google Scholar] [CrossRef] [Green Version]
- Tabas, I.; García-Cardeña, G.; Owens, G.K. Recent insights into the cellular biology of atherosclerosis. J. Cell Biol. 2015, 209, 13–22. [Google Scholar] [CrossRef]
- Chistiakov, D.A.; Melnichenko, A.A.; Grechko, A.; Myasoedova, V.; Orekhov, A.N. Potential of anti-inflammatory agents for treatment of atherosclerosis. Exp. Mol. Pathol. 2018, 104, 114–124. [Google Scholar] [CrossRef]
- Swirski, F.K.; Nahrendorf, M.; Libby, P. Mechanisms of Myeloid Cell Modulation of Atherosclerosis. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2013, 63, 2935–2959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Giudice, M.; Gangestad, S.W. Rethinking IL-6 and CRP: Why they are more than inflammatory biomarkers, and why it matters. Brain Behav. Immun. 2018, 70, 61–75. [Google Scholar] [CrossRef] [PubMed]
- Baghai, T.C.; Varallo-Bedarida, G.; Born, C.; Häfner, S.; Schule, C.; Eser, D.; Zill, P.; Manook, A.; Weigl, J.; Jooyandeh, S.; et al. Classical Risk Factors and Inflammatory Biomarkers: One of the Missing Biological Links between Cardiovascular Disease and Major Depressive Disorder. Int. J. Mol. Sci. 2018, 19, 1740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soeki, T.; Sata, M. Inflammatory Biomarkers and Atherosclerosis. Int. Heart J. 2016, 57, 134–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qamar, A.; Rader, D.J. Effect of interleukin 1β inhibition in cardiovascular disease. Curr. Opin. Lipidol. 2012, 23, 548–553. [Google Scholar] [CrossRef]
- Schroder, K.; Tschopp, J. The Inflammasomes. Cell 2010, 140, 821–832. [Google Scholar] [CrossRef] [Green Version]
- Jordan, S.C.; Choi, J.; Kim, I.; Wu, G.; Toyoda, M.; Shin, B.; Vo, A. Interleukin-6, a cytokine critical to mediation of inflammation, autoimmunity and allograft rejection: Therapeutic implications of IL-6 receptor blockade. Transplantation 2017, 101, 32–44. [Google Scholar] [CrossRef]
- Zelová, H.; Hošek, J. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflamm. Res. 2013, 62, 641–651. [Google Scholar] [CrossRef]
- Hlatky, M.; Greenland, P.; Arnett, D.K.; Ballantyne, C.M.; Criqui, M.H.; Elkind, M.S.; Go, A.S.; Harrell, F.E.; Hong, Y.; Howard, B.V.; et al. Criteria for evaluation of novel markers of cardiovascular risk: A scientific statement from the American Heart Association. Circulation 2009, 119, 2408–2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, M.; Brann, A.; Chang, K.-W.; Maisel, A.S. The Confounding Effects of Non-cardiac Pathologies on the Interpretation of Cardiac Biomarkers. Curr. Heart Fail. Rep. 2018, 15, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Skelly, A.C.; Dettori, J.R.; Brodt, E.D. Assessing bias: The importance of considering confounding. Evidence-Based Spine-Care J. 2012, 3, 9–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansson, O.; Mikulskis, A.; Fagan, A.M.; Teunissen, C.; Zetterberg, H.; Vanderstichele, H.; Molinuevo, J.L.; Shaw, L.M.; Vandijck, M.; Verbeek, M.M.; et al. The impact of preanalytical variables on measuring cerebrospinal fluid biomarkers for Alzheimer’s disease diagnosis: A review. Alzheimer’s Dement. 2018, 14, 1313–1333. [Google Scholar] [CrossRef] [Green Version]
- Revuelta-López, E.; Barallat, J.; Cserkóová, A.; Gálvez-Montón, C.; Jaffe, A.S.; Januzzi, J.L.; Bayes-Genis, A. Pre-analytical considerations in biomarker research: Focus on cardiovascular disease. Clin. Chem. Lab. Med. 2021, 59, 1747–1760. [Google Scholar] [CrossRef]
- Alberro, A.; Iribarren-Lopez, A.; Sáenz-Cuesta, M.; Matheu, A.; Vergara, I.; Otaegui, D. Inflammaging markers characteristic of advanced age show similar levels with frailty and dependency. Sci. Rep. 2021, 11, 4358. [Google Scholar] [CrossRef]
- Michaud, M.; Balardy, L.; Moulis, G.; Gaudin, C.; Peyrot, C.; Vellas, B.; Cesari, M.; Nourhashemi, F. Proinflammatory Cytokines, Aging, and Age-Related Diseases. J. Am. Med. Dir. Assoc. 2013, 14, 877–882. [Google Scholar] [CrossRef]
- Navarro, S.L.; Kantor, E.D.; Song, X.; Milne, G.; Lampe, J.W.; Kratz, M.; White, E. Factors Associated with Multiple Biomarkers of Systemic Inflammation. Cancer Epidemiol. Biomark. Prev. 2016, 25, 521–531. [Google Scholar] [CrossRef] [Green Version]
- Osman, R.; L’Allier, P.L.; Elgharib, N.; Tardif, J.-C. Critical appraisal of C-reactive protein throughout the spectrum of cardiovascular disease. Vasc. Heal. Risk Manag. 2006, 2, 221–237. [Google Scholar] [CrossRef] [Green Version]
- Ansar, W.; Ghosh, S. Inflammation and Inflammatory Diseases. In Biology of C Reactive Protein in Health and Disease; Springer: Berlin, Germany, 2016; pp. 67–107. [Google Scholar] [CrossRef]
- Wyczalkowska-Tomasik, A.; Czarkowska-Paczek, B.; Zielenkiewicz, M.; Paczek, L. Inflammatory Markers Change with Age, but do not Fall Beyond Reported Normal Ranges. Arch. Immunol. Ther. Exp. 2015, 64, 249–254. [Google Scholar] [CrossRef] [Green Version]
- Hirano, T. IL-6 in inflammation, autoimmunity and cancer. Int. Immunol. 2020, 33, 127–148. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef] [PubMed]
- Crimmins, E.; Vasunilashorn, S.; Kim, J.K.; Alley, D. Biomarkers related to aging in human populations. Adv. Clin. Chem. 2008, 46, 161–216. [Google Scholar] [CrossRef] [PubMed]
- Singh, T.; Newman, A.B. Inflammatory markers in population studies of aging. Ageing Res. Rev. 2011, 10, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Casimir, G.J.A.; Duchateau, J.; Hassan, J.; Carr, M.J. Gender Differences in Inflammatory Processes Could Explain Poorer Prognosis for Males. J. Clin. Microbiol. 2010, 49, 478–479. [Google Scholar] [CrossRef] [Green Version]
- Wener, M.H.; Daum, P.R.; McQuillan, G.M. The influence of age, sex, and race on the upper reference limit of serum C-reactive protein concentration. J. Rheumatol. 2000, 27, 2351–2359. [Google Scholar]
- Cartier, A.; Côté, M.; Lemieux, I.; Perusse, L.; Tremblay, A.; Bouchard, C.; Després, J.-P. Sex differences in inflammatory markers: What is the contribution of visceral adiposity? Am. J. Clin. Nutr. 2009, 89, 1307–1314. [Google Scholar] [CrossRef] [Green Version]
- Ferguson, J.F.; Patel, P.N.; Shah, R.Y.; Mulvey, C.K.; Gadi, R.; Nijjar, P.S.; Usman, H.M.; Mehta, N.N.; Shah, R.; Master, S.R.; et al. Race and gender variation in response to evoked inflammation. J. Transl. Med. 2013, 11, 63. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-Y.; Cripps, A.W.; West, N.P.; Cox, A.J.; Zhang, P. A correlation-based network for biomarker discovery in obesity with metabolic syndrome. BMC Bioinform. 2019, 20, 477. [Google Scholar] [CrossRef]
- Winer, S.; Chan, Y.; Paltser, G.; Truong, D.; Tsui, H.; Bahrami, J.; Dorfman, R.; Wang, Y.; Zielenski, J.; Mastronardi, F.; et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nat. Med. 2009, 15, 921–929. [Google Scholar] [CrossRef]
- Acevedo, M.; Varleta, P.; Kramer, V.; Valentino, G.; Quiroga, T.; Prieto, C.; Parada, J.; Adasme, M.; Briones, L.; Navarrete, C. Comparison of Lipoprotein-Associated Phospholipase A2 and High Sensitive C-Reactive Protein as Determinants of Metabolic Syndrome in Subjects without Coronary Heart Disease: In Search of the Best Predictor. Int. J. Endocrinol. 2015, 2015, 934681. [Google Scholar] [CrossRef] [Green Version]
- Tzotzas, T.; Evangelou, P.; Kiortsis, D.N. Obesity, weight loss and conditional cardiovascular risk factors. Obes. Rev. 2011, 12, e282–e289. [Google Scholar] [CrossRef] [PubMed]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Blüher, M. Adipose tissue dysfunction contributes to obesity related metabolic diseases. Best Pract. Res. Clin. Endocrinol. Metab. 2013, 27, 163–177. [Google Scholar] [CrossRef] [PubMed]
- Fuster, J.J.; Ouchi, N.; Gokce, N.; Walsh, K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ. Res. 2016, 118, 1786–1807. [Google Scholar] [CrossRef] [Green Version]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef]
- Endalifer, M.L.; Diress, G. Epidemiology, Predisposing Factors, Biomarkers, and Prevention Mechanism of Obesity: A Systematic Review. J. Obes. 2020, 2020, 6134362. [Google Scholar] [CrossRef] [PubMed]
- Urman, A.; Taklalsingh, N.; Sorrento, C.; McFarlane, I.M. Inflammation beyond the Joints: Rheumatoid Arthritis and Cardiovascular Disease. SciFed J. Cardiol. 2018, 2, 1000019. [Google Scholar]
- Jin, X.; Beguerie, J.R.; Zhang, W.; Blizzard, L.; Otahal, P.; Jones, G.; Ding, C. Circulating C reactive protein in osteoarthritis: A systematic review and meta-analysis. Ann. Rheum. Dis. 2013, 74, 703–710. [Google Scholar] [CrossRef]
- Tian, R.; Tian, M.; Wang, L.; Qian, H.; Zhang, S.; Pang, H.; Liu, Z.; Fang, L.; Shen, Z. C-reactive protein for predicting cardiovascular and all-cause mortality in type 2 diabetic patients: A meta-analysis. Cytokine 2019, 117, 59–64. [Google Scholar] [CrossRef]
- Lim, L.S.; Tai, E.S.; Mitchell, P.; Wang, J.J.; Tay, W.T.; Lamoureux, E.; Wong, T.Y. C-reactive Protein, Body Mass Index, and Diabetic Retinopathy. Investig. Opthalmology Vis. Sci. 2010, 51, 4458–4463. [Google Scholar] [CrossRef] [PubMed]
- Francisco, C.; Catai, A.; Moura-Tonello, S.; Lopes, S.; Benze, B.; Del Vale, A.; Leal, A. Cardiorespiratory fitness, pulmonary function and C-reactive protein levels in nonsmoking individuals with diabetes. Braz. J. Med. Biol. Res. 2014, 47, 426–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berbudi, A.; Rahmadika, N.; Tjahjadi, A.; Ruslami, R. Type 2 Diabetes and its Impact on the Immune System. Curr. Diabetes Rev. 2020, 16, 442–449. [Google Scholar] [CrossRef]
- Hueber, W.; Robinson, W.H. Proteomic biomarkers for autoimmune disease. Proteomics 2006, 6, 4100–4105. [Google Scholar] [CrossRef]
- Enocsson, H.; Gullstrand, B.; Eloranta, M.-L.; Wetterö, J.; Leonard, D.; Rönnblom, L.; Bengtsson, A.A.; Sjöwall, C. C-Reactive Protein Levels in Systemic Lupus Erythematosus Are Modulated by the Interferon Gene Signature and CRP Gene Polymorphism rs1205. Front. Immunol. 2021, 11, 3730. [Google Scholar] [CrossRef]
- Wium-Andersen, M.K.; Ørsted, D.D.; Nielsen, S.F.; Nordestgaard, B.G. Elevated C-Reactive Protein Levels, Psychological Distress, and Depression in 73 131 Individuals. JAMA Psychiatry 2013, 70, 176–184. [Google Scholar] [CrossRef] [Green Version]
- Chamberlain, S.R.; Cavanagh, J.; de Boer, P.; Mondelli, V.; Jones, D.N.; Drevets, W.C.; Cowen, P.J.; Harrison, N.A.; Pointon, L.; Pariante, C.M.; et al. Treatment-resistant depression and peripheral C-reactive protein. Br. J. Psychiatry 2018, 214, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Chiriboga, D.E.; Pagoto, S.L.; Rosal, M.C.; Li, W.; Merriam, P.A.; Hébert, J.R.; Whited, M.C.; Ockene, I.S. Association between Depression and C-Reactive Protein. Cardiol. Res. Pract. 2011, 2011, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Weiss, T.W.; Arnesen, H.; Seljeflot, I. Components of the Interleukin-6 transsignalling system are associated with the metabolic syndrome, endothelial dysfunction and arterial stiffness. Metabolism 2013, 62, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, S.M.; Mahdavi, M.; Riahi, R.; Kheirollahi, M.; Kelishadi, R. Meta-Analysis on the Association of C-Reactive Protein Polymorphisms with Metabolic Syndrome. Glob. Med. Genet. 2020, 7, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Hong, G.-B.; Gao, P.-C.; Chen, Y.-Y.; Xia, Y.; Ke, X.-S.; Shao, X.-F.; Xiong, C.-X.; Chen, H.-S.; Xiao, H.; Ning, J.; et al. High-Sensitivity C-Reactive Protein Leads to Increased Incident Metabolic Syndrome in Women but Not in Men: A Five-Year Follow-Up Study in a Chinese Population. Diabetes, Metab. Syndr. Obesity: Targets Ther. 2020, 13, 581–590. [Google Scholar] [CrossRef] [Green Version]
- Cozlea, D.; Farcas, D.; Nagy, A.; Keresztesi, A.; Tifrea, R.; Cozlea, L.; Carașca, E. The Impact of C Reactive Protein on Global Cardiovascular Risk on Patients with Coronary Artery Disease. Curr. Heal. Sci. J. 2013, 39, 225–231. [Google Scholar]
- Sarbijani, H.M.; Khoshnia, M.; Marjani, A. The association between Metabolic Syndrome and serum levels of lipid peroxidation and interleukin-6 in Gorgan. Diabetes Metab. Syndr. Clin. Res. Rev. 2016, 10, S86–S89. [Google Scholar] [CrossRef]
- Bao, P.; Liu, G.; Wei, Y. Association between IL-6 and related risk factors of metabolic syndrome and cardiovascular disease in young rats. Int. J. Clin. Exp. Med. 2015, 8, 13491. [Google Scholar] [PubMed]
- Costello, E.J.; Copeland, W.E.; Shanahan, L.; Worthman, C.M.; Angold, A. C-reactive protein and substance use disorders in adolescence and early adulthood: A prospective analysis. Drug Alcohol Depend. 2013, 133, 712–717. [Google Scholar] [CrossRef] [Green Version]
- Corrêa, T.; Rogero, M.M.; Mioto, B.M.; Tarasoutchi, D.; Tuda, V.L.; César, L.A.; Torres, E.A. Paper-filtered coffee increases cholesterol and inflammation biomarkers independent of roasting degree: A clinical trial. Nutrition 2013, 29, 977–981. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Garcia, E.; van Dam, R.; Qi, L.; Hu, F.B. Coffee consumption and markers of inflammation and endothelial dysfunction in healthy and diabetic women. Am. J. Clin. Nutr. 2006, 84, 888–893. [Google Scholar] [CrossRef] [Green Version]
- Tauler, P.; Martínez, S.; Moreno, C.; Monjo, M.; Martínez, P.; Aguiló, A. Effects of Caffeine on the Inflammatory Response Induced by a 15-km Run Competition. Med. Sci. Sports Exerc. 2013, 45, 1269–1276. [Google Scholar] [CrossRef]
- Würtz, P.; Cook, S.; Wang, Q.; Tiainen, M.; Tynkkynen, T.; Kangas, A.; Soininen, P.; Laitinen, J.; Viikari, J.; Kähönen, M.; et al. Metabolic profiling of alcohol consumption in 9778 young adults. Int. J. Epidemiology 2016, 45, 1493–1506. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.K.; Pradhan, A.D.; Cook, N.R.; Ridker, P.M.; Everett, B.M. Impact of Modifiable Risk Factors on B-type Natriuretic Peptide and Cardiac Troponin T Concentrations. Am. J. Cardiol. 2015, 117, 376–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iakunchykova, O.; Averina, M.; Kudryavtsev, A.; Wilsgaard, T.; Soloviev, A.; Schirmer, H.; Cook, S.; Leon, D.A. Evidence for a Direct Harmful Effect of Alcohol on Myocardial Health: A Large Cross-Sectional Study of Consumption Patterns and Cardiovascular Disease Risk Biomarkers From Northwest Russia, 2015 to 2017. J. Am. Heart Assoc. 2020, 9, e014491. [Google Scholar] [CrossRef] [PubMed]
- Barmano, N.; Charitakis, E.; Kronstrand, R.; Walfridsson, U.; Karlsson, J.-E.; Walfridsson, H.; Nystrom, F.H. The association between alcohol consumption, cardiac biomarkers, left atrial size and re-ablation in patients with atrial fibrillation referred for catheter ablation. PLoS ONE 2019, 14, e0215121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glick, D.; Defilippi, C.R.; Christenson, R.; Gottdiener, J.S.; Seliger, S.L. Long-Term Trajectory of Two Unique Cardiac Biomarkers and Subsequent Left Ventricular Structural Pathology and Risk of Incident Heart Failure in Community-Dwelling Older Adults at Low Baseline Risk. JACC: Heart Fail. 2013, 1, 353–360. [Google Scholar] [CrossRef]
- Bazzano, L.A.; He, J.; Muntner, P.; Vupputuri, S.; Whelton, P.K. Relationship between Cigarette Smoking and Novel Risk Factors for Cardiovascular Disease in the United States. Ann. Intern. Med. 2003, 138, 891–897. [Google Scholar] [CrossRef]
- Budin, C.E.; Marginean, C.; Bordea, I.R.; Enache, L.S.; Enache, E.L.; Grigorescu, B.L.; Biro, L.; Rusu, E.; Nemes, R.M.; Todea, D.A. The Influence of Smoking on Nicotine Exposure Biomarkers and Inflammatory Profile Among Foster Care Teenagers, Romania. Rev. de Chim. 2019, 69, 3659–3663. [Google Scholar] [CrossRef]
- Smoller, J.W.; Allison, M.; Cochrane, B.B.; Curb, J.D.; Perlis, R.H.; Robinson, J.G.; Rosal, M.C.; Wenger, N.K.; Wassertheil-Smoller, S. Antidepressant use and risk of incident cardiovascular morbidity and mortality among postmenopausal women in the Women’s Health Initiative study. Arch. Intern. Med. 2009, 169, 2128–2139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamer, M.; Batty, G.D.; Marmot, M.G.; Singh-Manoux, A.; Kivimäki, M. Anti-depressant medication use and C-reactive protein: Results from two population-based studies. Brain Behav. Immun. 2011, 25, 168–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crofford, L.J. Use of NSAIDs in treating patients with arthritis. Arthritis Res. Ther. 2013, 15, S2. [Google Scholar] [CrossRef] [Green Version]
- Varga, Z.; Sabzwari, S.R.A.; Vargova, V. Cardiovascular Risk of Nonsteroidal Anti-Inflammatory Drugs: An Under-Recognized Public Health Issue. Cureus 2017, 9, e1144. [Google Scholar] [CrossRef] [Green Version]
- Tarp, S.; Bartels, E.M.; Bliddal, H.; Furst, D.E.; Boers, M.; Danneskiold-Samsøe, B.; Rasmussen, M.; Christensen, R. Effect of nonsteroidal antiinflammatory drugs on the C-reactive protein level in rheumatoid arthritis: A meta-analysis of randomized controlled trials. Arthritis Rheum. 2012, 64, 3511–3521. [Google Scholar] [CrossRef]
- Beck, H.C.; Jensen, L.O.; Gils, C.; Ilondo, A.M.M.; Frydland, M.; Hassager, C.; Møller-Helgestad, O.K.; Møller, J.E.; Rasmussen, L.M. Proteomic Discovery and Validation of the Confounding Effect of Heparin Administration on the Analysis of Candidate Cardiovascular Biomarkers. Clin. Chem. 2018, 64, 1474–1484. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Ding, M.; Liang, N.; Li, Z.; Li, D.; Guan, L.; Liu, H. Associations of ACE I/D polymorphism with the levels of ACE, kallikrein, angiotensin II and interleukin-6 in STEMI patients. Sci. Rep. 2019, 9, 19719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, X.; Zhou, R.; Li, Q. Effects of captopril and valsartan on ventricular remodeling and inflammatory cytokines after interventional therapy for AMI. Exp. Ther. Med. 2018, 16, 3579–3583. [Google Scholar] [CrossRef] [PubMed]
- Gamboa, J.; Pretorius, M.; Todd-Tzanetos, D.R.; Luther, J.M.; Yu, C.; Ikizler, T.A.; Brown, N.J. Comparative Effects of Angiotensin-Converting Enzyme Inhibition and Angiotensin-Receptor Blockade on Inflammation during Hemodialysis. J. Am. Soc. Nephrol. 2011, 23, 334–342. [Google Scholar] [CrossRef] [Green Version]
- Lippi, G.; Chance, J.J.; Church, S.; Dazzi, P.; Fontana, R.; Giavarina, D.; Grankvist, K.; Huisman, W.; Kouri, T.T.; Palicka, V.; et al. Preanalytical quality improvement: From dream to reality. Clin. Chem. Lab. Med. 2011, 49, 1113–1126. [Google Scholar] [CrossRef] [PubMed]
- Abraham, R.A.; Agrawal, P.K.; Acharya, R.; Sarna, A.; Ramesh, S.; Johnston, R.; De Wagt, A.; Khan, N.; Porwal, A.; Kurundkar, S.B.; et al. Effect of temperature and time delay in centrifugation on stability of select biomarkers of nutrition and non-communicable diseases in blood samples. Biochem. Medica 2019, 29, 020708. [Google Scholar] [CrossRef]
- Cooke, J.P.; Wilson, A.M. Biomarkers of Peripheral Arterial Disease. J. Am. Coll. Cardiol. 2010, 55, 2017–2023. [Google Scholar] [CrossRef] [Green Version]
- Keustermans, G.C.; Hoeks, S.B.; Meerding, J.M.; Prakken, B.J.; de Jager, W. Cytokine assays: An assessment of the preparation and treatment of blood and tissue samples. Methods 2013, 61, 10–17. [Google Scholar] [CrossRef]
- Zhou, X.; Fragala, M.S.; McElhaney, J.E.; Kuchel, G.A. Conceptual and methodological issues relevant to cytokine and inflammatory marker measurements in clinical research. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 541–547. [Google Scholar] [CrossRef] [Green Version]
- Levi, M.; Van Der Poll, T. Inflammation and coagulation. Crit. Care Med. 2010, 38, S26–S34. [Google Scholar] [CrossRef]
- Cemin, R.; Daves, M. Pre-analytic variability in cardiovascular biomarker testing. J. Thorac. Dis. 2015, 7, E395–E401. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, A.D.; González, P.A. Diurnal Variations in Biomarkers Used in Cardiovascular Medicine: Clinical Significance. Rev. Esp. Cardiol. 2009, 62, 1340–1341. [Google Scholar] [CrossRef]
- Rudnicka, A.R.; Rumley, A.; Lowe, G.D.; Strachan, D.P. Diurnal, Seasonal, and Blood-Processing Patterns in Levels of Circulating Fibrinogen, Fibrin D-Dimer, C-Reactive Protein, Tissue Plasminogen Activator, and von Willebrand Factor in a 45-Year-Old Population. Circulation 2007, 115, 996–1003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez-Rodriguez, A.; Tome, M.C.-P.; Abreu-Gonzalez, P. Interrelation between arterial inflammation in acute coronary syndrome and circadian variation. World J. Cardiol. 2011, 3, 57–58. [Google Scholar] [CrossRef]
- Tirumalai, R.S.; Chan, K.C.; Prieto, D.A.; Issaq, H.J.; Conrads, T.P.; Veenstra, T.D. Characterization of the Low Molecular Weight Human Serum Proteome. Mol. Cell. Proteom. 2003, 2, 1096–1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panteghini, M. Assay-related issues in the measurement of cardiac troponins. Clin. Chim. Acta 2009, 402, 88–93. [Google Scholar] [CrossRef]
- Clerico, A.; Passino, C.; Franzini, M.; Emdin, M. Cardiac biomarker testing in the clinical laboratory: Where do we stand? General overview of the methodology with special emphasis on natriuretic peptides. Clin. Chim. Acta 2015, 443, 17–24. [Google Scholar] [CrossRef]
- Engelberger, R.P.; Limacher, A.; Kucher, N.; Baumann, F.; Silbernagel, G.; Benghozi, R.; Do, D.-D.; Willenberg, T.; Baumgartner, I. Biological variation of established and novel biomarkers for atherosclerosis: Results from a prospective, parallel-group cohort study. Clin. Chim. Acta 2015, 447, 16–22. [Google Scholar] [CrossRef]
- Hijazi, Z.; Lindahl, B.; Oldgren, J.; Andersson, U.; Lindbäck, J.; Granger, C.B.; Alexander, J.H.; Gersh, B.J.; Hanna, M.; Harjola, V.; et al. Repeated Measurements of Cardiac Biomarkers in Atrial Fibrillation and Validation of the ABC Stroke Score Over Time. J. Am. Heart Assoc. 2017, 6, e004851. [Google Scholar] [CrossRef] [Green Version]
- Abramson, J.L.; Lewis, C.; Murrah, N.V.; Anderson, G.T.; Vaccarino, V. Relation of C-Reactive Protein and Tumor Necrosis Factor-Alpha to Ambulatory Blood Pressure Variability in Healthy Adults. Am. J. Cardiol. 2006, 98, 649–652. [Google Scholar] [CrossRef] [Green Version]
- Simundic, A.-M.; Kackov, S.; Miler, M.; Fraser, C.G.; Petersen, P.H. Terms and Symbols Used in Studies on Biological Variation: The Need for Harmonization. Clin. Chem. 2015, 61, 438–439. [Google Scholar] [CrossRef]
- Khuseyinova, N.; Greven, S.; Rückerl, R.; Trischler, G.; Loewel, H.; Peters, A.; Koenig, W. Variability of Serial Lipoprotein-Associated Phospholipase A2 Measurements in Post–Myocardial Infarction Patients: Results from the AIRGENE Study Center Augsburg. Clin. Chem. 2008, 54, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Pieszko, K.; Hiczkiewicz, J.; Budzianowski, P.; Rzeźniczak, J.; Budzianowski, J.; Błaszczyński, J.; Słowiński, R.; Burchardt, P. Machine-learned models using hematological inflammation markers in the prediction of short-term acute coronary syndrome outcomes. J. Transl. Med. 2018, 16, 334. [Google Scholar] [CrossRef]
- Nunan, D.; Heneghan, C.; Spencer, E.A. Catalogue of bias: Allocation bias. BMJ Evid.-Based Med. 2018, 23, 20–21. [Google Scholar] [CrossRef] [PubMed]
- Chan, A.-W.; Altman, D.G. Identifying outcome reporting bias in randomised trials on PubMed: Review of publications and survey of authors. BMJ 2005, 330, 753. [Google Scholar] [CrossRef] [Green Version]
- Tzoulaki, I.; Siontis, K.C.; Evangelou, E.; Ioannidis, J.P.A. Bias in Associations of Emerging Biomarkers With Cardiovascular Disease. JAMA Intern. Med. 2013, 173, 664–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ioannidis, J.P.A. Comparison of Effect Sizes Associated With Biomarkers Reported in Highly Cited Individual Articles and in Subsequent Meta-analyses. JAMA 2011, 305, 2200–2210. [Google Scholar] [CrossRef]
- Omland, T.; Prebensen, C.; Røysland, R.; Søvik, S.; Sørensen, V.; Røsjø, H.; Svensson, M.; Berdal, J.E.; Myhre, P.L. Established Cardiovascular Biomarkers Provide Limited Prognostic Information in Unselected Patients Hospitalized With COVID-19. Circulation 2020, 142, 1878–1880. [Google Scholar] [CrossRef]
- Horn, S.R.; Long, M.M.; Nelson, B.W.; Allen, N.; Fisher, P.A.; Byrne, M.L. Replication and reproducibility issues in the relationship between C-reactive protein and depression: A systematic review and focused meta-analysis. Brain Behav. Immun. 2018, 73, 85–114. [Google Scholar] [CrossRef]
Confounders | Summary | Reference |
---|---|---|
Demographic factors | ||
Age and Sex | Aging increased serum levels of IL-6, CRP, and TNF-α; women have CRP levels higher than men | [27,28,32,35,36], [38] |
Obesity | Obese people had significantly higher levels of CRP, TNF-α, and IL-6 than non-obese people. | [43,44] |
Epidemiological factors | ||
Arthritis | In RA conditions, there is an increase in IL-6, TNF-α, and CRP levels in OA | [51] |
Diabetes | In diabetes, there is an increase in IL-6 and CRP levels | [52,53] |
Autoimmune Disorders | In autoimmune disorders, there is an increase in IL-6 and CRP levels | [57] |
Depression | In depression, there is an increase in both hs-CRP and CRP levels | [59,60] |
Metabolic Syndrome | In autoimmune disorders, there is an increase in IL-6 and CRP levels | |
Substance use-related factors | ||
Caffeine use | Caffeine consumption resulted in significantly higher concentrations of biomarkers IL-6 and IL-10 in plasma levels | [70] |
Alcohol | Alcohol consumption resulted in increased in hs-CRP | [72,73] |
Smoking | Alcohol consumption resulted in increased in CRP and IL-6 | [75,76] |
Medication-related factors | ||
Antidepressants | Antidepressants are associated with a higher risk of elevated CRP in users of tricyclic antidepressant (TCA) medication | [78] |
NSAIDS | Cyclooxygenase 2-selective NSAID lumiracoxib significantly increases the CRP level influencing cardiovascular complications | [81] |
Statins and anti-hypertensive medications | Statin therapy lowered troponin levels; captopril and valsartan lowered IL-6, hs-CRP, and TNF-α | [82,84] |
Confounders | Summary | Reference |
---|---|---|
Incubation, Storage, and Collection | Delay up to 6 h in specimen processing and storage temperature did not affect levels of CRP, but TNF-α decreased 50% | [20,89] |
Diurnal Variability | No research study available demonstrating the effect of diurnal variation in natriuretic peptides | [93] |
Centrifugation and Heat Denaturation | Stability of biomarkers should be ensured, such as temperature and time taken for centrifugation | [88] |
Epitope Masking and/or Assay Specific Variability | Assays having acceptable analytical imprecision and high sensitivity with a low detection limit (LoD) of about 1 pg/tube | [99] |
Confounders | Summary | Reference |
---|---|---|
Within-Subject Correlation | CRP has positive associations with nighttime and 24-hour systolic BP variability | [102] |
Reproducibility Issues | Serial measurements also occur due to variation in analytical methods and day-to-day inter- and intra-subject variations | [103] |
Selection Bias | Research studies have shown the significant risk of selection bias in CRP measurement | [110] |
Data Analysis Concerns | Transparent data management techniques are required to avoid non-detects and high-value outlier replication, and reproducibility issues | [111] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ain, Q.U.; Sarfraz, M.; Prasesti, G.K.; Dewi, T.I.; Kurniati, N.F. Confounders in Identification and Analysis of Inflammatory Biomarkers in Cardiovascular Diseases. Biomolecules 2021, 11, 1464. https://doi.org/10.3390/biom11101464
Ain QU, Sarfraz M, Prasesti GK, Dewi TI, Kurniati NF. Confounders in Identification and Analysis of Inflammatory Biomarkers in Cardiovascular Diseases. Biomolecules. 2021; 11(10):1464. https://doi.org/10.3390/biom11101464
Chicago/Turabian StyleAin, Qurrat Ul, Mehak Sarfraz, Gayuk Kalih Prasesti, Triwedya Indra Dewi, and Neng Fisheri Kurniati. 2021. "Confounders in Identification and Analysis of Inflammatory Biomarkers in Cardiovascular Diseases" Biomolecules 11, no. 10: 1464. https://doi.org/10.3390/biom11101464
APA StyleAin, Q. U., Sarfraz, M., Prasesti, G. K., Dewi, T. I., & Kurniati, N. F. (2021). Confounders in Identification and Analysis of Inflammatory Biomarkers in Cardiovascular Diseases. Biomolecules, 11(10), 1464. https://doi.org/10.3390/biom11101464