Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Differential Scanning Calorimetry (DSC)
2.4. X-Ray Diffraction
2.5. 31P-NMR
2.6. 1H-NOESY-MAS-NMR
2.7. Molecular Dynamics Simulations
3. Results
3.1. DSC Study of the Interaction of DES with DMPC
3.2. DSC Study of the Interaction of DES with DEPE
3.3. X-Ray Diffraction
3.4. Changes in Phase of DEPE as Observed by SAXD and 31P-NMR
3.5. 1H-NOESY-MAS NMR
3.6. Molecular Dynamics Simulations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tournaire, M.; Epelboin, S.; Devouche, E.; Viot, G.; Le Bidois, J.; Cabau, A.; Dunbavand, A.; Levadou, A. Adverse health effects in children of women exposed in utero to diethylstilbestrol (DES). Therapie 2016, 71, 395–404. [Google Scholar] [CrossRef]
- Al Jishi, T.; Sergi, C. Current perspective of diethylstilbestrol (DES) exposure in mothers and offspring. Reprod. Toxicol 2017, 71, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Conlon, J.L. Diethylstilbestrol: Potential health risks for women exposed in utero and their offspring. Jaapa Off. J. Am. Acad. Physician Assist. 2017, 30, 49–52. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Laudisio, D.; Savastano, S.; Colao, A. Obesogenic endocrine disruptors and obesity: Myths and truths. Arch. Toxicol. 2017, 91, 3469–3475. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, P.L.; Carafoli, E. Ion motive ATPases. I. Ubiquity, properties, and significance to cell function. Trends Biochem. Sci. 1987, 12, 146–150. [Google Scholar] [CrossRef]
- McEnery, M.W.; Pedersen, P.L. Diethylstilbestrol. A novel F0-directed probe of the mitochondrial proton ATPase. J. Biol. Chem. 1986, 261, 1745–1752. [Google Scholar] [CrossRef]
- McEnery, M.W.; Hullihen, J.; Pedersen, P.L. F0 “proton channel” of rat liver mitochondria. Rapid purification of a functional complex and a study of its interaction with the unique probe diethylstilbestrol. J. Biol. Chem. 1989, 264, 12029–12036. [Google Scholar] [CrossRef]
- Martinez-Azorin, F.; Teruel, J.A.; Fernandez-Belda, F.; Gomez-Fernandez, J.C. Effect of diethylstilbestrol and related compounds on the Ca(2+)-transporting ATPase of sarcoplasmic reticulum. J. Biol. Chem. 1992, 267, 11923–11929. [Google Scholar] [CrossRef]
- Nanjappa, M.K.; Medrano, T.I.; Mesa, A.M.; Ortega, M.T.; Caldo, P.D.; Mao, J.; Kinkade, J.A.; Levin, E.R.; Rosenfeld, C.S.; Cooke, P.S. Mice lacking membrane estrogen receptor 1 are protected from reproductive pathologies resulting from developmental estrogen exposuredagger. Biol. Reprod. 2019, 101, 392–404. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, C.J.F.; Van Gent, C.M.; Pries, C. A rapid and sensitive sub-micro phosphorus determination. Anal. Chim. Acta. 1961, 24, 203–204. [Google Scholar] [CrossRef]
- Pabst, G.; Rappolt, M.; Amenitsch, H.; Laggner, P. Structural information from multilamellar liposomes at full hydration: Full q-range fitting with high quality x-ray data. Phys. Rev. E 2000, 62, 4000–4009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pabst, G.; Koschuch, R.; Pozo-Navas, B.; Rappolt, M.; Lohner, K.; Laggner, P. Structural analysis of weakly ordered membrane stacks. Appl. Cryst. 2003, 36, 1378–1388. [Google Scholar] [CrossRef]
- Pabst, G.B.R.L. Global properties of biomimetic membranes: Perspectives on molecular features. Biophys. Rev. Lett. 2006, 1, 57–84. [Google Scholar] [CrossRef]
- Huster, D.; Arnold, K.; Gawrisch, K. Investigation of Lipid Organization in Biological Membranes by Two-Dimensional Nuclear Overhauser Enhancement Spectroscopy. J. Phys. Chem. B 1999, 103, 243–251. [Google Scholar] [CrossRef]
- Siarheyeva, A.; Lopez, J.J.; Glaubitz, C. Localization of multidrug transporter substrates within model membranes. Biochemistry 2006, 45, 6203–6211. [Google Scholar] [CrossRef] [PubMed]
- Holte, L.L.; Gawrisch, K. Determining ethanol distribution in phospholipid multilayers with MAS-NOESY spectra. Biochemistry 1997, 36, 4669–4674. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; et al. PubChem Substance and Compound databases. Nucleic. Acids. Res. 2016, 44, D1202–D1213. [Google Scholar] [CrossRef] [PubMed]
- Abraham, M.; Hess, B.D.; Van Der Spoel, D.; Lindahl, E. GROMACS User Manual Version 5.0.7. 2015. Available online: www.Gromacs.Org (accessed on 19 September 2020).
- Oostenbrink, C.; Soares, T.A.; van der Vegt, N.F.; van Gunsteren, W.F. Validation of the 53A6 GROMOS force field. Eur. Biophys. J. 2005, 34, 273–284. [Google Scholar] [CrossRef] [Green Version]
- Oostenbrink, C.; Villa, A.; Mark, A.E.; van Gunsteren, W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 2004, 25, 1656–1676. [Google Scholar] [CrossRef]
- Poger, D.; Mark, A.E. On the Validation of Molecular Dynamics Simulations of Saturated and cis-Monounsaturated Phosphatidylcholine Lipid Bilayers: A Comparison with Experiment. J. Chem. Theory. Comput. 2010, 6, 325–336. [Google Scholar] [CrossRef] [PubMed]
- Poger, D.; Van Gunsteren, W.F.; Mark, A.E. A new force field for simulating phosphatidylcholine bilayers. J. Comput. Chem. 2010, 31, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Koziara, K.B.; Stroet, M.; Malde, A.K.; Mark, A.E. Testing and validation of the Automated Topology Builder (ATB) version 2.0: Prediction of hydration free enthalpies. J. Comput. -Aided Mol. Des. 2014, 28, 221–233. [Google Scholar] [CrossRef] [PubMed]
- Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An Automated Force Field Topology Builder (ATB) and Repository: Version 1.0. J. Chem. Theory Comput. 2011, 7, 4026–4037. [Google Scholar] [CrossRef]
- Martinez, L.; Andrade, R.; Birgin, E.G.; Martinez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef]
- Berendsen, H.J.C.; Postma, J.P.M.; van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef] [Green Version]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N•log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef] [Green Version]
- Hess, B.; Bekker, H.; Berendsen, H.J.C.; Fraaije, J.G.E.M. LINCS: A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem. 1997, 18, 1463–1472. [Google Scholar] [CrossRef]
- Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals: A New Molecular Dynamics Method. J. Appl. Phys. 1981, 52, 7182–7190. [Google Scholar] [CrossRef]
- Bussi, G.; Donadio, D.; Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 2007, 126, 014101. [Google Scholar] [CrossRef] [Green Version]
- Epand, R.M.; Lester, D.S. The role of membrane biophysical properties in the regulation of protein kinase C activity. Trends Pharm. Sci. 1990, 11, 317–320. [Google Scholar] [CrossRef]
- Luzzati, V. X-ray diffraction studies of water lipid systems. In Biological Membranes; Chapman, D., Ed.; Academic Press: London, UK, 1968; pp. 71–123. [Google Scholar]
- Rand, R.P.; Tinker, D.O.; Fast, P.G. Polymorphism of phosphatidylethanolamines from two natural sources. Chem. Phys. Lipids 1971, 6, 333–342. [Google Scholar] [CrossRef]
- Janiak, M.J.; Small, D.M.; Shipley, G.G. Nature of the Thermal pretransition of synthetic phospholipids: Dimyristolyl- and dipalmitoyllecithin. Biochemistry 1976, 15, 4575–4580. [Google Scholar] [CrossRef] [PubMed]
- Harlos, K.; Eibl, H. Influence of calcium on phosphatidylglycerol. Two separate lamellar structures. Biochemistry 1980, 19, 895–899. [Google Scholar] [CrossRef]
- Tardieu, A.; Luzzati, V.; Reman, F.C. Structure and polymorphism of the hydrocarbon chains of lipids: A study of lecithin-water phases. J. Mol. Biol. 1973, 75, 711–733. [Google Scholar] [CrossRef]
- Cullis, P.R.; de Kruijff, B. Lipid polymorphism and the functional roles of lipids in biological membranes. Biochim. Biophys. Acta. 1979, 559, 399–420. [Google Scholar] [CrossRef]
- Inamori, Y.; Kubo, M.; Ogawa, M.; Moriwaki, M.; Tsujibo, H.; Baba, K.; Kozawa, M. The biological activities of diethylstilbestrol and its derivatives. Chem. Pharm. Bull. 1985, 33, 4478–4483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ausili, A.; Martinez-Valera, P.; Torrecillas, A.; Gomez-Murcia, V.; de Godos, A.M.; Corbalan-Garcia, S.; Teruel, J.A.; Gomez Fernandez, J.C. Anticancer Agent Edelfosine Exhibits a High Affinity for Cholesterol and Disorganizes Liquid-Ordered Membrane Structures. Langmuir 2018, 34, 8333–8346. [Google Scholar] [CrossRef]
- Oliva, A.; Teruel, J.A.; Aranda, F.J.; Ortiz, A. Effect of a dirhamnolipid biosurfactant on the structure and phase behaviour of dimyristoylphosphatidylserine model membranes. Colloids Surf. B. 2020, 185, 110576. [Google Scholar] [CrossRef]
- Epand, R.M. The relationship between the effects of drugs on bilayer stability and on protein kinase C activity. Chem. Biol. Interact. 1987, 63, 239–247. [Google Scholar] [CrossRef]
- Epand, R.M.; Epand, R.F.; Lancaster, C.R. Modulation of the bilayer to hexagonal phase transition of phosphatidylethanolamines by acylglycerols. Biochim. Biophys. Acta 1988, 945, 161–166. [Google Scholar] [CrossRef]
- Ausili, A.; Clemente, J.; Pons-Belda, O.D.; de Godos, A.; Corbalan-Garcia, S.; Torrecillas, A.; Teruel, J.A.; Gomez-Fernandez, J.C. Interaction of Vitamin K1 and Vitamin K2 with Dimyristoylphosphatidylcholine and Their Location in the Membrane. Langmuir 2020, 36, 1062–1073. [Google Scholar] [CrossRef]
- Ortiz, A.; Aranda, F.J. The influence of vitamin K1 on the structure and phase behaviour of model membrane systems. Biochim. Biophys. Acta. 1999, 1418, 206–220. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Migallon, M.P.; Aranda, F.J.; Gomez-Fernandez, J.C. Interaction between alpha-tocopherol and heteroacid phosphatidylcholines with different amounts of unsaturation. Biochim. Biophys. Acta 1996, 1279, 251–258. [Google Scholar] [CrossRef] [Green Version]
- Epand, R.M.; Robinson, K.S.; Andrews, M.E.; Epand, R.F. Dependence of the bilayer to hexagonal phase transition on amphiphile chain length. Biochemistry 1989, 28, 9398–9402. [Google Scholar] [CrossRef] [PubMed]
- Epand, R.M.; Bryszewska, M. Modulation of the bilayer to hexagonal phase transition and solvation of phosphatidylethanolamines in aqueous salt solutions. Biochemistry 1988, 27, 8776–8779. [Google Scholar] [CrossRef]
- Scheidt, H.A.; Huster, D. The interaction of small molecules with phospholipid membranes studied by 1H NOESY NMR under magic-angle spinning. Acta Pharmacol. Sin. 2008, 29, 35–49. [Google Scholar] [CrossRef] [Green Version]
- Torrecillas, A.; Schneider, M.; Fernandez-Martinez, A.M.; Ausili, A.; de Godos, A.M.; Corbalan-Garcia, S.; Gomez-Fernandez, J.C. Capsaicin Fluidifies the Membrane and Localizes Itself near the Lipid-Water Interface. Acs. Chem. Neurosci. 2015, 6, 1741–1750. [Google Scholar] [CrossRef]
- Ausili, A.; de Godos, A.M.; Torrecillas, A.; Aranda, F.J.; Corbalan-Garcia, S.; Gomez-Fernandez, J.C. The vertical location of alpha-tocopherol in phosphatidylcholine membranes is not altered as a function of the degree of unsaturation of the fatty acyl chains. Phys. Chem. Chem. Phys. 2017, 19, 6731–6742. [Google Scholar] [CrossRef]
- Ausili, A.; Torrecillas, A.; de Godos, A.M.; Corbalan-Garcia, S.; Gomez-Fernandez, J.C. Phenolic Group of alpha-Tocopherol Anchors at the Lipid-Water Interface of Fully Saturated Membranes. Langmuir 2018, 34, 3336–3348. [Google Scholar] [CrossRef] [PubMed]
- Ausili, A.; Gomez-Murcia, V.; Candel, A.M.; Beltran, A.; Torrecillas, A.; He, L.; Jiang, Y.; Zhang, S.; Teruel, J.A.; Gomez-Fernandez, J.C. A comparison of the location in membranes of curcumin and curcumin-derived bivalent compounds with potential neuroprotective capacity for Alzheimer’s disease. Colloids Surf. B Biointerfaces 2020, 199, 111525. [Google Scholar] [CrossRef]
- Vogel, A.; Scheidt, H.A.; Feller, S.E.; Metso, J.; Badeau, R.M.; Tikkanen, M.J.; Wahala, K.; Jauhiainen, M.; Huster, D. The orientation and dynamics of estradiol and estradiol oleate in lipid membranes and HDL disc models. Biophys. J. 2014, 107, 114–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biruss, B.; Dietl, R.; Valenta, C. The influence of selected steroid hormones on the physicochemical behaviour of DPPC liposomes. Chem. Phys. Lipids 2007, 148, 84–90. [Google Scholar] [CrossRef] [PubMed]
Molar Ratio | DMPC/DES |
---|---|
ΔH (kcal/mol) | |
1:0 | 6.5812 |
60:1 | 6.3835 |
30:1 | 6.3749 |
15:1 | 6.2677 |
7:1 | 6.198 |
3:1 | 5.4762 |
1:1 | 4.775 |
1:0 | 7.1094 |
80:1 | 6.8634 |
40:1 | 6.5521 |
20:1 | 4.5866 |
10:1 | 2.1381 |
d (Å) | zH (Å) | σC (Å) | dHH (Å) | dB (Å) | dw (Å) | |
---|---|---|---|---|---|---|
DMPC (8 °C) | 64.0 ± 0.2 | 19.5 ± 0.2 | 5.4 ± 0.2 | 39.0 ± 0.3 | 51.0 ± 1.2 | 13.0 ± 1.4 |
DMPC/DES (15:1) 8 °C | 70.9 ± 0.2 | 19.2 ± 0.1 | 5.9 ± 0.2 | 38.4 ± 0.2 | 50.4 ± 1.2 | 20.5 ± 1.3 |
DMPC/DES (7:1) 8 °C | 72.8 ± 0.2 | 19.1 ± 0.2 | 6.1 ± 0.3 | 38.2 ± 0.3 | 50.2 ± 1.3 | 22.6 ± 1.5 |
DMPC (30 °C) | 64.6 ± 0.2 | 18.0 ± 0.2 | 6.3 ± 0.2 | 36.0 ± 0.3 | 48.0 ± 1.2 | 16.6 ± 1.4 |
DMPC/DES (15:1) (30 °C) | 65.6 ± 0.1 | 17.5 ± 0.2 | 6.4 ± 0.2 | 35.0 ± 0.3 | 47.0 ± 1.2 | 18.6 ± 1.3 |
DMPC/DES (7:1) (30 °C) | 66.7 ± 0.1 | 17.5 ± 0.1 | 6.4 ± 0.1 | 35.0 ± 0.2 | 47.0 ± 1.1 | 19.7 ± 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ausili, A.; Rodríguez-González, I.; Torrecillas, A.; Teruel, J.A.; Gómez-Fernández, J.C. Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains. Biomolecules 2021, 11, 220. https://doi.org/10.3390/biom11020220
Ausili A, Rodríguez-González I, Torrecillas A, Teruel JA, Gómez-Fernández JC. Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains. Biomolecules. 2021; 11(2):220. https://doi.org/10.3390/biom11020220
Chicago/Turabian StyleAusili, Alessio, Inés Rodríguez-González, Alejandro Torrecillas, José A. Teruel, and Juan C. Gómez-Fernández. 2021. "Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains" Biomolecules 11, no. 2: 220. https://doi.org/10.3390/biom11020220
APA StyleAusili, A., Rodríguez-González, I., Torrecillas, A., Teruel, J. A., & Gómez-Fernández, J. C. (2021). Diethylstilbestrol Modifies the Structure of Model Membranes and Is Localized Close to the First Carbons of the Fatty Acyl Chains. Biomolecules, 11(2), 220. https://doi.org/10.3390/biom11020220