Human Lectins, Their Carbohydrate Affinities and Where to Find Them
Abstract
:1. Introduction
2. C-Type Lectins
3. Chitolectins (or Chilectins)
4. F-Type Lectins
5. F-Box Lectins
6. Ficolins
7. I-Type Lectins
8. L-Type Lectins
9. M-Type Lectins
10. P-Type Lectins
11. R-Type Lectins
12. S-Type Lectins
Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
---|---|---|---|
Galectin 1 | |||
Galectin 1 | LGALS1 | β-d-galactosides, poly-N-acetyllactosamine-enriched glycoconjugates [157,158] | Bone marrow, brain, cervix (uterine), endometrium, lymph node, ovary, parathyroid gland, placenta, smooth muscle, skin, spleen, testis, tonsil, vagina |
Galectin 2 | LGALS2 | β-d-galactosides, lactose [159] | Appendix, colon, duodenum, gallbladder, kidney, liver, lymph node, pancreas, rectum, small intestine, spleen, tonsil |
Galectin 3 | |||
Galectin 3 | LGALS3 | β-d-galactosides, LacNAc [160] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Galectin 3 binding protein | LGALS3BP | β-d-galactosides, lactose [161] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, proximal digestive tract, skin |
Galectin 4 | LGALS4 | β-d-galactosides, lactose [162] | Appendix, colon, duodenum, gallbladder, pancreas, rectum, small intestine, stomach |
Galectin 7 | LGALS7 | Gal, GalNAc, Lac, LacNAc [163] | Cervix (uterine), esophagus, oral mucosa, salivary gland, skin, tonsil, vagina |
Galectin 8 | LGALS8 | β-d-galactosides. Preferentially binds to 3′-O-sialylated and 3′-O-sulfated glycans [164] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Galectin 9 | LGALS9 | β-d-galactosides. Forssman pentasaccharide, lactose, N-acetyllactosamine [165] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Galectin 9B | LGALS9B | β-d-galactosides [166] | Appendix, bone marrow, breast, lymph node, spleen, tonsil |
Galectin 9C | LGALS9C | β-d-galactosides [166] | Appendix, bronchus, colon, duodenum, gallbladder, lung, pancreas, spleen, stomach, tonsil |
Galectin 10 (Charcot-Leyden crystal galectin, CLC) | LGALS10 | Binds weakly to lactose, N-acetyl-d-glucosamine and d-mannose [167] | Lymph node, spleen, tonsil |
Galectin 12 | LGALS12 | β-d-galactose and lactose [168,169] | a) |
Galectin 13 | LGALS13 | N-acetyl-lactosamine, mannose and N-acetyl-galactosamine [170]. Contrary to other galectins, Galectin 13 does not bind β-d-galactosides [171] | Kidney, placenta, spleen, urinary bladder |
Placental Protein 13 (Galectin 14) | LGALS14 | N-acetyl-lactosamine [172] | Adrenal gland, colon, kidney |
Galectin 16 | LGALS16 | N-acetyl-lactosamine, β-d-galactose and lactose [172] | Placenta |
13. X-Type Lectins
14. Orphans
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lepenies, B.; Lang, R. Lectins and Their Ligands in Shaping Immune Responses. Front. Immunol. 2019, 10, 2379. [Google Scholar] [CrossRef] [PubMed]
- Stick, R. Carbohydrates: The Sweet Molecules of Life, 1st ed.; Academic Press: New York, NY, USA, 2001. [Google Scholar]
- Santos, A.F.S.; Da Silva, M.D.C.; Napoleão, T.H.; Paiva, P.M.G.; Correia, M.T.S.; Coelho, L.C.B.B. Lectins: Function, structure, biological properties and potential applications. Curr. Top. Pept. Protein Res. 2014, 15, 41–62. [Google Scholar]
- Wang, B.; Boons, G.-J. Carbohydrate Recognition: Biological Problems, Methods and Applications, 1st ed.; John Wiley & Sons, Inc.: Danvers, MA, USA, 2011; ISBN 9780470592076. [Google Scholar]
- Hirabayashi, J.; Kasai, K.I. Evolution of Animal Lectins. In Molecular Evolution: Evidence for Monophyly of Metazoa; Jeanteur, P., Kuchino, Y., Muller, W.E.G., Paine, P.L., Eds.; Springer: Berlin, Germany, 1998; Volume 19, ISBN 9783642487477. [Google Scholar]
- Drickamer, K. Evolution of Ca2+-dependent Animal Lectins. Prog. Nucleic Acid Res. Mol. Biol. 1993, 45, 207–232. [Google Scholar] [PubMed]
- Himri, I.; Guaadaoui, A. Cell and organ drug targeting: Types of drug delivery systems and advanced targeting strategies. In Nanostructures for the Engineering of Cells, Tissues and Organs; Grumezescu, A., Ed.; Elsevier Inc.: Norwich, UK, 2018; pp. 1–66. ISBN 9780128136652. [Google Scholar]
- Liu, K.; Jiang, X.; Hunziker, P. Carbohydrate-based amphiphilic nano delivery systems for cancer therapy. Nanoscale 2016, 8, 16091–16156. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, G.; Huang, H. The glyconanoparticle as carrier for drug delivery. Drug Deliv. 2018, 25, 1840–1845. [Google Scholar] [CrossRef] [Green Version]
- Mosaiab, T.; Farr, D.C.; Kiefel, M.J.; Houston, T.A. Carbohydrate-based nanocarriers and their application to target macrophages and deliver antimicrobial agents. Adv. Drug Deliv. Rev. 2019, 151–152, 94–129. [Google Scholar] [CrossRef]
- Hossain, F.; Andreana, P.R. Developments in Carbohydrate-Based Cancer Therapeutics. Pharmaceuticals 2019, 12, 1–18. [Google Scholar]
- Keshavarz-fathi, M.; Rezaei, N. Vaccines, Adjuvants, and Delivery Systems. In Vaccines for Cancer Immunotherapy; Keshavarz-Fathi, M., Rezaei, N., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 45–59. ISBN 9780128140390. [Google Scholar]
- Warburg, O. On the origin of cancer cells. Science 1956, 123, 309–314. [Google Scholar] [CrossRef]
- Chiaradonna, F.; Moresco, R.M.; Airoldi, C.; Gaglio, D.; Palorini, R.; Nicotra, F.; Messa, C.; Alberghina, L. From cancer metabolism to new biomarkers and drug targets. Biotechnol. Adv. 2012, 30, 30–51. [Google Scholar]
- Wesener, D.A.; Wangkanont, K.; McBride, R.; Song, X.; Kraft, M.B.; Hodges, H.L.; Zarling, L.C.; Splain, R.A.; Smith, D.F.; Cummings, R.D.; et al. Recognition of Microbial Glycans by Human Intelectin. Nat. Struct. Mol. Biol. 2015, 22, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Knut & Alice Wallenberg Foundation. The Human Protein Atlas. Available online: https://www.proteinatlas.org/ (accessed on 5 September 2020).
- Uhlén, M.; Fagerberg, L.; Hallström, B.M.; Lindskog, C.; Oksvold, P.; Mardinoglu, A.; Sivertsson, Å.; Kampf, C.; Sjöstedt, E.; Asplund, A.; et al. Tissue-based map of the human proteome. Science 2015, 347, 394–403. [Google Scholar] [CrossRef] [PubMed]
- GeneCards, version: 3.12.404; Weizmann Institute of Science: Rehovot, Israel, 2015.
- Furukawa, A.; Kamishikiryo, J.; Mori, D.; Toyonaga, K.; Okabe, Y.; Toji, A.; Kanda, R.; Miyake, Y.; Ose, T.; Yamasaki, S.; et al. Structural analysis for glycolipid recognition by the C-type lectins Mincle and MCL. Proc. Natl. Acad. Sci. USA 2013, 110, 17438–17443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feinberg, H.; Park-snyder, S.; Kolatkar, A.R.; Heise, C.T.; Taylor, M.E.; Weis, W.I. Structure of a C-type Carbohydrate Recognition Domain from the Macrophage Mannose Receptor. J. Biol. Chem. 2000, 275, 21539–21548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, E.J.; Marshall, A.J.; Magaletti, D.; Floyd, H.; Draves, K.E.; Olson, N.E.; Clark, E.A. Dendritic Cell-Associated Lectin-1: A Novel Dendritic Cell-Associated, C-Type Lectin-Like Molecule Enhances T Cell Secretion of IL-4. J. Immunol. 2002, 169, 5638–5648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, R.D.; McEver, R.P. C-Type Lectins. In Essentials of Glycobiology; Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Gerald, H.W., Etzler, M.E., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2017. [Google Scholar]
- Cummings, R.D.; Esko, J.D. Principles of Glycan Recognition. In Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2009. [Google Scholar]
- Imperial College Human CTLD Database. Available online: https://www.imperial.ac.uk/research/animallectins/ctld/mammals/humandataupdated.html (accessed on 24 December 2020).
- Olin, A.I.; Mörgelin, M.; Sasaki, T.; Timpl, R.; Heinegård, D.; Aspberg, A. The proteoglycans aggrecan and versican form networks with fibulin-2 through their lectin domain binding. J. Biol. Chem. 2001, 276, 1253–1261. [Google Scholar] [CrossRef] [Green Version]
- Jaworski, D.M.; Kelly, G.M.; Hockfield, S. BEHAB, a New Member of the Proteoglycan Tandem Repeat Family of Hyaluronan-binding Proteins That Is Restricted to the Brain. J. Cell Biol. 1994, 125, 495–509. [Google Scholar] [CrossRef]
- Yamaguchi, Y. Brevican: A major proteoglycan in adult brain. Perspect. Dev. Neurobiol. 1996, 3, 307–317. [Google Scholar]
- Rauch, U.; Gao, P.; Janetzko, A.; Flaccus, A.; Hilgenberg, L.; Tekotte, H.; Margolis, R.K.; Margolis, R.U. Isolation and characterization of developmentally regulated chondroitin sulfate and chondroitin/keratin sulfate proteoglycans of brain identified with monoclonal antibodies. J. Biol. Chem. 1991, 266, 14785–14801. [Google Scholar] [CrossRef]
- LeBaron, R.G.; Zimmermann, D.R.; Ruoslahti, E. Hyaluronate binding properties of versican. J. Biol. Chem. 1992, 267, 10003–10010. [Google Scholar] [CrossRef]
- Riboldi, E.; Daniele, R.; Parola, C.; Inforzato, A.; Arnold, P.L.; Bosisio, D.; Fremont, D.H.; Bastone, A.; Colonna, M.; Sozzani, S. Human C-type lectin domain family 4, member C (CLEC4C/BDCA-2/CD303) is a receptor for asialo-galactosyl-oligosaccharides. J. Biol. Chem. 2011, 286, 35329–35333. [Google Scholar] [CrossRef] [Green Version]
- Jégouzo, S.A.F.; Feinberg, H.; Dungarwalla, T.; Drickamer, K.; Weis, W.I.; Taylor, M.E. A novel mechanism for binding of galactose-terminated glycans by the C-type carbohydrate recognition domain in blood dendritic cell antigen 2. J. Biol. Chem. 2015, 290, 16759–16771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geurtsen, J.; Driessen, N.N.; Appelmelk, B.J. Mannose–fucose recognition by DC-SIGN. In Microbial Glycobiology; Elsevier Inc.: Amsterdam, The Netherlands, 2010; pp. 673–695. ISBN 978-0-12-374546-0. [Google Scholar]
- Feinberg, H.; Jégouzo, S.A.F.; Rex, M.J.; Drickamer, K.; Weis, W.I.; Taylor, M.E. Mechanism of pathogen recognition by human dectin-2. J. Biol. Chem. 2017, 292, 13402–13414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lord, A.K.; Vyas, J.M. Host Defenses to Fungal Pathogens. In Clinical Immunology; Elsevier Ltd.: Amsterdam, The Netherlands, 2019; pp. 413–424.e1. ISBN 9780702068966. [Google Scholar]
- Nagae, M.; Ikeda, A.; Hanashima, S.; Kojima, T.; Matsumoto, N.; Yamamoto, K.; Yamaguchi, Y. Crystal structure of human dendritic cell inhibitory receptor C-type lectin domain reveals the binding mode with N-glycan. FEBS Lett. 2016, 590, 1280–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, P.D. Human CD23: Is It a Lectin in Disguise? Structure 2006, 14, 950–951. [Google Scholar] [CrossRef] [Green Version]
- Kijimoto-Ochiai, S.; Toshimitsu, U. CD23 molecule acts as a galactose-binding lectin in the cell aggregation of EBV-transformed human B-cell lines. Glycobiology 1995, 5, 443–448. [Google Scholar] [CrossRef]
- Meier, M.; Bider, M.D.; Malashkevich, V.N.; Spiess, M.; Burkhard, P. Crystal structure of the carbohydrate recognition domain of the H1 subunit of the asialoglycoprotein receptor. J. Mol. Biol. 2000, 300, 857–865. [Google Scholar] [CrossRef]
- Yang, C.Y.; Chen, J.B.; Tsai, T.F.; Tsai, Y.C.; Tsai, C.Y.; Liang, P.H.; Hsu, T.L.; Wu, C.Y.; Netea, M.G.; Wong, C.H.; et al. CLEC4F Is an Inducible C-Type Lectin in F4/80-Positive Cells and Is Involved in Alpha-Galactosylceramide Presentation in Liver. PLoS ONE 2013, 8, e65070. [Google Scholar] [CrossRef] [Green Version]
- Stambach, N.S.; Taylor, M.E. Characterization of carbohydrate recognition by langerin, a C-type lectin of Langerhans cell. Glycobiology 2003, 13, 401–410. [Google Scholar] [CrossRef]
- Liu, W.; Tang, L.; Zhang, G.; Wei, H.; Cui, Y.; Guo, L.; Gou, Z.; Chen, X.; Jiang, D.; Zhu, Y.; et al. Characterization of a novel C-type lectin-like gene, LSECtin: Demonstration of carbohydrate binding and expression in sinusoidal endothelial cells of liver and lymph node. J. Biol. Chem. 2004, 279, 18748–18758. [Google Scholar]
- Nollau, P.; Wolters-Eisfeld, G.; Mortezai, N.; Kurze, A.K.; Klampe, B.; Debus, A.; Bockhorn, M.; Niendorf, A.; Wagener, C. Protein Domain Histochemistry (PDH): Binding of the Carbohydrate Recognition Domain (CRD) of Recombinant Human Glycoreceptor CLEC10A (CD301) to Formalin-Fixed, Paraffin-Embedded Breast Cancer Tissues. J. Histochem. Cytochem. 2013, 61, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Richardson, M.B.; Williams, S.J. MCL and Mincle: C-type lectin receptors that sense damaged self and pathogen-associated molecular patterns. Front. Immunol. 2014, 5, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Venkatraman Girija, U.; Furze, C.M.; Gingras, A.R.; Yoshizaki, T.; Ohtani, K.; Marshall, J.E.; Wallis, A.K.; Schwaeble, W.J.; El-Mezgueldi, M.; Mitchell, D.A.; et al. Molecular basis of sugar recognition by collectin-K1 and the effects of mutations associated with 3MC syndrome. BMC Biol. 2015, 13, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohtani, K.; Suzuki, Y.; Eda, S.; Kawai, T.; Kase, T.; Yamazaki, H.; Shimada, T.; Keshi, H.; Sakai, Y.; Fukuoh, A.; et al. Molecular cloning of a novel human collectin from liver (CL-L1). J. Biol. Chem. 1999, 274, 13681–13689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muto, S.; Sakuma, K.; Taniguchi, A.; Matsumoto, K. Human mannose-binding lectin preferentially binds to human colon adenocarcinoma cell lines expressing high amount of Lewis A and Lewis B antigens. Biol. Pharm. Bull. 1999, 22, 347–352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, J.R. Immunoregulatory functions of surfactant proteins. Nat. Rev. Immunol. 2005, 5, 58–68. [Google Scholar] [CrossRef]
- Coombs, P.J.; Graham, S.A.; Drickamert, K.; Taylor, M.E. Selective binding of the scavenger receptor C-type lectin to Lewis x trisaccharide and related glycan ligands. J. Biol. Chem. 2005, 280, 22993–22999. [Google Scholar] [CrossRef] [Green Version]
- Erbe, D.V.; Watson, S.R.; Presta, L.G.; Wolitzky, B.A.; Foxall, C.; Brandley, B.K.; Lasky, L.A. P- and E-selectin use common sites for carbohydrate ligand recognition and cell adhesion. J. Cell Biol. 1993, 120, 1227–1236. [Google Scholar] [CrossRef]
- Ivetic, A.; Green, H.L.H.; Hart, S.J. L-selectin: A major regulator of leukocyte adhesion, migration and signaling. Front. Immunol. 2019, 10, 1068. [Google Scholar] [CrossRef] [Green Version]
- Sung, P.S.; Hsieh, S.L. CLEC2 and CLEC5A: Pathogenic Host Factors in Acute Viral Infections. Front. Immunol. 2019, 10, 2867. [Google Scholar] [CrossRef] [Green Version]
- Binsack, R.; Pecht, I. The mast cell function-associated antigen exhibits saccharide binding capacity. Eur. J. Immunol. 1997, 27, 2557–2561. [Google Scholar] [CrossRef]
- Wong, S.; Arsequell, G. Immunobiology of Carbohydrates; Wong, S., Arsequell, G., Eds.; Springer: New York, NY, USA, 2003. [Google Scholar]
- Roda-Navarro, P.; Arce, I.; Renedo, M.; Montgomery, K.; Kucherlapati, R.; Fernández-Ruiz, E. Human KLRF1, a novel member of the killer cell lectin-like receptor gene family: Molecular characterization, genomic structure, physical mapping to the NK gene complex and expression analysis. Eur. J. Immunol. 2000, 30, 568–576. [Google Scholar] [CrossRef]
- Ohki, I.; Ishigaki, T.; Oyama, T.; Matsunaga, S.; Xie, Q.; Ohnishi-Kameyama, M.; Murata, T.; Tsuchiya, D.; Machida, S.; Morikawa, K.; et al. Crystal structure of human lectin-like, oxidized low-density lipoprotein receptor 1 ligand binding domain and its ligand recognition mode to OxLDL. Structure 2005, 13, 905–917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higai, K.; Imaizumi, Y.; Suzuki, C.; Azuma, Y.; Matsumoto, K. NKG2D and CD94 bind to heparin and sulfate-containing polysaccharides. Biochem. Biophys. Res. Commun. 2009, 386, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Chiffoleau, E. C-type lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets. Front. Immunol. 2018, 9, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, A.A.; Brown, J.; Harlos, K.; Eble, J.A.; Walter, T.S.; O’Callaghan, C.A. The crystal structure and mutational binding analysis of the extracellular domain of the platelet-activating receptor CLEC-2. J. Biol. Chem. 2007, 282, 3165–3172. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.G.; Czabotar, P.E.; Policheni, A.N.; Caminschi, I.; San Wan, S.; Kitsoulis, S.; Tullett, K.M.; Robin, A.Y.; Brammananth, R.; van Delft, M.F.; et al. The Dendritic Cell Receptor Clec9A Binds Damaged Cells via Exposed Actin Filaments. Immunity 2012, 36, 646–657. [Google Scholar] [CrossRef] [Green Version]
- Schorey, J.; Lawrence, C. The Pattern Recognition Receptor Dectin-1: From Fungi to Mycobacteria. Curr. Drug Targets 2008, 9, 123–129. [Google Scholar] [CrossRef]
- Gange, C.T.; Quinn, J.M.W.; Zhou, H.; Kartsogiannis, V.; Gillespie, M.T.; Ng, K.W. Characterization of sugar binding by osteoclast inhibitory lectin. J. Biol. Chem. 2004, 279, 29043–29049. [Google Scholar] [CrossRef] [Green Version]
- Christiansen, D.; Mouhtouris, E.; Milland, J.; Zingoni, A.; Santoni, A.; Sandrin, M.S. Recognition of a carbohydrate xenoepitope by human NKRP1A (CD161). Xenotransplantation 2006, 13, 440–446. [Google Scholar] [CrossRef]
- Kogelberg, H.; Frenkiel, T.A.; Birdsall, B.; Chai, W.; Muskett, F.W. Binding of Sucrose Octasulphate to the C-Type Lectin-Like Domain of the Recombinant Natural Killer Cell Receptor NKR-P1A Observed by NMR Spectroscopy. ChemBioChem 2002, 3, 1072–1077. [Google Scholar] [CrossRef]
- Imaizumi, Y.; Higai, K.; Suzuki, C.; Azuma, Y.; Matsumoto, K. NKG2D and CD94 bind to multimeric α2,3-linked N-acetylneuraminic acid. Biochem. Biophys. Res. Commun. 2009, 382, 604–608. [Google Scholar] [CrossRef] [PubMed]
- East, L.; Rushton, S.; Taylor, M.E.; Isacke, C.M. Characterization of sugar binding by the mannose receptor family member, Endo180. J. Biol. Chem. 2002, 277, 50469–50475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, M.E.; Bezouska, K.; Drickamer, K. Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J. Biol. Chem. 1992, 267, 1719–1726. [Google Scholar] [CrossRef]
- Chen, Z.; Downing, S.; Tzanakakis, E.S. Four Decades After the Discovery of Regenerating Islet-Derived (Reg) Proteins: Current Understanding and Challenges. Front. Cell Dev. Biol. 2019, 7, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Weng, L.; Smits, P.; Wauters, J.; Merregaert, J. Molecular cloning and characterization of human chondrolectin, a novel type I transmembrane protein homologous to C-type lectins. Genomics 2002, 80, 62–70. [Google Scholar] [CrossRef]
- Bono, P.; Rubin, K.; Higgins, J.M.G.; Hynes, R.O. Layilin, a novel integral membrane protein, is a hyaluronan receptor. Mol. Biol. Cell 2001, 12, 891–900. [Google Scholar] [CrossRef] [Green Version]
- Neame, P.J.; Tapp, H.; Grimm, D.R. The cartilage-derived, C-type lectin (CLECSF1): Structure of the gene and chromosomal location. Biochim. Biophys. Acta Gene Struct. Expr. 1999, 1446, 193–202. [Google Scholar] [CrossRef]
- Pletnev, V.; Huether, R.; Habegger, L.; Habegger, L.; Schultz, W.; Duax, W. Rational proteomics of PKD1. I. Modeling the three dimensional structure and ligand specificity of the C_lectin binding domain of Polycystin-1. J. Mol. Model. 2007, 13, 891–896. [Google Scholar] [CrossRef]
- Lo, T.-H.; Silveira, P.A.; Fromm, P.D.; Verma, N.D.; Vu, P.A.; Kupresanin, F.; Adam, R.; Kato, M.; Cogger, V.C.; Clark, G.J.; et al. Characterization of the Expression and Function of the C-Type Lectin Receptor CD302 in Mice and Humans Reveals a Role in Dendritic Cell Migration. J. Immunol. 2016, 197, 885–898. [Google Scholar] [CrossRef] [Green Version]
- Swaminathan, G.J.; Myszka, D.G.; Katsamba, P.S.; Ohnuki, L.E.; Gleich, G.J.; Acharya, K.R. Eosinophil-granule major basic protein, a C-type lectin, binds heparin. Biochemistry 2005, 44, 14152–14158. [Google Scholar] [CrossRef]
- Huang, Y.L.; Pai, F.S.; Tsou, Y.T.; Mon, H.C.; Hsu, T.L.; Wu, C.Y.; Chou, T.Y.; Yang, W.B.; Chen, C.H.; Wong, C.H.; et al. Human CLEC18 gene cluster contains C-type lectins with differential glycan-binding specificity. J. Biol. Chem. 2015, 290, 21252–21263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graham, S.A.; Jégouzo, S.A.F.; Yan, S.; Powlesland, A.S.; Brady, J.P.; Taylor, M.E.; Drickamer, K. Prolectin, a glycan-binding receptor on dividing b cells in germinal centers. J. Biol. Chem. 2009, 284, 18537–18544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalal, P.; Aronson, N.N., Jr.; Madura, J.D. Family 18 Chitolectins: Comparison of MGP40 and HUMGP39. Bichem. Biophys. Res. Commun 2007, 359, 221–226. [Google Scholar]
- Kilpatrick, D.C. Animal lectins: A historical introduction and overview. Biochim. Biophys. Acta 2002, 1572, 187–197. [Google Scholar] [CrossRef]
- Renkema, G.H.; Boot, R.G.; Au, F.L.; Donker-Koopman, W.E.; Strijland, A.; Muijsers, A.O.; Hrebicek, M.; Aerts, J.M.F.G. Chitotriosidase a chitinase, and the 39-kDa human cartilage glycoprotein, a chitin-binding lectin, are homologues of family 18 glycosyl hydrolases secreted by human macrophages. Eur. J. Biochem. 1998, 251, 504–509. [Google Scholar]
- Boot, R.G.; Blommaart, E.F.C.; Swart, E.; Ghauharali-van der Vlugt, K.; Bijl, N.; Moe, C.; Place, A.; Aerts, J.M.F.G. Identification of a Novel Acidic Mammalian Chitinase Distinct from Chitotriosidase. J. Biol. Chem. 2001, 276, 6770–6778. [Google Scholar] [CrossRef] [Green Version]
- Fusetti, F.; Pijning, T.; Kalk, K.H.; Bos, E.; Dijkstra, B.W. Crystal structure and carbohydrate-binding properties of the human cartilage glycoprotein-39. J. Biol. Chem. 2003, 278, 37753–37760. [Google Scholar] [CrossRef] [Green Version]
- Schimpl, M.; Rush, C.L.; Betou, M.; Eggleston, I.M.; Recklies, A.D.; Van Aalten, D.M.F. Human YKL-39 is a pseudo-chitinase with retained chitooligosaccharide-binding properties. Biochem. J. 2012, 446, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Malette, B.; Paquette, Y.; Merlen, Y.; Bleau, G. Oviductins possess chitinase- and mucin-like domains: A lead in the search for the biological function of these oviduct-specific ZP-associating glycoproteins. Mol. Reprod. Dev. 1995, 41, 384–397. [Google Scholar] [CrossRef]
- Aronson, N.N.; Kuranda, M.J. Lysosomal degradation of Asn-linked glycoproteins. FASEB J. 1989, 3, 2615–2622. [Google Scholar] [CrossRef]
- Meng, G.; Zhao, Y.; Bai, X.; Liu, Y.; Green, T.J.; Luo, M.; Zheng, X. Structure of human Stabilin-1 Interacting Chitinase-Like Protein (SI-CLP) reveals a saccharide-binding cleft with lower sugar-binding selectivity. J. Biol. Chem. 2010, 285, 39898–39904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchet, M.A.; Odom, E.W.; Vasta, G.R.; Amzel, L.M. A novel fucose recognition fold involved in innate immunity. Nat. Struct. Biol. 2002, 9, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Vasta, G.R.; Mario Amzel, L.; Bianchet, M.A.; Cammarata, M.; Feng, C.; Saito, K. F-Type Lectins: A highly diversified family of fucose-binding proteins with a unique sequence motif and structural fold, involved in self/non-self-recognition. Front. Immunol. 2017, 8, 1648. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y. F-box proteins that contain sugar-binding domains. Biosci. Biotechnol. Biochem. 2007, 71, 2623–2631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cenciarelli, C.; Chiaur, D.S.; Guardavaccaro, D.; Parks, W.; Vidal, M.; Pagano, M. Identification of a family of human F-box proteins. Curr. Biol. 1999, 9, 1177–1179. [Google Scholar] [CrossRef] [Green Version]
- Mizushima, T.; Hirao, T.; Yoshida, Y.; Lee, S.J.; Chiba, T.; Iwai, K.; Yamaguchi, Y.; Kato, K.; Tsukihara, T.; Tanaka, K. Structural basis of sugar-recognizing ubiquitin ligase. Nat. Struct. Mol. Biol. 2004, 11, 365–370. [Google Scholar] [CrossRef]
- Yoshida, Y. A novel role for N-glycans in the ERAD system. J. Biochem. 2003, 134, 183–190. [Google Scholar]
- Glenn, K.A.; Nelson, R.F.; Wen, H.M.; Mallinger, A.J.; Paulson, H.L. Diversity in tissue expression, substrate binding, and SCF complex formation for a lectin family of ubiquitin ligases. J. Biol. Chem. 2008, 283, 12717–12729. [Google Scholar] [CrossRef] [Green Version]
- Matsushita, M. Ficolins: Complement-activating lectins involved in innate immunity. J. Innate Immun. 2009, 2, 24–32. [Google Scholar] [CrossRef]
- Chen, L.; Li, J.; Yang, G. A comparative review of intelectins. Scand. J. Immunol. 2020, 92, e12882. [Google Scholar] [CrossRef] [Green Version]
- Crocker, P.R.; Redelinghuys, P. Siglecs as positive and negative regulators of the immune system. Biochem. Soc. Trans. 2008, 36, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Varki, A.; Angata, T. Siglecs—The major subfamily of I-type lectins. Glycobiology 2006, 16, 1–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spence, S.; Greene, M.K.; Fay, F.; Hams, E.; Saunders, S.P.; Hamid, U.; Fitzgerald, M.; Beck, J.; Bains, B.K.; Smyth, P.; et al. Targeting Siglecs with a sialic acid-decorated nanoparticle abrogates inflammation. Sci. Transl. Med. 2015, 7, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crocker, P.R.; Kelm, S.; Dubois, C.; Martin, B.; McWilliam, A.S.; Shotton, D.M.; Paulson, J.C.; Gordon, S. Purification and properties of sialoadhesin, a sialic acid-binding receptor of murine tissue macrophages. EMBO J. 1991, 10, 1661–1669. [Google Scholar] [CrossRef] [PubMed]
- Powell, L.D.; Varki, A. The oligosaccharide binding specificities of CD22β, a sialic acid- specific lectin of B cells. J. Biol. Chem. 1994, 269, 10628–10636. [Google Scholar] [CrossRef]
- Kelm, S.; Pelz, A.; Schauer, R.; Filbin, M.T.; Tang, S.; de Bellard, M.E.; Schnaar, R.L.; Mahoney, J.A.; Hartnell, A.; Bradfield, P.; et al. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr. Biol. 1994, 4, 965–972. [Google Scholar]
- Freeman, S.D.; Kelm, S.; Barber, E.K.; Crocker, P.R. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 1995, 85, 2005–2012. [Google Scholar] [CrossRef] [Green Version]
- Collins, B.E.; Yang, L.J.S.; Mukhopadhyay, G.; Filbin, M.T.; Kiso, M.; Hasegawa, A.; Schnaar, R.L. Sialic acid specificity of myelin-associated glycoprotein binding. J. Biol. Chem. 1997, 272, 1248–1255. [Google Scholar] [CrossRef] [Green Version]
- Cornish, A.L.; Freeman, S.; Forbes, G.; Ni, J.; Zhang, M.; Cepeda, M.; Gentz, R.; Augustus, M.; Carter, K.C.; Crocker, P.R. Characterization of siglec-5, a novel glycoprotein expressed on myeloid cells related to CD33. Blood 1998, 92, 2123–2132. [Google Scholar] [CrossRef]
- Patel, N.; Der Linden, E.C.M.B.; Altmann, S.W.; Gish, K.; Balasubramanian, S.; Timans, J.C.; Peterson, D.; Bell, M.P.; Bazan, J.F.; Varki, A.; et al. OB-BP1/Siglec-6 A Leptin and Sialic Acid-Binding Protein of The Immunoglobulin Superfamily. J. Biol. 1999, 274, 22729–22738. [Google Scholar]
- Angata T, Brinkman-Van der Linden E. I-type lectins. Biochim. Biophys. Acta 2002, 1572, 294–316. [CrossRef]
- Nicoll, G.; Ni, J.; Liu, D.; Klenermani, P.; Munday, J.; Dubock, S.; Mattei, M.G.; Crocker, P.R.; Floyd, H.; Ni, J.; et al. Identification and characterization of a novel Siglec, Siglec-7, expressed by human natural killer cells and monocytes. Siglec-8: A novel eosinophil-specific member of the immunoglobulin superfamily. Chemtracts 2000, 13, 689–694. [Google Scholar]
- Ito, A.; Handa, K.; Withers, D.A.; Satoh, M.; Hakomori, S. itiroh Binding specificity of siglec7 to disialogangliosides of renal cell carcinoma: Possible role of disialogangliosides in tumor progression. FEBS Lett. 2001, 504, 82–86. [Google Scholar] [CrossRef]
- Falco, M.; Biassoni, R.; Bottino, C.; Vitale, M.; Sivori, S.; Augugliaro, R.; Moretta, L.; Moretta, A. Identification and molecular cloning of p75/AIRM1, a novel member of the sialoadhesin family that functions as an inhibitory receptor in human natural killer cells. J. Exp. Med. 1999, 190, 793–801. [Google Scholar] [CrossRef] [Green Version]
- Floyd, H.; Ni, J.; Cornish, A.L.; Zeng, Z.; Liu, D.; Carter, K.C.; Steel, J.; Crocker, P.R. Siglec-8 A novel Eosinophil-Specific member of The Immunoglobulin Superfamily. J. Biol. Chem. 2000, 275, 861–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.Q.; Nicoll, G.; Jones, C.; Crocker, P.R. Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J. Biol. Chem. 2000, 275, 22121–22126. [Google Scholar] [CrossRef] [Green Version]
- Munday, J.; Kerr, S.; Ni, J.; Cornish, A.L.; Zhang, J.Q.; Nicoll, G.; Floyd, H.; Mattei, M.G.; Moore, P.; Liu, D.; et al. Identification, characterization and leucocyte expression of Siglec-10, a novel human sialic acid-binding receptor. Biochem. J. 2001, 355, 489–497. [Google Scholar] [CrossRef]
- Angata, T.; Hayakawa, T.; Yamanaka, M.; Varki, A.; Nakamura, M. Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J. 2006, 20, 1964–1973. [Google Scholar] [CrossRef] [Green Version]
- Angata, T.; Tabuchi, Y.; Nakamura, K.; Nakamura, M. Siglec-15: An immune system Siglec conserved throughout vertebrate evolution. Glycobiology 2007, 17, 838–846. [Google Scholar] [CrossRef]
- Warren, H.S.; Altin, J.G.; Waldron, J.C.; Kinnear, B.F.; Parish, C.R. A carbohydrate structure associated with CD15 (Lewisx) on myeloid cells is a novel ligand for human CD2. J. Immunol. 1996, 156, 2866–2873. [Google Scholar]
- Scholler, N.; Hayden-Ledbetter, M.; Hellström, K.-E.; Hellström, I.; Ledbetter, J.A. CD83 Is a Sialic Acid-Binding Ig-Like Lectin (Siglec) Adhesion Receptor that Binds Monocytes and a Subset of Activated CD8 + T Cells. J. Immunol. 2001, 166, 3865–3872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCourt, P.A.G.; Ek, B.; Forsberg, N.; Gustafson, S. Intercellular adhesion molecule-1 is a cell surface receptor for hyaluronan. J. Biol. Chem. 1994, 269, 30081–30084. [Google Scholar] [CrossRef]
- Kleene, R.; Yang, H.; Kutsche, M.; Schachner, M. The Neural Recognition Molecule L1 is a Sialic Acid-binding Lectin for CD24, Which Induces Promotion and Inhibition of Neurite Outgrowth. J. Biol. Chem. 2001, 276, 21656–21663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horstkorte, R.; Schachner, M.; Magyar, J.P.; Vorherr, T.; Schmitz, B. The fourth immunoglobulin-like domain of NCAM contains a carbohydrate recognition domain for oligomannosidic glycans implicated in association with L1 and neurite outgrowth. J. Cell Biol. 1993, 121, 1409–1422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Etzler, M.E.; Surolia, A.; Cummings, R.D. L-Type Lectins. In Essentials of Glycobiology; Harbor Laboratory Press: New York, NY, USA, 2009. [Google Scholar]
- Bottazzi, B.; Garlanda, C.; Teixeira, M.M. The Role of Pentraxins: From Inflammation, Tissue Repair and Immunity to Biomarkers; Frontiers Media SA: Lausanne, Switzerland, 2020; ISBN 9782889633876. [Google Scholar]
- Clos, T.W. Du Pentraxins: Structure, Function, and Role in Inflammation. ISRN Inflamm. 2013, 2013, 1–22. [Google Scholar]
- Ware, F.E.; Vassilakos, A.; Peterson, P.A.; Jackson, M.R.; Lehrman, M.A.; Williams, D.B. The molecular chaperone calnexin binds Glc1Man9GlcNAc2 oligosaccharide as an initial step in recognizing unfolded glycoproteins. J. Biol. Chem. 1995, 270, 4697–4704. [Google Scholar] [CrossRef] [Green Version]
- Spiro, R.G.; Zhu, Q.; Bhoyroo, V.; Söling, H.D. Definition of the lectin-like properties of the molecular chaperone, calreticulin, and demonstration of its copurification with endomannosidase from rat liver Golgi. J. Biol. Chem. 1996, 271, 11588–11594. [Google Scholar] [CrossRef] [Green Version]
- Zheng, C.; Page, R.C.; Das, V.; Nix, J.C.; Wigren, E.; Misra, S.; Zhang, B. Structural characterization of carbohydrate binding by LMAN1 protein provides new insight into the endoplasmic reticulum export of factors V (FV) and VIII (FVIII). J. Biol. Chem. 2013, 288, 20499–20509. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, Y.; Yamaguchi, Y.; Takahashi, M.; Arata, Y.; Kasai, K.I.; Ihara, Y.; Matsuo, I.; Ito, Y.; Yamamoto, K.; Kato, K. Sugar-binding properties of VIP36, an intracellular animal lectin operating as a cargo receptor. J. Biol. Chem. 2005, 280, 37178–37182. [Google Scholar]
- Kamiya, Y.; Kamiya, D.; Yamamoto, K.; Nyfeler, B.; Hauri, H.P.; Kato, K. Molecular basis of sugar recognition by the human L-type lectins ERGIC-53, VIPL, and VIP36. J. Biol. Chem. 2008, 283, 1857–1861. [Google Scholar] [CrossRef] [Green Version]
- Zahedi, K. Characterization of the binding of serum amyloid P to Laminin. J. Biol. Chem. 1997, 272, 2143–2148. [Google Scholar] [PubMed]
- Köttgen, E.; Hell, B.; Kage, A.; Tauber, R.; Kottgen, E. Lectin specificity and binding characteristics of human C-reactive protein. J. Immunol. 1992, 149, 445–453. [Google Scholar] [PubMed]
- Lee, R.T.; Lee, Y.C. Carbohydrate ligands of human C-reactive protein: Binding of neoglycoproteins containing galactose-6-phosphate and galactose-terminated disaccharide. Glycoconj. J. 2006, 23, 317–327. [Google Scholar] [CrossRef] [PubMed]
- Deban, L.; Jarva, H.; Lehtinen, M.J.; Bottazzi, B.; Bastone, A.; Doni, A.; Jokiranta, T.S.; Mantovani, A.; Meri, S. Binding of the Long Pentraxin PTX3 to Factor H: Interacting Domains and Function in the Regulation of Complement Activation. J. Immunol. 2008, 181, 8433–8440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, D.S.; Jordan, I.K. The alpha-Mannosidases: Phylogeny and Adaptive Diversification. Mol. Biol. Evol. 2000, 17, 292–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallet, S.D.; Clerc, O.; Ricard-Blum, S. Glycosaminoglycan–Protein Interactions: The First Draft of the Glycosaminoglycan Interactome. J. Histochem. Cytochem. 2020, 0022155420946403. [Google Scholar] [CrossRef]
- Bischoff, J.; Kornfeld, R. The soluble form of rat liver α-mannosidase is immunologically related to the endoplasmic reticulum membrane α-mannosidase. J. Biol. Chem. 1986, 261, 4758–4765. [Google Scholar] [CrossRef]
- Tremblay, L.O.; Dyke, N.C.; Herscovics, A. Molecular cloning, chromosomal mapping and tissue-specific expression of a novel human α1,2-mannosidase gene involved in N-glycan maturation. Glycobiology 1998, 8, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Dahms, N.M.; Hancock, M.K. P-type lectins. Biochim. Biophys. Acta Gen. Subj. 2002, 1572, 317–340. [Google Scholar] [CrossRef]
- Tong, P.Y.; Gregory, W.; Kornfeld, S. Ligand interactions of the cation-independent mannose 6-phosphate receptor. The stoichiometry of mannose 6-phosphate binding. J. Biol. Chem. 1989, 264, 7962–7969. [Google Scholar] [CrossRef]
- Tong, P.Y.; Kornfeld, S. Ligand interactions of the cation-dependent mannose 6-phosphate receptor. Comparison with the cation-independent mannose 6-phosphate receptor. J. Biol. Chem. 1989, 264, 7970–7975. [Google Scholar] [CrossRef]
- Gary-Bobo, M.; Nirde, P.; Jeanjean, A.; Morere, A.; Garcia, M. Mannose 6-Phosphate Receptor Targeting and its Applications in Human Diseases. Curr. Med. Chem. 2007, 14, 2945–2953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cummings, R.D.; Schnaar, R.L. R-Type Lectins. In Essentials of Glycobiology; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor: New York, NY, USA, 2015; pp. 401–412. [Google Scholar]
- Clausen, H.; Bennett, E.P. A family of UDP-GalNAc: Polypeptide N-acetylgalactosaminyl-transferases control the initiation of mucin-type O-linked glycosylation. Glycobiology 1996, 6, 635–646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwasaki, H.; Zhang, Y.; Tachibana, K.; Gotoh, M.; Kikuchi, N.; Kwon, Y.D.; Togayachi, A.; Kudo, T.; Kubota, T.; Narimatsu, H. Initiation of O-glycan synthesis in IgA1 hinge region is determined by a single enzyme, UDP-N-acetyl-α-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase 2. J. Biol. Chem. 2003, 278, 5613–5621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hassan, H.; Reis, C.A.; Bennett, E.P.; Mirgorodskaya, E.; Roepstorff, P.; Hollingsworth, M.A.; Burchell, J.; Taylor-Papadimitriou, J.; Clausen, H. The lectin domain of UDP-N-acetyl-D-galactosamine: Polypeptide N-acetylgalactosaminyltransferase-T4 directs its glycopeptide specificities. J. Biol. Chem. 2000, 275, 38197–38205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bennett, E.P.; Hassan, H.; Hollingsworth, M.A.; Clausen, H. A novel human UDP-N-acetyl-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase, GalNAc-T7, with specificity for partial GalNAc-glycosylated acceptor substrates. FEBS Lett. 1999, 460, 226–230. [Google Scholar]
- White, K.E.; Lorenz, B.; Evans, W.E.; Meitinger, T.; Strom, T.M.; Econs, M.J. Molecular cloning of a novel human UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, GalNAc-T8, and analysis as a candidate autosomal dominant hypophosphatemic rickets (ADHR) gene. Gene 2000, 246, 347–356. [Google Scholar] [CrossRef]
- Toba, S.; Tenno, M.; Konishi, M.; Mikami, T.; Itoh, N.; Kurosaka, A. Brain-specific expression of a novel human UDP-GalNAc: Polypeptide N- acetylgalactosaminyltransferase (GalNAc-T9). Biochim. Biophys. Acta Gene Struct. Expr. 2000, 1493, 264–268. [Google Scholar] [CrossRef]
- Cheng, L.; Tachibana, K.; Zhang, Y.; Guo, J.M.; Kahori Tachibana, K.; Kameyama, A.; Wang, H.; Hiruma, T.; Iwasaki, H.; Togayachi, A.; et al. Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T10. FEBS Lett. 2002, 531, 115–121. [Google Scholar] [CrossRef] [Green Version]
- Boskovski, M.T.; Yuan, S.; Pedersen, N.B.; Goth, C.K.; Makova, S.; Clausen, H.; Brueckner, M.; Khokha, M.K. The Heteroataxy gene, GALNT11, glycosylates Notch to orchestrate cilia type and laterality. Nature 2013, 504, 456–459. [Google Scholar]
- Guo, J.M.; Zhang, Y.; Cheng, L.; Iwasaki, H.; Wang, H.; Kubota, T.; Tachibana, K.; Narimatsu, H. Molecular cloning and characterization of a novel member of the UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase family, pp-GalNAc-T12. FEBS Lett. 2002, 524, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Iwasaki, H.; Wang, H.; Kudo, T.; Kalka, T.B.; Hennet, T.; Kubota, T.; Cheng, L.; Inaba, N.; Gotoh, M.; et al. Cloning and characterization of a new human UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase, designated pp-GalNAc-T13, that is specifically expressed in neurons and synthesizes GalNAc α-serine/threonine antigen. J. Biol. Chem. 2003, 278, 573–584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Tachibana, K.; Zhang, Y.; Iwasaki, H.; Kameyama, A.; Cheng, L.; Guo, J.M.; Hiruma, T.; Togayachi, A.; Kudo, T.; et al. Cloning and characterization of a novel UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferase, pp-GalNAc-T14. Biochem. Biophys. Res. Commun. 2003, 300, 738–744. [Google Scholar] [CrossRef]
- Cheng, L.; Tachibana, K.; Iwasaki, H.; Kameyama, A.; Zhang, Y.; Kubota, T.; Hiruma, T.; Tachibana, K.; Kudo, T.; Guo, J.M.; et al. Characterization of a novel human UDP-GalNAc transferase, pp-GalNAc-T15. FEBS Lett. 2004, 566, 17–24. [Google Scholar]
- Raman, J.; Guan, Y.; Perrine, C.L.; Gerken, T.A.; Tabak, L.A. UDP-N-acetyl α-d-galactosamine: Polypeptide N- acetylgalactosaminyltransferases: Completion of the family tree. Glycobiology 2012, 22, 768–777. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, Y.; Nakamura, N.; Oki, S.; Wakabayashi, M.; Ishihama, Y.; Miyake, A.; Itoh, N.; Kurosaka, A. A putative polypeptide N-acetylgalactosaminyltransferase/Williams-Beuren syndrome chromosome region 17 (WBSCR17) regulates lamellipodium formation and macropinocytosis. J. Biol. Chem. 2012, 287, 32222–32235. [Google Scholar]
- Li, X.; Wang, J.; Li, W.; Xu, Y.; Shao, D.; Xie, Y.; Xie, W.; Kubota, T.; Narimatsu, H.; Zhang, Y. Characterization of ppGalNAc-T18, a member of the vertebrate-specific y subfamily of UDP-N-acetyl-d-galactosamine:polypeptide N- acetylgalactosaminyltransferases. Glycobiology 2012, 22, 602–615. [Google Scholar] [CrossRef] [Green Version]
- Takasaki, N.; Tachibana, K.; Ogasawara, S.; Matsuzaki, H.; Hagiuda, J.; Ishikawa, H.; Mochida, K.; Inoue, K.; Ogonuki, N.; Ogura, A.; et al. A heterozygous mutation of GALNTL5 affects male infertility with impairment of sperm motility. Proc. Natl. Acad. Sci. USA 2014, 111, 1120–1125. [Google Scholar]
- Cummings, R.D.; Liu, F.-T. Galectins. In Essentials of Glycobiology; Varki, A., Cummings, R.D., Esko, J.D., Freeze, H.H., Stanley, P., Bertozzi, C.R., Gerald, H.W., Etzler, M.E., Eds.; Harbor Laboratory Press: New York, NY, USA, 2009. [Google Scholar]
- Johannes, L.; Jacob, R.; Leffler, H. Galectins at a glance. J. Cell Sci. 2018, 131, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Barondes, S.H.; Cooper, D.N.W.; Gitt, M.A.; Leffler, H. Galectins. Structure and function of a large family of animal lectins. J. Biol. Chem. 1994, 269, 20807–20810. [Google Scholar]
- Chetry, M.; Thapa, S.; Hu, X.; Song, Y.; Zhang, J.; Zhu, H.; Zhu, X. The role of galectins in tumor progression, treatment and prognosis of gynecological cancers. J. Cancer 2018, 9, 4742–4755. [Google Scholar] [PubMed]
- Ebrahim, A.H.; Alalawi, Z.; Mirandola, L.; Rakhshanda, R.; Dahlbeck, S.; Nguyen, D.; Jenkins, M.; Grizzi, F.; Cobos, E.; Figueroa, J.A.; et al. Galectins in cancer: Carcinogenesis, diagnosis and therapy. Ann. Transl. Med. 2014, 2, 1–7. [Google Scholar]
- Chou, F.C.; Chen, H.Y.; Kuo, C.C.; Sytwu, H.K. Role of galectins in tumors and in clinical immunotherapy. Int. J. Mol. Sci. 2018, 19, 430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.; Cummings, R.D. Galectin-1, a β-galactoside-binding lectin in Chinese hamster ovary cells. I. Physical and chemical characterization. J. Biol. Chem. 1995, 270, 5198–5206. [Google Scholar] [CrossRef] [Green Version]
- Di Lella, S.; Ma, L.; Díaz Ricci, J.C.; Rabinovich, G.A.; Asher, S.A.; Álvarez, R.M.S. Critical role of the solvent environment in galectin-1 binding to the disaccharide lactose. Biochemistry 2009, 48, 786–791. [Google Scholar] [CrossRef] [Green Version]
- Gitt, M.A.; Massa, S.M.; Leffler, H.; Barondes, S.H. Isolation and Expression of a Gene Encoding L-14-II, a New Human Soluble Lactose-binding Lectin. J. Biol. Chem. 1992, 267, 10601–10606. [Google Scholar]
- Cederfur, C.; Salomonsson, E.; Nilsson, J.; Halim, A.; Öberg, C.T.; Larson, G.; Nilsson, U.J.; Leffler, H. Different affinity of galectins for human serum glycoproteins: Galectin-3 binds many protease inhibitors and acute phase proteins. Glycobiology 2008, 18, 384–394. [Google Scholar] [CrossRef] [Green Version]
- Koths, K.; Taylor, E.; Halenbeck, R.; Casipit, C.; Wang, A. Cloning and characterization of a human Mac-2-binding protein, a new member of the superfamily defined by the macrophage scavenger receptor cysteine-rich domain. J. Biol. Chem. 1993, 268, 14245–14249. [Google Scholar] [CrossRef]
- Huflejt, M.E.; Leffler, H. Galectin-4 in normal tissues and cancer. Glycoconj. J. 2003, 20, 247–255. [Google Scholar] [CrossRef]
- Leonidas, D.D.; Vatzaki, E.H.; Vorum, H.; Celis, J.E.; Madsen, P.; Acharya, K.R. Structural basis for the recognition of carbohydrates by human galectin- 7. Biochemistry 1998, 37, 13930–13940. [Google Scholar] [CrossRef]
- Ideo, H.; Matsuzaka, T.; Nonaka, T.; Seko, A.; Yamashita, K. Galectin-8-N-Domain Recognition Mechanism for Sialylated and Sulfated Glycans. J. Biol. Chem. 2011, 286, 11346–11355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagae, M.; Nishi, N.; Nakamura-Tsuruta, S.; Hirabayashi, J.; Wakatsuki, S.; Kato, R. Structural Analysis of the Human Galectin-9 N-terminal Carbohydrate Recognition Domain Reveals Unexpected Properties that Differ from the Mouse Orthologue. J. Mol. Biol. 2008, 375, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Heusschen, R.; Griffioen, A.W.; Thijssen, V.L. Galectin-9 in tumor biology: A jack of multiple trades. Biochim. Biophys. Acta Rev. Cancer 2013, 1836, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Su, J. A brief history of Charcot-Leyden crystal protein/galectin-10 research. Molecules 2018, 23, 2931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hotta, K.; Funahashi, T.; Matsukawa, Y.; Takahashi, M.; Nishizawa, H.; Kishida, K.; Matsuda, M.; Kuriyama, H.; Kihara, S.; Nakamura, T.; et al. Galectin-12, an Adipose-expressed Galectin-like Molecule Possessing Apoptosis-inducing Activity. J. Biol. Chem. 2001, 276, 34089–34097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.Y.; Hsu, D.K.; Yu, L.; Ni, J.; Liu, F.T. Cell Cycle Regulation by Galectin-12, a New Member of the Galectin Superfamily. J. Biol. Chem. 2001, 276, 20252–20260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Than, N.G.; Balogh, A.; Romero, R.; Kárpáti, É.; Erez, O.; Szilágyi, A.; Kovalszky, I.; Sammar, M.; Gizurarson, S.; Matkó, J.; et al. Placental Protein 13 (PP13)—A placental immunoregulatory galectin protecting pregnancy. Front. Immunol. 2014, 5, 348. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Wang, Y.; Si, Y.; Gao, J.; Song, C.; Cui, L.; Wu, R.; Tai, G.; Zhou, Y. Galectin-13, a different prototype galectin, does not bind β-galactosides and forms dimers via intermolecular disulfide bridges between Cys-136 and Cys-138. Sci. Rep. 2018, 8, 980. [Google Scholar]
- Than, N.G.; Romero, R.; Goodman, M.; Weckle, A.; Xing, J.; Dong, Z.; Xu, Y.; Tarquini, F.; Szilagyi, A.; Gal, P.; et al. A primate subfamily of galectins expressed at the maternal-fetal interface that promote immune cell death. Proc. Natl. Acad. Sci. USA 2009, 106, 9731–9736. [Google Scholar]
Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
---|---|---|---|
Proteoglycans or lecticans | |||
Aggrecan | ACAN | Hyaluronic acid [25] | Cartilage, soft tissue |
Brevican | BCAN | Hyaluronic acid [26,27] | Brain |
Neurocan | NCAN | Hyaluronic acid [28] | Brain |
Versican | VCAN | Hyaluronic acid [29] | Brain |
FRAS1 related extracellular matrix 1 | FREM1 | b) | Adrenal gland, appendix, colon, duodenum, epididymis, kidney, lung, pancreas, placenta, rectum, salivary gland, small intestine, stomach, testis, tonsil, thyroid gland |
Type II transmembrane receptors | |||
Blood Dendritic Cell Antigen 2 (C-type lectin domain family 4 member C) | CLEC4C | Gal-β-(1-3 or 1-4)-GlcNAc-β-(1-2)-Man trisaccharides [30,31] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
DC-SIGN (CD209 molecule) | CD209 | High N-linked d-Mannose- oligosaccharides, and branched l-fucose, both with free OH-3 and OH-4. (N-linked glycans, N-acetyl-d-glucosamine, Lewis a, b, x and y) [32] | Bone marrow, lung |
DC-SIGN2 | CLEC4M | High N-linked d-Mannose- oligosaccharides, branched l-fucose, N-linked glycans, N-acetyl-d-glucosamine, Lewis a, b and y | Brain, gastrointestinal tract, lung |
Dectin-2 (C-type lectin domain containing 6A) | CLEC6A | α-(1-2) or α-(1-4) mannans [33] and other high-α-d-mannose carbohydrates [34] | Blood |
Dendritic cell immunoreceptor (DCIR) (C-type lectin domain family 4 member A) | CLEC4A | Mannose, fucose and weakly interacts with N-acetylglucosamine [35] | Bone marrow, spleen, lung |
Fc fragment of IgE receptor II | FCER2 | Mannose [36], immunoglobulin E, CD21, galactose [37] | Lymph node, bone marrow, spleen, appendix, tonsil, skin |
Hepatic Asialoglycoprotein Receptor 1 | ASGR1 | Terminal β-d-galactose and N-acetylgalactosamine units [38] | Stomach, liver, gallbladder |
Hepatic Asialoglycoprotein Receptor 2 | ASGR2 | Terminal β-d-galactose and N-acetylgalactosamine units [38] | Liver |
Kupffer Cell receptor (C-type lectin domain family 4 member F) | CLEC4F | Galactose, fucose, and N-acetylgalactosamine [39] | Liver |
Langerin (CD207 molecule) | CD207 | High-mannose oligosaccharides, mannose, N-acetylglucosamine, fucose. Note that OH-3 and OH-4 should be free for recognition, and preferentially equatorial. N-acetylmannosamine showed less affinity; thereby axial derivatives should be avoided. Sulfated mannosylated glycans, keratan sulfate and β-glucans [40] | Lymph node, tonsil, skin, spleen |
Liver sinusoidal epithelial cell lectin (LSECtin) (C-type lectin domain family 4 member G) | CLEC4G | Mannose, N-acetylglucosamine and fucose [41] | Lymph node, brain, colon, kidney, liver, testis |
Macrophage Asialoglycoprotein Receptor | CLEC10A | Terminal galactose and N-acetylgalactosamine residues [42] | Bone marrow, brain, lymph node, oral mucosa, skin, spleen, tonsil |
Macrophage C-type Lectin (MCL) | CLEC4D | Trehalose 6,6′-dimycolate, α-d-mannans18 (however it was suggested that MCL is not a carbohydrate-binding lectin) [43] | Bone marrow, lung, lymph node, spleen, tonsil |
MINCLE (C-type lectin domain family 4 member E) | CLEC4E | α-mannose, trehalose-6′6-dimycolate, glucose [19] | a) |
Collectins | |||
Collectin-K1 (collectin subfamily member 11) | COLEC11 | High mannose oligosaccharides with at least a mannose-α-(1-2)-mannose residue [44] | a) |
Collectin-L1 (collectin subfamily member 10) | COLEC10 | Galactose, mannose, fucose, N-acetylglucosamine, N-acetylgalactosamine [45] | a) |
Mannose-binding lectin 2 | MBL2 | Mannose, fucose, N-acetylglucosamine [46] | Liver |
Pulmonary surfactant protein 1 (surfactant protein A1) | SFTPA1 | N-acetylmannosamine, l-fucose, mannose, glucose, poorly to galactose. Preferentially oligosaccharides [47] | Lung |
Pulmonary surfactant protein 2 (surfactant protein A2) | SFTPA2 | N-acetylmannosamine, l-fucose, mannose, glucose, poorly to galactose. Preferentially oligosaccharides [47] | Lung |
Pulmonary surfactant protein B (surfactant protein B) | SFTPB | b) | Lung |
Pulmonary surfactant protein C (surfactant protein C) | SFTPC | Lipopolysaccharides [47] | Lung |
Pulmonary surfactant protein D (surfactant protein D) | SFTPD | Maltose, glucose, mannose, poorly to galactose. Preferentially oligosaccharides [47] | Lung |
Scavenger receptor with CTLD (SRCL) (collectin subfamily member 12) | COLEC12 | d-galactose, l- and d-fucose, N-acetylgalactosamine (internalizes specifically in nurse-like cells), sialyl Lewis X, or a trisaccharide and asialo-orosomucoid (ASOR). May also play a role in the clearance of amyloid-beta in Alzheimer disease [48] | Brain, lung, placenta |
Selectins | |||
Selectin E | SELE | Sialyl Lewis x, a [49] | Bone marrow, colon, nasopharynx |
Selectin L | SELL | Sialyl Lewis x [50] | Appendix, bone marrow, lymph node, spleen, tonsil |
Selectin P | SELP | Sialyl Lewis x [49] | Bone marrow, colon |
Natural Killer (NK) | |||
C-type lectin domain family 2 member L | CLEC2L | b) | Brain, skeletal muscle |
C-type lectin domain containing 5A | CLEC5A | Fucose, mannose, N-acetylglucosamine, N-acetylmuramic acid-β(1-4)-N-acetylglucosamine [51] | Blood |
CD72 molecule | CD72 | b) | Appendix, bone marrow, lymph node, spleen, tonsil |
Killer cell lectin-like receptor G1 | KLRG1 | Mannose [52] | Appendix, cervix (uterine), colon, duodenum, small intestine, stomach, tonsil |
Killer cell lectin-like receptor G2 | KLRG2 | b) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
CD69 molecule | CD69 | Fucoidan (weak). N-acetylamine was reported but not supported by a second report. Does not bind glucose, galactose, mannose, fucose or N-acetylglucosamine [53] | Appendix, bone marrow, lymph node, spleen, tonsil |
Killer cell lectin-like receptor F1 | KLRF1 | Predicted to not bind carbohydrates [54] | Blood |
C-type lectin domain family 2 member B | CLEC2B | b) Known to bind to KLRF1 | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, proximal digestive tract, skin |
Oxidized low-density lipoprotein receptor 1 | OLR1 | Predicted to not bind to carbohydrates [55] | a) |
Killer cell lectin-like receptor D1 | KLRD1 | α-(2-3)-linked NeuAc on multi-antennary N-glycan, heparin, sulfate-containing polysaccharides [56] | a) |
C-type lectin domain family 1 member A | CLEC1A | b) [57] | a) |
C-type lectin domain family 1 member B | CLEC1B | Predicted to not bind to carbohydrates [58] | a) |
C-type lectin domain family 12 member B | CLEC12B | b) | a) |
C-type lectin-like 1 | CLECL1 | Predicted to not bind to carbohydrates [21] | a) |
C-type lectin domain family 12 member A | CLEC12A | b) | Bone marrow, lung, spleen |
DNGR (C-type lectin domain containing 9A) | CLEC9A | Specific interactions were not discovered yet, although it is known that this lectin binds to α-actin filaments and β-spectrin [59] | a) |
C-type lectin domain family 2 member A | CLEC2A | b) | Skin |
Dectin-1 (C-type lectin domain containing 7A) | CLEC7A | β-(1-3)- and β-(1-6)-d-Glycans (neither mono- or short oligosaccharides/polymers are recognized) [60] | Blood, bone marrow |
C-type lectin domain family 2 member D | CLEC2D | High molecular weight sulfated glycosaminoglycans [61] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Killer cell lectin-like receptor B1 | KLRB1 | Terminal Gal-α-(1-3)-Gal, N-acetyllactosamine. [62] Sucrose octasulphate [63] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Killer cell lectin-like receptor C1 | KLRC1 | b) | a) |
Killer cell lectin-like receptor C2 | KLRC2 | b) | a) |
Killer cell lectin-like receptor C3 | KLRC3 | b) | Colon, duodenum, small intestine, stomach, tonsil |
Killer cell lectin-like receptor C4 | KLRC4 | b) | a) |
Killer cell lectin-like receptor K1 | KLRK1 | α-(2-3)-NeuAc-containing N-glycans [64], heparin, heparan sulfate [56] | Appendix, lymph node, spleen, tonsil |
Macrophage Mannose Receptor (MMR) | |||
Endo180 (Mannose receptor C type 2) | MRC2 | Mannose, fucose, N-acetylglucosamine [65] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Lymphocyte antigen 75 | LY75 | Predicted to not bind carbohydrates [65] | Appendix, breast, bronchus, cervix (uterine), duodenum, endometrium, fallopian tube, gallbladder, liver, lung, lymph node, nasopharynx, pancreas, placenta, rectum, spleen, stomach, thyroid gland, tonsil, urinary bladder, |
Mannose receptor C-type 1 c) | MRC1 | Mannose, fucose, glucose, N-acetylglucosamine [66] (C-type) 4-O-sulphated GalNAc (R-type) | Colon, endometrium, kidney, lung, rectum, skin, soft tissue, testis |
Phospholipase A2 receptor | PLA2R1 | Predicted to not bind carbohydrates [65] but known to bind collagen | Kidney |
Free C-type Lectin Domains (CTLDs) | |||
C-type lectin domain containing 19A | CLEC19A | b) | a) |
Lithostathine-alpha (Regenerating family member 1 alpha) | REG1A | b) | Duodenum, pancreas, small intestine, stomach |
Lithostathine-beta (Regenerating family member 1 beta) | REG1B | b) | Duodenum, pancreas, small intestine, stomach |
Regenerating family member 3 alpha | REG3A | Peptidoglycan (binding affinity increases with the length of the carbohydrate moiety) [67] | Appendix, duodenum, skin, small intestine, stomach |
Regenerating family member 3 gamma | REG3G | Peptidoglycan [67] | a) |
Regenerating family member 4 | REG4 | Mannans, heparin [67] | Appendix, colon, duodenum, rectum, small intestine |
Type I receptors | |||
Chondrolectin | CHODL | b) [68] | Appendix, colon, duodenum, rectum, small intestine, testis |
Layilin | LAYN | Hyaluronan [69] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Tetranectin | |||
Cartilage-derived C-type lectin (C-type lectin domain family 3 member A) | CLEC3A | Expected to bind sulfated polysaccharides such as heparin [70] | a) |
Stem cell growth factor (SCGF) (C-type lectin domain containing 11A) | CLEC11A | b) | Bone marrow, soft tissue |
Tetranectin (C-type lectin domain family 3 member B) | CLEC3B | Sulfated polysaccharides such as heparin [70] | a) |
Polycystin | |||
Polycystin 1 like 3, transient receptor potential channel interacting | PKD1L3 | Predicted to not bind carbohydrates | a) |
Polycystin 1, transient receptor potential channel interacting | PKD1 | Predicted to bind galactosyl and glucosyl residues. Might bind oligosaccharides with mannosyl moieties [71] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, pancreas, proximal digestive tract, skin |
Attractin | |||
Attractin | ATRN | b) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, pancreas, proximal digestive tract, skin |
Attractin-like 1 | ATRNL1 | b) | a) |
CTLD/acidic neck | |||
CD302 molecule | CD302 | b) [72] | a) |
Proteoglycan 2, pro eosinophil major basic protein | PRG2 | Heparin [73] | Bone marrow, placenta |
Proteoglycan 3, pro eosinophil major basic protein 2 | PRG3 | b) | Bone marrow |
Endosialin | |||
CD93 molecule | CD93 | b) | Bone marrow, brain, colon, kidney, lung, spleen |
C-type lectin domain containing 14A | CLEC14A | b) | Appendix, brain, cervix (uterine), colon, duodenum, esophagus, gallbladder, heart muscle, kidney, lung, pancreas, prostate, rectum, skin, small intestine, stomach, testis |
Endosialin (CD248 molecule) | CD248 | b) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, female tissues, gastrointestinal tract, kidney and urinary bladder, muscle tissues, pancreas, skin |
Thrombomodulin | THBD | b) | Cervix (uterine), colon, esophagus, lymph node, oral mucosa, placenta, skin, tonsil, urinary bladder, vagina |
Others | |||
C-type lectin domain family 18 member A | CLEC18A | Fucoidan, β-glucans, β-galactans [74] | a) |
Prolectin (C-type lectin domain containing 17A) | CLEC17A | Terminal α-d-mannose and fucose residues [75] | Appendix, lymph node, spleen, stomach, tonsil |
DiGeorge syndrome critical region gene 2 | DGCR2 | b) | Pancreas |
FRAS1 related extracellular matrix 1 | FREM1 | b) | Adrenal gland, appendix, colon, duodenum, epididymis, kidney, lung, pancreas, placenta, rectum, salivary gland, small intestine, stomach, testis, tonsil, thyroid gland |
Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
---|---|---|---|
Chitinase 3 like 1 | CHI3L1 | Chitin [78] | a) |
Chitinase 3 like 2 | CHI3L2 | Chitooligosaccharides ((GlcNAc)5 and (GlcNAc)6 showed the highest affinities) [79] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, proximal digestive tract |
Oviductin (Oviductal glycoprotein 1) | OVGP1 | Chitin [80] | Fallopian tube |
Stabilin-1 interacting chitinase-like protein | SI-CLP | GalNAc, GlcNAc, ribose, mannose. Prefers to bind oligosaccharides with a four-sugar ring core [81] | a) |
Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
---|---|---|---|
Coagulation factor V a) | F5 | Fucose [83] | b) |
APC, WNT signalling pathway regulator | APC | c) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
---|---|---|---|
Cyclin F | CCNF | a) | Appendix, bone marrow, lung, lymph node, skin, spleen, tonsil |
F-box protein 2 | FBXO2 | N-acetylglucosamine disaccharide chitobiose [86] | Breast, ovary, pancreas |
F-box protein 3 | FBXO3 | a) | b) |
F-box protein 4 | FBXO4 | a) | b) |
F-box protein 5 | FBXO5 | a) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
F-box protein 6 | FBXO6 | High-mannose glycoproteins [87] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
F-box protein 7 | FBXO7 | a) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
F-box protein 8 | FBXO8 | a) | Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, pancreas, proximal digestive tract, skin |
F-box protein 9 | FBXO9 | a) | b) |
F-box protein 10 | FBXO10 | a) | Cervix (uterine), colon, duodenum, endometrium, fallopian tube, lung, prostate, rectum, seminal vesicle, small intestine, testis |
F-box protein 11 | FBXO11 | a) | b) |
F-box protein 15 | FBXO15 | a) | b) |
F-box protein 16 | FBXO16 | a) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
F-box protein 17 | FBXO17 | Sulfated and galactose-terminated glycoproteins [88] | b) |
F-box protein, helicase, 18 | FBXO18 | a) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
LIM domain 7 | LMO7 | a) | b) |
F-box protein 21 | FBXO21 | a) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, proximal digestive tract, skin |
F-box protein 22 | FBXO22 | a) | b) |
Tetraspanin 17 | TSPAN17 | a) | b) |
F-box protein 24 | FBXO24 | a) | b) |
F-box protein 25 | FBXO25 | a) | b) |
F-box protein 27 | FBXO27 | a) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, proximal digestive tract, skin |
F-box protein 28 | FBXO28 | a) | b) |
F-box protein 30 | FBXO30 | a) | b) |
F-box protein 31 | FBXO31 | a) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, proximal digestive tract, skin |
F-box protein 32 | FBXO32 | a) | b) |
F-box protein 33 | FBXO33 | a) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
F-box protein 34 | FBXO34 | a) | Adrenal gland, bronchus, colon, epididymis, endometrium, gallbladder, placenta, seminal vesicle, skeletal muscle, skin, stomach, testis, thyroid gland |
F-box protein 36 | FBXO36 | a) | b) |
F-box protein 38 | FBXO38 | a) | b) |
F-box protein 39 | FBXO39 | a) | b) |
F-box protein 40 | FBXO40 | a) | b) |
F-box protein 41 | FBXO41 | a) | b) |
F-box protein 42 | FBXO42 | a) | Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, pancreas |
F-box protein 43 | FBXO43 | a) | b) |
F-box protein 44 | FBXO44 | a) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
F-box protein 45 | FBXO45 | a) | b) |
F-box protein 46 | FBXO46 | a) | b) |
F-box protein 47 | FBXO47 | a) | b) |
F-box protein 48 | FBXO48 | a) | Esophagus, kidney, oral mucosa, parathyroid gland, skin, stomach |
Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
---|---|---|---|
Ficolin 1 | FCN1 | GlcNAc, GalNAc; sialic acid [89] | a) |
Ficolin 2 | FCN2 | GlcNAc (acetyl group); β-(1-3)-d-glucan [89] | a) |
Ficolin 3 | FCN3 | N-acetylglucose; N-acetylgalactose, fucose, lipopolysaccharides [89] | a) |
Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
---|---|---|---|
Siglecl1 (Sialic acid binding Ig like lectin 1) | SIGLEC1 | α-(2-3)-Sialic acid, α-(2-6)-Sialic acid, α-(2-8)-Sialic acid [94] | Bone marrow, lung |
Siglec2 (CD22 molecule) a) | CD22 | α-(2-6)-Sialic acid [95,96] | Appendix, lymph node, spleen, tonsil |
Siglec3 (CD33 molecule) | CD33 | α-(2-6)-Sialic acid, α-(2-3)-Sialic acid [97] | Appendix, bone marrow, lung, lymph node, skin, spleen, tonsil |
Siglec4a, MAG (Myelin associated glycoprotein) | MAG | α-(2-3)-Sialic acid [98] | Brain |
Siglec5 (Sialic acid binding Ig like lectin 5) | SIGLEC5 | α-(2-3)-Sialic acid, α-(2-6)-Sialic acid, α-(2-8)-Sialic acid [99] | Bone marrow, lymph node, placenta, spleen, tonsil |
Siglec6 (Sialic acid binding Ig like lectin 6) | SIGLEC6 | Sialic acid-α-(2-6)-N-acetylgalactosamine (Sialyl-Tn) [100] | Placenta |
Siglec7 | SIGLEC7 | α-(2-6)-Sialic acid, α-(2-8)-Sialic acid, α-(2-3)-Sialic acid [101] and disialogangliosides [102,103,104] | b) |
Siglec8 | SIGLEC8 | α-(2-3)-Sialic acid, α-(2-6)-Sialic acid [105] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Siglec9 (Sialic acid binding Ig like lectin 9) | SIGLEC9 | α-(2-3)-Sialic acid, Sialyl Lewis x, α-(2-6)-Sialic acid, α-(2-8)-Sialic acid [106] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Siglec10 (Sialic acid binding Ig like lectin 10) | SIGLEC10 | α-(2-3)-Sialic acid, α-(2-6)-Sialic acid [107] | Appendix, bone marrow, lymph node, soft tissue, spleen, tonsil |
Siglec11 (Sialic acid binding Ig like lectin 11) | SIGLEC11 | α-(2-8)-Sialic acid [101] | b) |
Siglec14 (Sialic acid binding Ig like lectin 14) | SIGLEC14 | Sialic acid- α-(2-6)-N-acetylgalactosamine (Sialyl-Tn), N-acetylneuraminic acid [108] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Siglec15 (Sialic acid binding Ig like lectin 15) | SIGLEC15 | Sialyl-Tn [109] | b) |
CD2 molecule a) | CD2 | N-glycans with fucose [110] | Appendix, lymph node, spleen, tonsil |
CD83 molecule | CD83 | Sialic acid [111] | Appendix, bone marrow, lung, lymph node, spleen, tonsil |
Intercellular adhesion molecule 1 | ICAM1 | Hyaluronan [112] | Appendix, bone marrow, brain, endometrium, fallopian tube, kidney, lung, lymph node, spleen, testis, tonsil |
L1 cell adhesion molecule | L1CAM | α-(2-3)-Sialic acid [113] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, proximal digestive tract, skin |
Myelin protein zero | MPZ | SO4– –3GlucA-β-(1-3)-Gal-β-(1–4)-GlcNAc (HNK-1 antigen) [101] | Bronchus, esophagus, fallopian tube, small intestine, soft tissue, stomach, testis |
Neural cell adhesion molecule 1 | NCAM1 | High N-linked d-mannose [114] | Brain, colon, hearth muscle, pancreas, smooth muscle, soft tissue, thyroid gland |
Neural cell adhesion molecule 2 | NCAM2 | c) | Brain, bronchus, colon, duodenum, gallbladder, ovary, rectum, small intestine, soft tissue, testis |
Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
---|---|---|---|
Calnexin | CANX | Non-reducing glucose residues in an oligosaccharide (Glc(Man)9(GlcNAc)2) [118] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Calreticulin | CALR | Non-reducing glucose residues in an oligosaccharide (Glc(Man)9(GlcNAc)2) [119] | Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, pancreas, skin |
Calreticulin 3 | CALR3 | a) | Testis |
Lectin, mannose-binding 1 | LMAN1 | α-(1-2) mannans with free OH-3, OH-4 and OH-6 [120] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Lectin, mannose-binding 1 like | LMAN1L | a) | b) |
Lectin, mannose-binding 2 | LMAN2 | High α-(1-2) mannans, Low affinity for d-glucose and N-acetylglucosamine [121] | Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, pancreas |
Lectin, mannose-binding 2 like | LMAN2L | α-(1-2) trimannose [122] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Adhesion G protein-coupled receptor D1 | ADGRD1 | a) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Adhesion G protein-coupled receptor D2 | ADGRD2 | a) | b) |
Amyloid P component, serum | APCS | Heparin, dextran sulfate proteoglycans [123] | b) |
C-reactive protein | CRP | Galactose 6-phosphate, Gal-β-(1-3)-GalNAc, Gal-β-(1-4)-GalNAc, Gal-β-(1-4)-Gal-β-(1-4)-GlcNAc, other phosphate-containing ligands [124,125] | Liver, gallbladder, soft tissue |
Neuronal pentraxin 1 | NPTX1 | a) | Brain, testis |
Neuronal pentraxin 2 | NPTX2 | a) | Adrenal gland, brain, pancreas, pituitary gland, testis |
Neuronal pentraxin receptor | NPTXR | a) | Brain |
Pentraxin 3 | PTX3 | Heparin [126] | b) |
Sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1 | SVEP1 | a) | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas |
Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
---|---|---|---|
Mannosidase alpha class 1A member 1 | MAN1A1 | α-(1-2)-mannans [128,129] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Mannosidase alpha class 1A member 2 | MAN1A2 | α-(1-2)-mannans [128,129] | Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Mannosidase alpha class 1B member 1 | MAN1B1 | α-(1-2)-mannans [128,129] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Mannosidase alpha class 1C member 1 | MAN1C1 | α-(1-2)-mannans [128,129] | Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas |
Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
---|---|---|---|
Mannose-6-phosphate receptor, cation dependent a) | M6PR | Mannose-6-phosphate residues [132,133] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Insulin-like growth factor 2 receptor | IGF2R | Mannose-6-phosphate residues (either α or β). Mannose-6-phosphate analogues with carboxylate or malonate groups [134] | b) |
Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
---|---|---|---|
Polypeptide N-acetylgalactosaminyltransferase 1 | GALNT1 | GalNAc [136] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Polypeptide N-acetylgalactosaminyltransferase 2 | GALNT2 | GalNAc [136,137] | Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Polypeptide N-acetylgalactosaminyltransferase 3 | GALNT3 | GalNAc [136] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Polypeptide N-acetylgalactosaminyltransferase 4 | GALNT4 | GalNAc, GalNAc-glycosylated substrates [136,138] | a) |
Polypeptide N-acetylgalactosaminyltransferase 5 | GALNT5 | GalNAc [136] | Appendix, bronchus, cervix (uterine), colon, duodenum, esophagus, gallbladder, lung, oral mucosa, rectum, salivary gland, small intestine, stomach, tonsil, vagina |
Polypeptide N-acetylgalactosaminyltransferase 6 | GALNT6 | GalNAc [136] | Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Polypeptide N-acetylgalactosaminyltransferase 7 | GALNT7 | GalNAc, GalNAc-glycosylated substrates [100] | Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract |
Polypeptide N-acetylgalactosaminyltransferase 8 b) | GALNT8 | GalNAc [139] | Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, skin |
Polypeptide N-acetylgalactosaminyltransferase 9 | GALNT9 | GalNAc [140] | a) |
Polypeptide N-acetylgalactosaminyltransferase 10 | GALNT10 | GalNAc [141] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Polypeptide N-acetylgalactosaminyltransferase 11 | GALNT11 | GalNAc [142] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Polypeptide N-acetylgalactosaminyltransferase 12 | GALNT12 | GalNAc [143] | Appendix, bone marrow, brain, breast, cervix (uterine), endometrium, fallopian tube, prostate, soft tissue, thyroid gland, tonsil, skin |
Polypeptide N-acetylgalactosaminyltransferase 13 | GALNT13 | GalNAc [144] | Adrenal gland, lung, salivary gland |
Polypeptide N-acetylgalactosaminyltransferase 14 | GALNT14 | GalNAc [145] | a) |
Polypeptide N-acetylgalactosaminyltransferase 15 | GALNT15 | GalNAc [146] | a) |
Polypeptide N-acetylgalactosaminyltransferase 16 | GALNT16 | GalNAc [147] | Bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Polypeptide N-acetylgalactosaminyltransferase 17 | GALNT17 | GalNAc [148] | Brain |
Polypeptide N-acetylgalactosaminyltransferase 18 | GALNT18 | GalNAc [149] | Adipose and soft tissue, bone marrow and lymphoid tissues, brain, endocrine tissues, female tissues, gastrointestinal tract, kidney and urinary bladder, lung, male tissues, muscle tissues, pancreas, proximal digestive tract, skin |
Polypeptide N-acetylgalactosaminyltransferase like 5 | GALNTL5 | c) [150] | Testis |
Common Name (HUGO Name if Different) | Gene Symbol | Carbohydrate Preferential Affinity | Protein Expression in the Organs |
---|---|---|---|
Intelectin 1 | ITLN1 | Terminal acyclic 1,2-diol-containing structures, including β-d-galactofuranose, d-phosphoglycerol-modified glycans, d-glycero-d-talo-oct-2-ulosonic acid, 3-deoxy-d-manno-oct-2-ulosonic acid [174] | Appendix, colon, duodenum, rectum, small intestine |
Intelectin 2 | ITLN2 | a) | Appendix, colon, duodenum, rectum, small intestine |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raposo, C.D.; Canelas, A.B.; Barros, M.T. Human Lectins, Their Carbohydrate Affinities and Where to Find Them. Biomolecules 2021, 11, 188. https://doi.org/10.3390/biom11020188
Raposo CD, Canelas AB, Barros MT. Human Lectins, Their Carbohydrate Affinities and Where to Find Them. Biomolecules. 2021; 11(2):188. https://doi.org/10.3390/biom11020188
Chicago/Turabian StyleRaposo, Cláudia D., André B. Canelas, and M. Teresa Barros. 2021. "Human Lectins, Their Carbohydrate Affinities and Where to Find Them" Biomolecules 11, no. 2: 188. https://doi.org/10.3390/biom11020188
APA StyleRaposo, C. D., Canelas, A. B., & Barros, M. T. (2021). Human Lectins, Their Carbohydrate Affinities and Where to Find Them. Biomolecules, 11(2), 188. https://doi.org/10.3390/biom11020188