Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery—A Multidisciplinary Team-Learning Experience
Abstract
:1. Introduction
2. Materials and Methods
2.1. Financing
2.2. Imaging and Manufacturing
2.3. Manufacturing of the 3D-Printed Models
2.4. Preoperative Team Emulations
3. Results
3.1. Patient Characteristics and Material
3.2. Indication for 3D Modeling and Printing
3.3. Added-Value and Accuracy of 3D Modeling/Printing
3.4. Technical, Organizational and Financial Aspects
3.5. Team-Learning Experience
4. Discussion
4.1. 3D-Printed Models vs. Modern Imaging Modalities
4.2. 3D-Printed Models Promote Team Learning
4.3. Cost-Reimbursement Constraints and Technical Limitations
4.4. Future Directions
4.5. Study Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Senge, P.M. The Fifth Discipline: The Art and Practice of the Learning Organization; Doubleday: New York, NY, USA, 1990; p. 258. Available online: https://archive.org/details/fifthdisciplineasen00seng/page/182/mode/2up?view=theater (accessed on 10 September 2021).
- Hoang, D.; Perrault, D.; Stevanovic, M.; Ghiassi, A. Surgical applications of three-dimensional printing: A review of the current literature & how to get started. Ann. Transl. Med. 2016, 4, 456. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiraly, L. Three-dimensional modelling and three-dimensional printing in pediatric and congenital cardiac surgery. Transl. Pediatr. 2018, 7, 129–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mottl-Link, S.; Boettger, T.; Krueger, J.J.; Rietdorf, U.; Schnackenburg, B.; Ewert, P.; Berger, F.; Nagel, E.; Meinzer, H.-P.; Juraszek, A.; et al. Images in cardiovascular medicine. Cast of Complex Congenital Heart Malformation in a Living Patient. Circulation 2005, 112, e356–e357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biglino, G.; Capelli, C.; Wray, J.; Schievano, S.; Leaver, L.-K.; Khambadkone, S.; Giardini, A.; Derrick, G.; Jones, A.; Taylor, A.M. 3D-manufactured patient-specific models of congenital heart defects for communication in clinical practice: Feasibility and acceptability. BMJ Open 2015, 5, e007165. [Google Scholar] [CrossRef]
- Kurup, H.K.; Samuel, B.P.; Vettukattil, J.J. Hybrid 3D printing: A game-changer in personalized cardiac medicine? Expert Rev. Cardiovasc. Ther. 2015, 13, 1281–1284. [Google Scholar] [CrossRef]
- Schievano, S.; Migliavacca, F.; Coats, L.; Khambadkone, S.; Carminati, M.; Wilson, N.; Deanfield, J.E.; Bonhoeffer, P.; Taylor, A.M. Percutaneous pulmonary valve implantation based on rapid prototyping of right ventricular outflow tract and pulmonary trunk from MR data. Radiology 2007, 242, 490–497. [Google Scholar] [CrossRef]
- Ong, C.S.; Loke, Y.-H.; Opfermann, J.; Olivieri, L.; Vricella, L.; Krieger, A.; Hibino, N. Virtual Surgery for Conduit Reconstruction of the Right Ventricular Outflow Tract. World J. Pediatr. Congenit. Hear. Surg. 2017, 8, 391–393. [Google Scholar] [CrossRef] [Green Version]
- Schmauss, D.; Haeberle, S.; Hagl CSodian, R. Three-dimensional printing in cardiac surgery and interventional cardiology: A single-centre experience. Eur. J. Cardiothorac Surg. 2015, 47, 1044–1052. [Google Scholar] [CrossRef] [Green Version]
- Yoo, S.-J.; Thabit, O.; Kim, E.K.; Ide, H.; Yim, D.; Dragulescu, A.; Seed, M.; Grosse-Wortmann, L.; Van Arsdell, G. 3D printing in medicine of congenital heart diseases. 3D Print. Med. 2016, 2, 3. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, I.; Yamagishi, M.; Hamaoka, K.; Fukuzawa, M.; Yagihara, T. Simulative operation on congenital heart disease rubber-like urethane stereolithographic biomodels based on 3D datasets of multislice computed tomography. Eur. J. Cardiothorac Surg. 2010, 37, 302–306. [Google Scholar] [CrossRef] [Green Version]
- United Arabic Emirates Population. 2016. Available online: http://ghdx.healthdata.org/geography/united-arab-emirates (accessed on 2 February 2018).
- Jacobs, J.P.; Mayer, J.E., Jr.; Mavroudis, C.; O’Brien, S.M.; Austin, E.H., 3rd; Pasquali, S.K.; Hill, K.D.; Overman, D.M.; St Louis, J.D.; Karamlou, T.; et al. The Society of Thoracic Surgeons Congenital Heart Surgery Database: 2017 Update on Outcomes and Quality. Ann. Thorac. Surg. 2017, 103, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Materialise Mimics® CT Heart Tool for Heart Chamber Segmentation: Quantitative Validation. Available online: http://www.materialise.com/en/resources/medical/white-papers/materialisewhitepapermimicscthearttoolvalidationstudy (accessed on 15 December 2017).
- 3D Slicer. Available online: https://www.slicer.org (accessed on 3 February 2021).
- Cantinotti, M.; Valverde, I.; Kutty, S. Three-dimensional printed models in congenital heart disease. Int. J. Cardiovasc. Imaging 2017, 33, 137–144. [Google Scholar] [CrossRef]
- Kiraly, L.; Tofeig, M.; Jha, N.K.; Talo, H. Three-dimensional printed prototypes refine the anatomy of post-modified Norwood-1 complex aortic arch obstruction and allow presurgical simulation of the repair. Interact. Cardiovasc. Thorac. Surg. 2016, 22, 238–240. [Google Scholar] [CrossRef]
- Lau, I.; Sun, Z. Three-dimensional printing in congenital heart disease: A systematic review. J. Med Radiat. Sci. 2018, 65, 226–236. [Google Scholar] [CrossRef]
- Martelli, N.; Serrano, C.; van den Brink, H.; Pineau JPrognon PBorget, I.; El Batti, S. Advantages and disadvantages od 3-dimensional printing in surgery: A systematic review. Surgery 2016, 159, 1485–1500. [Google Scholar] [CrossRef]
- Kappanayil, M.; Koneti, N.R.; Kannan, R.R.; Kottayil, B.P.; Kumar, K. Three-dimensional-printed cardiac prototypes aid surgical decision-making and preoperative planning in selected cases of complex congenital heart diseases: Early experience and proof of concept in a resource-limited environment. Ann. Pediatr. Cardiol. 2017, 10, 117–125. [Google Scholar] [CrossRef]
- Chepelev, L.; Wake, N.; Ryan, J.; Althobaity, W.; Gupta, A.; Arribas, E.; Santiago, L.; Ballard, D.H.; Wang, K.C.; Weadock, W.; et al. Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): Guidelines for medical 3D printing and appropriateness for clinical scenarios. 3D Print. Med. 2018, 4, 11. [Google Scholar] [CrossRef]
- Winlaw, D.S.; Ayer, J.G. Commentary: Three-dimensional printing for preoperative planning–Beyond illustrating the obvious. JTCVS Tech. 2020, 2, 141–142. [Google Scholar] [CrossRef] [Green Version]
- Milano, E.G.; Capelli, C.; Wray, J.; Biffi, B.; Layton, S.; Lee, M.; Caputo, M.; Taylor, A.M.; Schievano, S.; Biglino, G. Current and future applications of 3D printing in congenital cardiology and cardiac surgery. Br. J. Radiol. 2018, 92, 1094. [Google Scholar] [CrossRef] [Green Version]
- Coulson, J.D.; Seddon, M.R.; Readdy, W.F. Advancing safety in pediatric cardiology–approaches developed in aviation. Congenit. Cardiol. Today 2008, 6, 1–10. [Google Scholar]
- Maruthappu, M.; Duclos, A.; Lipsitz, S.R.; Orgill, D.; Carty, M.J. Surgical learning curves and operative efficiency: A cross-specialty observational study. BMJ Open 2015, 5, e006679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szentágothai, J. Science and art. In Vesalius Andreas Bruxellensis: De Humani Corporis Fabrica; Szentágothai, J., Ed.; Hungarian Helikon: Budapest, Hungary, 1967; p. 15. [Google Scholar]
- Rippa Bonati, M. Some Traditions Regarding the Old Anatomy Theatre of Padua University. Archiving Antico dell’Università di Padua, Atti dell’Università Artista. Raccolta Minat. 2010, 28, 113. Available online: http://www.unipd.it/esterni/visiteweb/english/pagine/teatro.htm (accessed on 6 May 2016).
- Ghosh, S.K. Evolution of illustrations in anatomy: A study from the classical period in Europe to modern times. Anat. Sci. Educ. 2015, 8, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Dr Maude Abbott. Available online: http://www.mcgill.ca/medicalmuseum/introduction/history/physicians/abbott (accessed on 24 September 2016).
- Abbott, M.E. Atlas of Congenital Cardiac Disease; The American Heart Association: New York, NY, USA, 1936. [Google Scholar]
- Multisensory Convergence, Integration. Encyclopedia of Neuroscience; Binder, M.D., Hirokawa, N., Windhorst, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; p. 182. [Google Scholar] [CrossRef]
- Pouget, A.; Deneve, S.; Duhamel, J.R. A computational perspective on the neural basis of multisensory spatial representations. Nat. Rev. Neurosci. 2002, 3, 741–747. [Google Scholar] [CrossRef]
- James, T.W.; Humphrey, G.K.; Gati, J.S.; Servos, P.; Menon, R.S.; Goodale, M.A. Haptic study of three-dimensional objects activates extrastriate visual areas. Neuropsychologia 2002, 40, 1706–1714. [Google Scholar] [CrossRef]
- Lunghi, C.; Alais, D. Touch Interacts with Vision during Binocular Rivalry with a Tight Orientation Tuning. PLoS ONE 2013, 8, e58754. [Google Scholar] [CrossRef]
- Squeri, V.; Sciutti, A.; Gori, M.; Masia, L.; Sandini, G.; Konczak, J. Two hands, one perception: How bimanual haptic information is combined by the brain. J. Neurophysiol. 2012, 107, 544–550. [Google Scholar] [CrossRef] [Green Version]
- Fagan, T.E.; Truong, U.T.; Jone, P.-N.; Bracken, J.; Quaife, R.; Abu Hazeem, A.A.; Salcedo, E.E.; Fonseca, B.M. Multimodality 3-Dimensional Image Integration for Congenital Cardiac Catheterization. Methodist DeBakey Cardiovasc. J. 2014, 10, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Biaggi, P.; Fernandez-Golfín, C.; Hahn, R.; Corti, R. Hybrid Imaging During Transcatheter Structural Heart Interventions. Curr. Cardiovasc. Imaging Rep. 2015, 8, 1–14. [Google Scholar] [CrossRef] [Green Version]
- RealViewHearth. Surgery Using 3D Hologram. Available online: https://www.youtube.com/watch?v=K2XesWsL9Uy (accessed on 10 September 2016).
- Mitsuno, D.; Ueda, K.; Hirota, Y.; Ogino, M. Effective Application of Mixed Reality Device HoloLens: Simple Manual Alignment of Surgical Field and Holograms. Plast. Reconstr. Surg. 2019, 143, 647–651, Erratum in: Plast. Reconstr. Surg. 2019, 143, 1283. [Google Scholar] [CrossRef]
- Baker, C.J.; Sinha, R.; Sullivan, M.E. Development of a cardiac surgery simulation curriculum: From needs assessment results to practical implementation. J. Thorac. Cardiovasc. Surg. 2012, 144, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Oktay, O.; Rueckert, D.; Bai, W.; Guerrero, R.; Rajchl, M.; de Marvao, A.; O’Regan, D.; Cook, S.A.; Heinrich, M.P.; Glocker, B. Stratified Decision Forests for Accurate Anatomical Landmark Localization in Cardiac Images. IEEE Trans. Med Imaging 2016, 36, 332–342. [Google Scholar] [CrossRef]
- Sciutti, A.; Damonte, F.; Alloisio, M.; Sandini, G. Visuo-Haptic Exploration for Multimodal Memory. Front. Integr. Neurosci. 2019, 13, 15. [Google Scholar] [CrossRef]
- Jiang, T.; Yu, D.; Wang, Y.; Zan, T.; Wang, S.; Li, Q. HoloLens-Based Vascular Localization System: Precision Evaluation Study with a Three-Dimensional Printed Model. J. Med Internet Res. 2020, 22, e16852. [Google Scholar] [CrossRef]
- Brun, H.; Bugge, R.; Suther, L.; Birkeland, S.; Kumar, R.; Pelanis, E. Mixed reality holograms for heart surgery planning: First user experience in congenital heart disease. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 883–888. [Google Scholar] [CrossRef] [Green Version]
- Moro, C.; Phelps, C.; Jones, D.; Stromberga, Z. Using Holograms to Enhance Learning in Health Sciences and Medicine. Med Sci. Educ. 2020, 30, 1351–1352. [Google Scholar] [CrossRef]
- Lau, I.; Gupta, A.; Sun, Z. Clinical Value of Virtual Reality versus 3D Printing in Congenital Heart Disease. Biomolecules 2021, 11, 884. [Google Scholar] [CrossRef]
- Lee, S.; Squelch, A.; Sun, Z. Quantitative Assessment of 3D-printed Model Accuracy in Delineating Congenital Heart Disease. Biomolecules 2021, 11, 270. [Google Scholar] [CrossRef]
- Preece, D.; Williams, S.B.; Lam, R.; Weller, R. “Let’s get physical”: Advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy. Anat. Sci. Educ. 2013, 6, 216–224. [Google Scholar] [CrossRef]
- Hegarty, M. Components of spatial intelligence. Psychol. Learn. Motiv. 2010, 52, 266–297. [Google Scholar]
- Ericsson, K.A. Why expert performance is special and cannot be extrapolated from studies of performance in the general population: A response to criticisms. Intelligence 2014, 45, 81–103. [Google Scholar] [CrossRef]
- Kornkasem, S.; Black, J.B. Formation of spatial thinking skills through different training methods. Cogn. Process. 2015, 16 (Suppl. 1), 281–285. [Google Scholar] [CrossRef]
- ElBardissi, A.W.; Wiegmann, D.A.; Dearani, J.A.; Daly, R.C.; Sundt, T.M. Application of the Human Factors Analysis and Classification System Methodology to the Cardiovascular Surgery Operating Room. Ann. Thorac. Surg. 2007, 83, 1412–1418. [Google Scholar] [CrossRef]
- Giants of Cardiothoracic Surgery: An Interview With William Brawn. CTSNetVideo. Available online: https://www.youtube.com/watch?v=eMgVoL748uI (accessed on 2 March 2017).
- Gardner, A.K.; Scott, D.J.; AbdelFattah, K.R. Do great teams think alike? An examination of team mental models and their impact on team performance. Surgery 2017, 161, 1203–1208. [Google Scholar] [CrossRef] [PubMed]
- Tarola, C.L.; Hirji, S.; Yule, S.J.; Gabany, J.M.; Zenati, A.; Dias, R.D.; Zenati, M.A. Cognitive Support to Promote Shared Mental Models during Safety-Critical Situations in Cardiac Surgery (Late Breaking Report). In Proceedings of the 2018 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA), Boston, MA, USA, 11–14 June 2018; pp. 165–167. [Google Scholar] [CrossRef]
- Yoo, S.J.; Hussein, N.; Peel, B.; Coles, J.; van Arsdell, G.S.; Honjo, O.; Haller, C.; Lam, C.Z.; Seed, M.; Barron, D. 3D Modeling and Printing in Congenital Heart Surgery: Entering the Stage of Maturation. Front. Pediatr. 2021, 9, 621–672. [Google Scholar] [CrossRef] [PubMed]
- CPT-Coding System. Available online: https://www.aapc.com/resources/medical-coding/cpt.aspx (accessed on 20 July 2018).
- Young, R. Medical 3D Printing Is Outpacing Ways to Pay for It. Radiology Business. 23 April 2018. AI & Emerging Technologies. Available online: https://www.radiologybusiness.com/topics/advanced-visualization/medical-3d-printing-outpacing-ways-pay-it (accessed on 10 September 2021).
- Cohen, A.; Laviv, A.; Berman, P.; Nashef, R.; Abu-Tair, J. Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, 661–666. [Google Scholar] [CrossRef] [PubMed]
- Tomita, K.; Yano, K.; Hata, Y.; Nishibayashi, A.; Hosokawa, K. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold. Plast. Reconstr. Surg. Glob. Open 2015, 3, e316. [Google Scholar] [CrossRef]
- Meglioli, M.; Naveau, A.; Macaluso, G.M.; Catros, S. 3D-printed bone models in oral and cranio-maxillofacial surgery: A systematic review. 3D Print. Med. 2020, 6, 30, Erratum in: 3D Print Med. 2020, 6, 36. [Google Scholar] [CrossRef]
- Jacobs, M.L.; Jacobs, J.P.; Thibault, D.; Hill, K.D.; Anderson, B.R.; Eghtesady, P.; Karamlou, T.; Kumar, S.R.; Mayer, J.E.; Mery, C.M.; et al. Updating an Empirically Based Tool for Analyzing Congenital Heart Surgery Mortality. World J. Pediatr. Congen. Heart Surg. 2021, 12, 246–281. [Google Scholar] [CrossRef]
- Jonas, R.A. Choosing the right biomaterial. In Comprehensive Surgical Management of Congenital Heart Disease, 2nd ed.; Jonas, R.A., Ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 247–266. [Google Scholar]
- Izadifar, M.; Chapman, D.; Babyn, P.; Chen, X.; Kelly, M.E. UV-Assisted 3D Bioprinting of Nanoreinforced Hybrid Cardiac Patch for Myocardial Tissue Engineering. Tissue Eng. Part C Methods 2018, 24, 74–88. [Google Scholar] [CrossRef]
- Jana, S.; Lerman, A. Bioprinting a cardiac valve. Biotechnol. Adv. 2015, 33, 1503–1521. [Google Scholar] [CrossRef]
- Duan, B.; Hockaday, L.A.; Kang, K.H.; Butcher, J.T. 3D Bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J. Biomed. Mater. Res. Part A 2012, 101, 1255–1264. [Google Scholar] [CrossRef] [Green Version]
- Ong, C.S.; Fukunishi, T.; Zhang, H.; Huang, C.Y.; Nashed, A.; Blazeski, A.; DiSilvestre, D.; Vricella, L.; Conte, J.; Tung, L.; et al. Biomaterial-Free Three-Dimensional Bioprinting of Cardiac Tissue using Human Induced Pluripotent Stem Cell Derived Cardiomyocytes. Sci. Rep. 2017, 7, 4566. [Google Scholar] [CrossRef] [Green Version]
- Galantowicz, M. Encouraging Six-Month Results with Gore Novel Biosynthetic Tissue Valve. Available online: https://www.prnewswire.com/news-releases/w-l-gore--associates-announces-encouraging-six-month-results-with-its-novelbiosynthetic-tissue-valve-301180050.html (accessed on 15 December 2020).
- Kiraly, L.; Vijayavenkataraman, S. Biofabrication in Congenital Cardiac Surgery: A Plea from the Operating Theatre, Promise from Science. Micromachines 2021, 12, 332. [Google Scholar] [CrossRef]
- Wang, Z.; Lee, S.J.; Cheng, H.J.; Yoo, J.J.; Atala, A. 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomater. 2018, 70, 48–56. [Google Scholar] [CrossRef]
- Cai, E.Z.; Gao, Y.; Ngiam, K.Y.; Lim, T.C. Mixed Reality Intraoperative Navigation in Craniomaxillofacial Surgery. Plast. Reconstr. Surg. 2021, 148, 686e–688e. [Google Scholar] [CrossRef]
Types and Description | Examples |
---|---|
3D-printed anatomical prototypes of an individual patient: replicate exact patient morphology; do not come into direct contact with the patient | Anatomic models for demonstration, surgical planning, and emulations |
3D-printed patient-specific medical hardware: newly-designed objects created by computer-aided design (CAD) based on and added to individual patient characteristics; direct patient contact | Customized/personalized implants Prostheses External fixators Splints Surgical instrumentation and surgical cutting aides |
No | Age (Month) | Diagnoses; Indication for a 3D-Printed Model (Bold) | Previous Surgery | 3D-Printed Models | New Diagnosis | Model Assistance in | Operation Performed | |
---|---|---|---|---|---|---|---|---|
Blood Volume | Hollow | |||||||
1 | 6.5 | HLHS; aortic arch obstruction | Norwood-1 | Yes | Yes | Cannulation for EC circulation: method and location | Aortic arch redo; univentricular staging: BDG | |
2 | 7 | HLHS; aortic arch obstruction | Norwood-1 | Yes | No | Clarification of the geometry of obstruction | Aortic arch redo; univentricular staging: BDG | |
3 | 60 | Tricuspid atresia, malposed great arteries, left PA hypoplasia; subaortic obstruction | Right MBTS | Yes | Yes | Origin of left mainstem coronary artery from the ascending aorta | Site of aortic opening; clarifying the location of the resection | Subaortic resection; PA plasty; univentricular staging: BDG |
4 | 96 | Tricuspid atresia, malposed great arteries; persistent pulmonary hypertension; distal aortic arch obstruction |
| Yes | No | Kinking of the distal transverse aortic arch (v aortic coarctation) | Surgical approach (sternotomy vs. thoracotomy), cannulation site and arch repair | Distal transverse aortic arch repair; univentricular palliation: upsize of the central MBTS |
5 | 9 | Tetralogy of Fallot, hypoplastic pulmonary annulus; uncertain coronary anatomy | Left-sided MBTS | Only virtual 3D model created | Single left coronary artery: RCA from LAD | Need for RV-PA conduit | Biventricular complete repair with RV-PA conduit; PA-plasty | |
6 | 16 | Tetralogy of Fallot with absent pulmonary valve syndrome; obstruction of the left mainstem coronary artery | Fallot-repair; implantation of biological pulmonary prosthesis | Only virtual 3D model created | Cause and location of left coronary artery obstruction | Cause and location of left coronary artery obstruction | Biventricular, Lecompte maneuver: placement of the dilated right PA in front of the aorta | |
7 | 19 | Pulmonary atresia, VSD, MAPCAs; complex spatial relationship of MAPCAs | Central MBTS | Yes | No | Clarification of spatial relationship of MAPCAs | Surgical strategy of unifocalization | Biventricular staging: unifocalization, RV-PA conduit |
8 | 15 | Mesocardia, bilateral SVCs, common atrium and iAVD; cor triatriatum sinistrum | Atrial baffle patch; iAVD repair | Only virtual 3D model created | Anatomical landmarks for the left atrial resection | Biventricular repair: cor triatriatum repair | ||
9 | 8 | Dextrocardia, visceral heterotaxy, DORV/TGA; left pulmonary branch hypoplasia |
| Yes | Yes | Left atrial appendage crossing the pulmonary trunk | Geometry of intracardiac pathway and pulmonary trunk augmentation | Biventricular repair: REV operation, transannular patch with monocusp; extensive PA plasty |
10 | 13 | Dextrocardia, visceral heterotaxy, right atrial isomerism, left IVC, right SVC, supracardiac TAPVD, common atrium, cAVD, DORV/TGA, pulmonary atresia; clarification of complex segmental anatomy |
| Yes | Yes | Surgical strategy (emulation); intracardiac pathways: size and shape of patches | Biventricular repair: TAPVD unroofing to left atrium, atrial separation patch, cAVD repair-REV, BDG takedown, RV-PA conduit | |
11 | 36 | Dextrocardia, venous anomalies, common atrium; residual ASD | Atrial baffle implantation (Mustard) | No | Yes | Surgical approach (from the left side); size/shape of the atrial patch | Biventricular repair: complete atrial baffling | |
12 | 11 | Dextrocardia, visceral heterotaxy, venous anomalies, common atrium, cAVD; uncertain segmental anatomy | None | No | Yes | Muscular VSD | Size/shape of the atrial patch | Biventricular repair: atrial baffling (Mustard), cAVD correction |
13 | 8 | Dextrocardia, visceral heterotaxy, venous anomalies, common atrium, iAVD, pulmonary stenosis, vascular ring; uncertain segmental anatomy | None | Yes | Yes | Muscular VSD | Size/shape of the atrial patch | Biventricular repair: atrial baffling (Mustard), iAVD repair, pulmonary valvotomy, division of vascular ring |
14 | 36 | Dextrocardia, visceral heterotaxy, bilateral SVCs, cTGA; uncertain intraatrial anatomy | Bilateral BDG | Yes | Yes | Geometry of intraatrial conduit | Univentricular staging: TCPC: intracardiac conduit, PA-plasty | |
15 | 82 | Mesocardia, common atrium, criss-cross heart (supero-inferior ventricles), TGA, restrictive VSD; extent of the left ventricle thrombus and suitability for biventricular circulation |
| Yes | Yes | Inlet VSD | Left ventricle thrombus conditions, intracardiac conduit geometry; possibility of biventricular circulation | Univentricular staging: TCPC intracardiac conduit, LV thrombus removal, VSD enlargement |
Questions | Multidisciplinary Team (46 Replies) | Patient Relatives (28 Replies) |
---|---|---|
3D virtual models helped understand the anatomy/clinical situation | 4.8 | 2.7 |
3D-printed model provided additional information | 4.1 (surgeons: 5) | 4.9 |
Accuracy | 4.1 | n/a |
Improved communication | 4.9 | 5 |
Facilitated patient safety intraoperatively | 4.9 | n/a |
Cost/benefit adequacy | 4 | n/a |
Undertake the extra work associated with 3D modeling/printing | 4.7 | n/a |
Would you assume the additional cost of 3D modeling/printing | 4.1 | 4.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiraly, L.; Shah, N.C.; Abdullah, O.; Al-Ketan, O.; Rowshan, R. Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery—A Multidisciplinary Team-Learning Experience. Biomolecules 2021, 11, 1703. https://doi.org/10.3390/biom11111703
Kiraly L, Shah NC, Abdullah O, Al-Ketan O, Rowshan R. Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery—A Multidisciplinary Team-Learning Experience. Biomolecules. 2021; 11(11):1703. https://doi.org/10.3390/biom11111703
Chicago/Turabian StyleKiraly, Laszlo, Nishant C. Shah, Osama Abdullah, Oraib Al-Ketan, and Reza Rowshan. 2021. "Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery—A Multidisciplinary Team-Learning Experience" Biomolecules 11, no. 11: 1703. https://doi.org/10.3390/biom11111703
APA StyleKiraly, L., Shah, N. C., Abdullah, O., Al-Ketan, O., & Rowshan, R. (2021). Three-Dimensional Virtual and Printed Prototypes in Complex Congenital and Pediatric Cardiac Surgery—A Multidisciplinary Team-Learning Experience. Biomolecules, 11(11), 1703. https://doi.org/10.3390/biom11111703