A Scoping Review of the Role of Metalloproteinases in the Pathogenesis of Autoimmune Pemphigus and Pemphigoid
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Data Selection, Collection and Synthesis
3. Results
3.1. Overview of the Search Process
3.2. Summary of Findings
Ref. | First Author, Year | Type | Disease | Target |
---|---|---|---|---|
[18] | Woodward et al., 2020 | Human | OCP | MMP9 |
[19] | Le Jan et al., 2019 | In vitro | BP | MMP9 |
[20] | Riani et al., 2019 | In vitro, human | BP | MMP9 |
[21] | Ivars et al., 2020 | In vivo | PV | ADAM10 |
[22] | de Graauw et al., 2018 | In vitro | BP | MMP2/9 |
[23] | Shen et al., 2018 | Human | BP | ADAM10 |
[24] | Riani et al., 2017 | In vitro | BP | MMP9 |
[25] | Fujimura et al., 2017 | Human | PV, BP | MMP12 |
[26] | Zebrowska et al., 2014 | Human | BP, DH | MMP9 |
[27] | Massie et al., 2015 | In vitro | OCP | MMP2/9 |
[28] | Le Jan et al., 2014 | In vitro, human | BP | MMP9 |
[29] | Arafat et al., 2014 | Human | BP | MMP8, MMP9, TIMP1 |
[30] | Zebrowska et al., 2012 | Human | BP, DH | ADAM17 |
[31] | Oswald et al., 2012 | In vitro | BP | MMP9 |
[32] | Lin et al., 2011 | In vitro, in vivo | BP | MMP9 |
[33] | Chan et al., 2011 | Human | OCP | MMP9 |
[34] | Saw et al., 2011 | In vitro | OCP | MMP3/8/13 |
[35] | Zebrowska et al., 2009 | Human | BP, DH | ADAM8/15/17 |
[36] | Cirillo et al., 2007 | In vitro, in vivo | PV | TIMP3, ADAM5, MMP9 |
[37] | Niimi et al., 2006 | Human | BP | MMP2/9/13 |
[38] | Liu et al., 2005 | In vitro, in vivo | BP | MMP3/9 |
[39] | Shimanovich et al., 2004 | In vitro | BP, EBA | MMP9 |
[40] | Verraes et al., 2001 | In vitro, human | BP | MMP2/9, TIMP1 |
[41] | Liu et al., 2000 | In vitro, in vivo | BP | MMP9 |
[42] | Liu et al., 1998 | In vivo | BP | MMP9 |
[43] | Saarialho-Kere et al., 1995 | Human | EB, PV, BP | MMP1 |
[44] | Ståhle-Bäckdahl et al., 1994 | In vitro, human | BP | MMP9 |
[45] | Oikarinen et al., 1993 | Human | BP | MMP2/9 |
[46] | Oikarinen et al., 1983 | Human | BP, DH, PV |
4. Discussion
4.1. MMP-9 and Pemphigoid
4.2. Metalloproteinases in Pemphigus
4.3. Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lever, W.F. Pemphigus. Medicine 1953, 32, 1–123. [Google Scholar]
- Schmidt, E.; Kasperkiewicz, M.; Joly, P. Pemphigus. Lancet 2019, 394, 882–894. [Google Scholar] [CrossRef]
- Bystryn, J.C.; Rudolph, J.L. Pemphigus. Lancet 2005, 366, 61–73. [Google Scholar] [CrossRef]
- Schmidt, E.; Zillikens, D. Pemphigoid diseases. Lancet 2013, 381, 320–332. [Google Scholar] [CrossRef]
- Genovese, G.; Di Zenzo, G.; Cozzani, E.; Berti, E.; Cugno, M.; Marzano, A.V. New Insights Into the Pathogenesis of Bullous Pemphigoid: 2019 Update. Front Immunol. 2019, 10, 1506. [Google Scholar] [CrossRef]
- Walter, E.; Vielmuth, F.; Rotkopf, L.; Sárdy, M.; Horváth, O.N.; Goebeler, M.; Schmidt, E.; Eming, R.; Hertl, M.; Spindler, V.; et al. Different signaling patterns contribute to loss of keratinocyte cohesion dependent on autoantibody profile in pemphigus. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
- Chernyavsky, A.; Patel, K.G.; Grando, S.A. Mechanisms of synergy of autoantibodies to M3 muscarinic acetylcholine receptor and secretory pathway Ca2+/Mn2+-ATPase isoform 1 in patients with non-desmoglein pemphigus vulgaris. Int. Immunopharmacol. 2020, 80, 106149. [Google Scholar] [CrossRef]
- Oktem, A.; Hayran, Y.; Uysal, P.İ.; Atılan, A.U.; Yalçın, B. Evaluation of the Importance of Immunological Profile for Pemphigus Vulgaris in the Light of Necessity to Modify Compensation Theory. Acta Dermatovenerol. Croat. 2018, 26, 100–104. [Google Scholar]
- Gualtieri, B.; Marzano, A.V.; Grando, S. Atypical pemphigus: Autoimmunity against desmocollins and other non-desmoglein autoantigens. Ital. J. Dermatol. Venereol. 2020, 156, 134–141. [Google Scholar]
- Kaur, B.; Kerbrat, J.; Kho, J.; Kaler, M.; Kanatsios, S.; Cirillo, N. Mechanism-based therapeutic targets of pemphigus vulgaris: A scoping review of pathogenic intracellular pathways. Exp. Dermatol. 2021, in press. [Google Scholar] [CrossRef]
- Gornowicz-Porowska, J.; Bowszyc-Dmochowska, M.; Dmochowski, M. Autoimmunity-driven enzymatic remodeling of the dermal–epidermal junction in bullous pemphigoid and dermatitis herpetiformis. Autoimmunity 2011, 45, 71–80. [Google Scholar] [CrossRef]
- Cirillo, N.; Dell’Ermo, A.; Gombos, F.; Lanza, A. The specific proteolysis hypothesis of pemphigus: Does the song remain the same? Med. Hypotheses 2008, 70, 333–337. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J. [13] Evolutionary families of metallopeptidases. Meth. Enzymol. 1995, 248, 183–228. [Google Scholar] [CrossRef]
- Amar, S.; Minond, D.; Fields, G.B. Clinical Implications of Compounds Designed to Inhibit ECM-Modifying Metalloproteinases. Proteomics 2017, 17, 1600389. [Google Scholar] [CrossRef] [PubMed]
- Krishnaswamy, V.R.; Mintz, D.; Sagi, I. Matrix metalloproteinases: The sculptors of chronic cutaneous wounds. Biochim. Biophys. Acta (BBA) Bioenerg. 2017, 1864, 2220–2227. [Google Scholar] [CrossRef] [PubMed]
- Riihilä, P.; Nissinen, L.; Kähäri, V. Matrix metalloproteinases in keratinocyte carcinomas. Exp. Dermatol. 2020, 30, 50–61. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Woodward, A.M.; Di Zazzo, A.; Bonini, S.; Argüeso, P. Endoplasmic reticulum stress promotes inflammation-mediated proteolytic activity at the ocular surface. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le Jan, S.; Muller, C.; Plée, J.; Durlach, A.; Bernard, P.; Antonicelli, F. IL-23/IL-17 Axis Activates IL-1β-Associated Inflammasome in Macrophages and Generates an Auto-Inflammatory Response in a Subgroup of Patients With Bullous Pemphigoid. Front Immunol. 2019, 10, 1972. [Google Scholar] [CrossRef] [Green Version]
- Riani, M.; Muller, C.; Bour, C.; Bernard, P.; Antonicelli, F.; Le Jan, S. Blister Fluid Induces MMP-9-Associated M2-Type Macrophages in Bullous Pemphigoid. Front. Immunol. 2019, 10, 1858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivars, M.; España, A.; Alzuguren, P.; Pelacho, B.; Lasarte, J.; López-Zabalza, M. The involvement of ADAM 10 in acantholysis in mucocutaneous pemphigus vulgaris depends on the autoantibody profile of each patient. Br. J. Dermatol. 2019, 182, 1194–1204. [Google Scholar] [CrossRef]
- De Graauw, E.; Sitaru, C.; Horn, M.P.; Borradori, L.; Yousefi, S.; Simon, D.; Simon, H.U. Monocytes enhance neutrophil-induced blister formation in an ex vivo model of bullous pemphigoid. Allergy 2018, 73, 1119–1130. [Google Scholar] [CrossRef]
- Shen, S.; Ke, Y.; Dang, E.; Fang, H.; Chang, Y.; Zhang, J.; Zhu, Z.; Shao, S.; Qiao, P.; Zhang, T.; et al. Semaphorin 4D from CD15+ Granulocytes via ADAM10-Induced Cleavage Contributes to Antibody Production in Bullous Pemphigoid. J. Investig. Dermatol. 2018, 138, 588–597. [Google Scholar] [CrossRef] [Green Version]
- Riani, M.; Le Jan, S.; Plée, J.; Durlach, A.; Le Naour, R.; Haegeman, G.; Bernard, P.; Antonicelli, F. Bullous pemphigoid outcome is associated with CXCL10-induced matrix metalloproteinase 9 secretion from monocytes and neutrophils but not lymphocytes. J. Allergy Clin. Immunol. 2017, 139, 863–872. [Google Scholar] [CrossRef] [Green Version]
- Fujimura, T.; Kakizaki, A.; Furudate, S.; Aiba, S. A possible interaction between periostin and CD163(+) skin-resident macro-phages in pemphigus vulgaris and bullous pemphigoid. Exp. Dermatol. 2017, 26, 1193–1198. [Google Scholar] [CrossRef]
- Żebrowska, A.; Wagrowska-Danilewicz, M.; Danilewicz, M.; Stasikowska-Kanicka, O.; Kulczycka-Siennicka, L.; Woźniacka, A.; Waszczykowska, E. Mediators of Mast Cells in Bullous Pemphigoid and Dermatitis Herpetiformis. Mediat. Inflamm. 2014, 2014, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Massie, I.; Dale, S.B.; Daniels, J.T. Limbal Fibroblasts Maintain Normal Phenotype in 3D RAFT Tissue Equivalents Suggesting Po-tential for Safe Clinical Use in Treatment of Ocular Surface Failure. Tissue Eng. Part C Methods 2015, 21, 576–584. [Google Scholar] [CrossRef] [Green Version]
- Le Jan, S.; Plée, J.; Vallerand, D.; Dupont, A.; Delanez, E.; Durlach, A.; Jackson, P.L.; Blalock, J.E.; Bernard, P.; Antonicelli, F. Innate immune cell-produced IL-17 sustains inflammation in bullous pemphigoid. J. Investig. Dermatol. 2014, 134, 2908–2917. [Google Scholar] [CrossRef] [Green Version]
- Arafat, S.N.; Suelves, A.M.; Spurr-Michaud, S.; Chodosh, J.; Foster, C.S.; Dohlman, C.H.; Gipson, I.K. Neutrophil Collagenase, Gelatinase, and Myeloperoxidase in Tears of Patients with Stevens-Johnson Syndrome and Ocular Cicatricial Pemphigoid. Ophthalmology 2013, 121, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Zebrowska, A.; Wagrowska-Danilewicz, M.; Danilewicz, M.; Sokolowska, M.; Stasikowska-Kawecka, O.; Erkiert-Polguj, A.; Cynkier, A.; Pawliczak, R.; Sysa-Jedrzejowska, A.; Waszczykowska, E. Does Adam17 cause the destruction of anchoring fibers via shedding tumor necrosis factor α in bullous pemphigoid and dermatitis herpetiformis? J. Cutan. Med. Surg. 2012, 16, 149–150. [Google Scholar] [CrossRef]
- Oswald, E.; Sesarman, A.; Franzke, C.W.; Wölfle, U.; Bruckner-Tuderman, L.; Jakob, T.; Martin, S.F.; Sitaru, C. The flavonoid luteolin inhibits Fcγ-dependent respiratory burst in granulocytes, but not skin blistering in a new model of pemphigoid in adult mice. PLoS ONE 2012, 7, e31066. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Bankaitis, E.; Heimbach, L.; Li, N.; Abrink, M.; Pejler, G.; An, L.; Diaz, L.; Werb, Z.; Liu, Z. Dual Targets for Mouse Mast Cell Protease-4 in Mediating Tissue Damage in Experimental Bullous Pemphigoid. J. Biol. Chem. 2011, 286, 37358–37367. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.F.; Sack, R.; Quigley, D.A.; Sathe, S.; Vijmasi, T.; Li, S.; Holsclaw, D.; Strauss, E.C.; McNamara, N.A. Membrane Array Analysis of Tear Proteins in Ocular Cicatricial Pemphigoid. Optom. Vis. Sci. 2011, 88, 1005–1009. [Google Scholar] [CrossRef] [Green Version]
- Saw, V.P.; Schmidt, E.; Offiah, I.; Galatowicz, G.; Zillikens, D.; Dart, J.K.; Calder, V.L.; Daniels, J.T. Profibrotic Phenotype of Conjunctival Fibroblasts from Mucous Membrane Pemphigoid. Am. J. Pathol. 2011, 178, 187–197. [Google Scholar] [CrossRef]
- Żebrowska, A.; Wagrowska-Danilewicz, M.; Danilewicz, M.; Wodz, K.; Sokolowska, M.; Erkiert-Polguj, A.; Sysa-Jedrzejowska, A.; Waszczykowska, E.; Pawliczak, R. Expression of selected ADAMs in bullous pemphigoid and dermatitis herpetiformis. J. Dermatol. Sci. 2009, 56, 58–61. [Google Scholar] [CrossRef]
- Cirillo, N.; Lanza, M.; Rossiello, L.; Gombos, F.; Lanza, A. Defining the involvement of proteinases in pemphigus vulgaris: Evi-dence of matrix metalloproteinase-9 overexpression in experimental models of disease. J. Cell. Physiol. 2007, 212, 36–41. [Google Scholar] [CrossRef]
- Niimi, Y.; Pawankar, R.; Kawana, S. Increased Expression of Matrix Metalloproteinase-2, Matrix Metalloproteinase-9 and Matrix Metalloproteinase-13 in Lesional Skin of Bullous Pemphigoid. Int. Arch. Allergy Immunol. 2006, 139, 104–113. [Google Scholar] [CrossRef]
- Liu, Z.; Li, N.; Diaz, L.A.; Shipley, M.; Senior, R.M.; Werb, Z. Synergy between a plasminogen cascade and MMP-9 in autoimmune disease. J. Clin. Investig. 2005, 115, 879–887. [Google Scholar] [CrossRef] [Green Version]
- Shimanovich, I.; Mihai, S.; Oostingh, G.J.; Ilenchuk, T.T.; Bröcker, E.-B.; Opdenakker, G.; Zillikens, D.; Sitaru, C. Granulocyte-derived elastase and gelatinase B are required for dermal–epidermal separation induced by autoantibodies from patients with epidermolysis bullosa acquisita and bullous pemphigoid. J. Pathol. 2004, 204, 519–527. [Google Scholar] [CrossRef]
- Verraes, S.; Hornebeck, W.; Bernard, P.; Polette, M.; Borradori, L. Respective contribution of neutrophil elastase and matrix met-alloproteinase 9 in the degradation of BP180 (type XVII collagen) in human bullous pemphigoid. J. Investig. Dermatol. 2001, 117, 1091–1096. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, X.; Shapiro, S.D.; Shipley, J.; Twining, S.S.; Diaz, L.A.; Senior, R.M.; Werb, Z. The Serpin α1-Proteinase Inhibitor Is a Critical Substrate for Gelatinase B/MMP-9 In Vivo. Cell 2000, 102, 647–655. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Shipley, J.M.; Vu, T.H.; Zhou, X.; Diaz, L.A.; Werb, Z.; Senior, R.M. Gelatinase B–deficient Mice Are Resistant to Experimental Bullous Pemphigoid. J. Exp. Med. 1998, 188, 475–482. [Google Scholar] [CrossRef]
- Saarialho-Kere, U.K.; Vaalamo, M.; Airola, K.; Niemi, K.-M.; Oikarinen, A.I.; Parks, W.C. Interstitial Collagenase Is Expressed by Keratinocytes That Are Actively Involved in Reepithelialization in Blistering Skin Diseases. J. Investig. Dermatol. 1995, 104, 982–988. [Google Scholar] [CrossRef] [Green Version]
- Ståhle-Bäckdahl, M.; Inoue, M.; Guidice, G.J.; Parks, W.C. 92-kD gelatinase is produced by eosinophils at the site of blister formation in bullous pemphigoid and cleaves the extracellular domain of recombinant 180-kD bullous pemphigoid autoantigen. J. Clin. Investig. 1994, 93, 2022–2030. [Google Scholar] [CrossRef] [Green Version]
- Oikarinen, A.; Kylmäniemi, M.; Autio-Harmainen, H.; Autio, P.; Salo, T. Demonstration of 72-kDa and 92-kDa Forms of Type IV Collagenase in Human Skin: Variable Expression in Various Blistering Diseases, Induction During Re-Epithelialization, and Decrease by Topical Glucocorticoids. J. Investig. Dermatol. 1993, 101, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Olkarinen, A.I.; Zone, J.J.; Ahmed, A.R.; Kiistala, U.; Uitto, J.; Olkarinen, J.J.Z.A.I. Demonstration of Collagenase and Elastase Activities in the Blister Fluids from Bullous Skin Diseases. Comparison Between Dermatitis Herpetiformis and Bullous Pemphigoid. J. Investig. Dermatol. 1983, 81, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Cancemi, P.; Aiello, A.; Accardi, G.; Caldarella, R.; Candore, G.; Caruso, C.; Ciaccio, M.; Cristaldi, L.; Di Gaudio, F.; Siino, V.; et al. The Role of Matrix Metalloproteinases (MMP-2 and MMP-9) in Ageing and Longevity: Focus on Sicilian Long-Living Individuals (LLIs). Mediat. Inflamm. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochem-istry. Circ. Res. 2003, 92, 827–839. [Google Scholar] [CrossRef] [Green Version]
- Lin, L.; Betsuyaku, T.; Heimbach, L.; Li, N.; Rubenstein, D.; Shapiro, S.D.; Liu, Z. Neutrophil elastase cleaves the murine hemidesmosomal protein BP180/type XVII collagen and generates degradation products that modulate experimental bullous pemphigoid. Matrix Biol. 2012, 31, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Pal-Ghosh, S.; Blanco, T.; Tadvalkar, G.; Pajoohesh-Ganji, A.; Parthasarathy, A.; Zieske, J.; Stepp, M.A. MMP9 cleavage of the β4 integrin ectodomain leads to recurrent epithelial erosions in mice. J. Cell Sci. 2011, 124, 2666–2675. [Google Scholar] [CrossRef] [Green Version]
- Klessner, J.L.; Desai, B.V.; Amargo, E.V.; Getsios, S.; Green, K.J. EGFR and ADAMs Cooperate to Regulate Shedding and Endocytic Trafficking of the Desmosomal Cadherin Desmoglein 2. Mol. Biol. Cell 2009, 20, 328–337. [Google Scholar] [CrossRef] [Green Version]
- Cirillo, N.; Femiano, F.; Gombos, F.; Lanza, A. Metalloproteinase 9 is the outer executioner of desmoglein 3 in apoptotic keratinocytes. Oral Dis. 2006, 13, 341–345. [Google Scholar] [CrossRef]
- Weiske, J.; Schöneberg, T.; Schröder, W.; Hatzfeld, M.; Tauber, R.; Huber, O. The Fate of Desmosomal Proteins in Apoptotic Cells. J. Biol. Chem. 2001, 276, 41175–41181. [Google Scholar] [CrossRef] [Green Version]
- Bech-Serra, J.J.; Santiago-Josefat, B.; Esselens, C.; Saftig, P.; Baselga, J.; Arribas, J.; Canals, F. Proteomic Identification of Desmoglein 2 and Activated Leukocyte Cell Adhesion Molecule as Substrates of ADAM17 and ADAM10 by Difference Gel Electrophoresis. Mol. Cell. Biol. 2006, 26, 5086–5095. [Google Scholar] [CrossRef] [Green Version]
- Levin, M.; Udi, Y.; Solomonov, I.; Sagi, I. Next generation matrix metalloproteinase inhibitors—Novel strategies bring new pro-spects. Biochim. Biophys. Acta Mol. Cell. Res. 2017, 1864, 1927–1939. [Google Scholar] [CrossRef]
- Lenci, E.; Cosottini, L.; Trabocchi, A. Novel matrix metalloproteinase inhibitors: An updated patent review (2014–2020). Expert Opin. Ther. Patents 2021, 31, 509–523. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cirillo, N.; Prime, S.S. A Scoping Review of the Role of Metalloproteinases in the Pathogenesis of Autoimmune Pemphigus and Pemphigoid. Biomolecules 2021, 11, 1506. https://doi.org/10.3390/biom11101506
Cirillo N, Prime SS. A Scoping Review of the Role of Metalloproteinases in the Pathogenesis of Autoimmune Pemphigus and Pemphigoid. Biomolecules. 2021; 11(10):1506. https://doi.org/10.3390/biom11101506
Chicago/Turabian StyleCirillo, Nicola, and Stephen S. Prime. 2021. "A Scoping Review of the Role of Metalloproteinases in the Pathogenesis of Autoimmune Pemphigus and Pemphigoid" Biomolecules 11, no. 10: 1506. https://doi.org/10.3390/biom11101506
APA StyleCirillo, N., & Prime, S. S. (2021). A Scoping Review of the Role of Metalloproteinases in the Pathogenesis of Autoimmune Pemphigus and Pemphigoid. Biomolecules, 11(10), 1506. https://doi.org/10.3390/biom11101506