Methyl Caffeate Isolated from the Flowers of Prunus persica (L.) Batsch Enhances Glucose-Stimulated Insulin Secretion
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Experimental Procedures
2.2. Plant Material
2.3. Extraction and Isolation
2.4. Cell Culture
2.5. Cell Viability
2.6. Glucose-Stimulated Insulin Secretion Assay
2.7. Western Blot Analysis
2.8. Statistical Analysis
3. Results
3.1. Identification of Compounds 1–15
3.2. Effects of PRPE and Compounds 1–15 on Glucose-Stimulated Insulin Secretion
3.3. Effect of Methyl Caffeate (6) on the Protein Expression of PPARγ, P-IRS-2, IRS-2, P-PI3K, PI3K, P-Akt (Ser473), Akt, and PDX-1
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Deshpande, A.D.; Harris-Hayes, M.; Schootman, M. Epidemiology of Diabetes and Diabetes-Related Complications. Phys. Ther. 2008, 88, 1254–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rorsman, P.; Ashcroft, F.M. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol. Rev. 2018, 98, 117–214. [Google Scholar] [CrossRef] [PubMed]
- Leibiger, I.B.; Leibiger, B.; Berggren, P.-O. Insulin Signaling in the Pancreatic β-Cell. Annu. Rev. Nutr. 2008, 28, 233–251. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mecha-nisms. Pharmacol. Res. 2018, 130, 451–465. [Google Scholar] [CrossRef]
- Tran, N.; Pham, B.; Le, L. Bioactive Compounds in Anti-Diabetic Plants: From Herbal Medicine to Modern Drug Discovery. Biology 2020, 9, 252. [Google Scholar] [CrossRef]
- Paul, A.; Raychaudhuri, S.S. Medicinal uses and molecular identification of two Momordica charantia varieties-a review. J. Biol. 2010, 6, 43–51. [Google Scholar]
- Ahmad, F.; Khalid, P.; Khan, M.M.; Rastogi, A.K.; Kidwai, J.R. Insulin like activity in (−) epicatechin. Acta Diabetol. Lat. 1989, 26, 291–300. [Google Scholar] [CrossRef]
- Kumari, K.; Augusti, K.T. Antidiabetic and antioxidant effects of S-methyl cysteine sulfoxide isolated from onions (Allium cepa Linn) as compared to standard drugs in alloxan diabetic rats. Indian J. Exp. Boil. 2002, 40, 1005–1009. [Google Scholar]
- Lee, S.Y.; Eom, S.H.; Kim, Y.K.; Park, N.I.; Park, S.U. Cucurbitane-type triterpenoids in Momordica charantia Linn. J. Med. Plant Res. 2009, 3, 1264–1269. [Google Scholar]
- Lee, D.; Lee, J.S.; Sezirahiga, J.; Kwon, H.C.; Jang, D.S.; Kang, K.S. Bioactive Phytochemicals Isolated from Akebia quinata Enhances Glucose-Stimulated Insulin Secretion by Inducing PDX-1. Plants 2020, 9, 1087. [Google Scholar] [CrossRef]
- Lee, D.; Lee, D.H.; Choi, S.; Lee, J.S.; Jang, D.S.; Kang, K.S. Identification and Isolation of Active Compounds from Astragalus membranaceus that Improve Insulin Secretion by Regulating Pancreatic β-Cell Metabolism. Biomolecules 2019, 9, 618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.; Hwang, B.S.; Choi, P.; Kim, T.; Kim, Y.; Song, B.G.; Yamabe, N.; Hwang, G.S.; Kang, K.S.; Ham, J. Hypoxylonol F Isolated from Annulohypoxylon annulatum Improves Insulin Secretion by Regulating Pancreatic β-cell Metabolism. Biomolecules 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Heo, M.Y.; Jo, B. The extract of the flowers of Prunus persica, a new cosmetic ingredient, protects against solar ultra-violet-induced skin damage in vivo. J. Cosmet. Sci. 2002, 53, 27–34. [Google Scholar]
- Kwak, C.S.; Yang, J.; Shin, C.-Y.; Chung, J.H. Topical or oral treatment of peach flower extract attenuates UV-induced epidermal thickening, matrix metalloproteinase-13 expression and pro-inflammatory cytokine production in hairless mice skin. Nutr. Res. Pr. 2018, 12, 29–40. [Google Scholar] [CrossRef]
- Murata, K.; Takahashi, K.; Nakamura, H.; Itoh, K.; Matsuda, H. Search for Skin-whitening Agent from Prunus Plants and the Molecular Targets in Melanogenesis Pathway of Active Compounds. Nat. Prod. Commun. 2014, 9, 185–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, M.; Nasiruddin, M.; Sultana, N.; Badruddeen; Akhtar, J.; Khan, M.I.; Ahmad, M. Regulatory Mechanism of Caffeic acid on glucose Metabolism in Diabetes. Res. J. Pharm. Technol. 2019, 12, 4735. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Oksbjerg, N.; Young, J.F.; Jeppesen, P.B. Caffeic acid, naringenin and quercetin enhance glucose-stimulated insulin secretion and glucose sensitivity in INS-1E cells. Diabetesobes. Metab. 2013, 16, 602–612. [Google Scholar] [CrossRef]
- Narasimhan, A.; Chinnaiyan, M.; Karundevi, B. Ferulic acid exerts its antidiabetic effect by modulating insulin-signalling molecules in the liver of high-fat diet and fructose-induced type-2 diabetic adult male rat. Appl. Physiol. Nutr. Metab. 2015, 40, 769–781. [Google Scholar] [CrossRef] [PubMed]
- Rey, D.; Sulis, P.M.; Fernandes, T.A.; Gonçalves, R.; Frederico, M.J.S.; Costa, G.M.; Aragon, M.; Ospina, L.F.; Silva, F.R.M.B. Astragalin augments basal calcium influx and insulin secretion in rat pancreatic islets. Cell Calcium 2019, 80, 56–62. [Google Scholar] [CrossRef]
- Zuñiga, L.Y.; La Mora, M.C.A.-D.A.-D.; Gonzalez-Ortiz, M.; Ramos-Núñez, J.L.; Martinez-Abundis, E. Effect of Chlorogenic Acid Administration on Glycemic Control, Insulin Secretion, and Insulin Sensitivity in Patients with Impaired Glucose Tolerance. J. Med. Food 2018, 21, 469–473. [Google Scholar] [CrossRef]
- Gandhi, G.R.; Ignacimuthu, S.; Paulraj, M.G.; Sasikumar, P. Antihyperglycemic activity and antidiabetic effect of methyl caffeate isolated from Solanum torvum Swartz. fruit in streptozotocin induced diabetic rats. Eur. J. Pharmacol. 2011, 670, 623–631. [Google Scholar] [CrossRef]
- Nahrstedt, A.; Rockenbach, J. Occurrence of the cyanogenic glucoside prunasin and II corresponding mandelic acid amide glucoside in Olinia species (oliniaceae). Phytochemistry 1993, 34, 433–436. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, K.H.; Lee, I.K.; Lee, K.H.; Choi, S.U.; Lee, K.R. A new flavonol glycoside from Hylomecon vernalis. Arch. Pharm. Res. 2012, 35, 415–421. [Google Scholar] [CrossRef]
- Yashunsky, D.V.; Kulakovskaya, E.V.; Kulakovskaya, T.V.; Zhukova, O.S.; Kiselevskiy, M.V.; Nifantiev, N.E. Synthesis and Biological Evaluation of Cyanogenic Glycosides. J. Carbohydr. Chem. 2015, 34, 460–474. [Google Scholar] [CrossRef]
- Rahman, W.; Ishratullah, K.; Wagner, H.; Seligmann, O.; Chari, V.; Österdahl, B.-G. Prunin-6″-O-p-coumarate, a new acylated flavanone glycoside from Anacardium occidentale. Phytochemistry 1978, 17, 1064–1065. [Google Scholar] [CrossRef]
- Deol, B.; Ridley, D.; Simpson, G. Asymmetric reductinon of carbonyl compounds by yeast. II. Preparation of optically active α- and β-hydroxy carboxylic acid derivatives. Aust. J. Chem. 1976, 29, 2459–2467. [Google Scholar] [CrossRef]
- Tisserant, L.P.; Hubert, J.; Lequart, M.; Borie, N.; Maurin, N.; Pilard, S.; Jeandet, P.; Aziz, A.; Renault, J.H.; Nuzillard, J.M.; et al. C NMR and LC-MS profiling of stilbenes from elicited grapevine hairy root cultures. J. Nat. Prod. 2016, 79, 2846–2855. [Google Scholar] [CrossRef]
- Exarchou, V.; Troganis, A.; Gerothanassis, I.P.; Tsimidou, M.; Boskou, D. Identification and quantification of caffeic and rosmarinic acid in complex plant extracts by the use of variable-temperature two-dimensional nuclear magnetic resonance spectroscopy. J. Agric. Food Chem. 2001, 49, 2–8. [Google Scholar] [CrossRef]
- Kazuma, K.; Noda, N.; Suzuki, M. Malonylated flavonol glycosides from the petals of Clitoria ternatea. Phytochemistry 2003, 62, 229–237. [Google Scholar] [CrossRef]
- Ogihara, K.; Kuwae, M.; Suzuka, T.; Higa, M. Constituents from the fruits of Messerschmidia argentea (4). Bull. Fac. Sci. Univ. Ryukyus 2012, 93, 47–54. [Google Scholar]
- Chiang, H.-C.; Lo, Y.-J.; Lu, F.-J. Xanthine Oxidase Inhibitors from the Leaves of Alsophila Spinulosa(HOOK) Tryon. J. Enzym. Inhib. 1994, 8, 61–71. [Google Scholar] [CrossRef]
- Yawadio, R.; Tanimori, S.; Morita, N. Identification of phenolic compounds isolated from pigmented rices and their al-dose reductase inhibitory activities. Food Chem. 2007, 101, 1616–1625. [Google Scholar] [CrossRef]
- De Almeida, A.P.; Miranda, M.M.F.S.; Simoni, I.C.; Wigg, M.D.; Lagrota, M.H.C.; Costa, S.S. Flavonol monoglycosides isolated from the antiviral fractions of Persea americana (Lauraceae) leaf infusion. Phytother. Res. 1998, 12, 562–567. [Google Scholar] [CrossRef]
- Suárez-Quiroz, M.L.; Campos, A.A.; Alfaro, G.V.; Gonzalez-Rios, O.; Villeneuve, P.; Figueroa-Espinoza, M.-C. Isolation of green coffee chlorogenic acids using activated carbon. J. Food Compos. Anal. 2014, 33, 55–58. [Google Scholar] [CrossRef]
- Mantsch, H.H.; Smith, I.C.P. A Study of Solvent Effects on the 13C Nuclear Magnetic Resonance Spectra of Cholesterol, Pyridine, And Uridine. Can. J. Chem. 1973, 51, 1384–1391. [Google Scholar] [CrossRef] [Green Version]
- Jantas, D.; Chwastek, J.; Malarz, J.; Stojakowska, A.; Lasoń, W. Neuroprotective effects of methyl caffeate against hydrogen peroxide-induced cell damage: Involvement of caspase 3 and cathepsin d inhibition. Biomolecules 2020, 10, 1530. [Google Scholar] [CrossRef]
- Balachandran, C.; Emi, N.; Arun, Y.; Yamamoto, Y.; Ahilan, B.; Sangeetha, B.; Duraipandiyan, V.; Inaguma, Y.; Okamoto, A.; Ignacimuthu, S.; et al. In vitro anticancer activity of methyl caffeate isolated from Solanum torvum Swartz. fruit. Chem. Interact. 2015, 242, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Urbaniak, A.; Kujawski, J.; Czaja, K.; Szelag, M. Antioxidant properties of several caffeic acid derivatives: A theoretical study. C. R. Chim. 2017, 20, 1072–1082. [Google Scholar] [CrossRef]
- Shin, K.-M.; Kim, I.-T.; Park, Y.-M.; Ha, J.; Choi, J.-W.; Park, H.-J.; Lee, Y.S.; Lee, K.-T. Anti-inflammatory effect of caffeic acid methyl ester and its mode of action through the inhibition of prostaglandin E2, nitric oxide and tumor necrosis factor-α production. Biochem. Pharmacol. 2004, 68, 2327–2336. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, C.; Duraipandiyan, V.; Al-Dhabi, N.A.; Balakrishna, K.; Kalia, N.P.; Rajput, V.S.; Khan, I.A.; Ignacimuthu, S. Antimicrobial and Antimycobacterial Activities of Methyl Caffeate Isolated from Solanum torvum Swartz. Fruit. Indian J. Microbiol. 2012, 52, 676–681. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-S.; Hwang, Y.-C.; Koo, S.-H.; Park, K.S.; Lee, M.-S.; Kim, K.-W.; Lee, M.-K. PPAR-γ activation increases insulin se-cretion through the up-regulation of the free fatty acid receptor GPR40 in pancreatic β-cells. PLoS ONE 2013, 8, e50128. [Google Scholar]
- Santini, E.; Fallahi, P.; Ferrari, S.M.; Masoni, A.; Antonelli, A.; Ferrannini, E. Effect of PPAR-γ activation and inhibition on glucose-stimulated insulin release in INS-1e cells. Diabetes 2004, 53, S79–S83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kono, T.; Ahn, G.; Moss, D.R.; Gann, L.; Zarain-Herzberg, A.; Nishiki, Y.; Fueger, P.T.; Ogihara, T.; Evans-Molina, C. PPAR-γ activation restores pancreatic islet SERCA2 levels and prevents β-cell dysfunction under conditions of hyper-glycemic and cytokine stress. Mol. Endocrinol. 2012, 26, 257–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, K.; Yuan, Q.; Xie, J.; Yuan, L.; Wang, Y. PPAR-γ activation increases insulin secretion independent of CASK in INS-1 cells. Acta Biochim. et Biophys. Sin. 2019, 51, 715–722. [Google Scholar] [CrossRef]
- Lingohr, M.K.; Briaud, I.; Dickson, L.M.; McCuaig, J.F.; Alárcon, C.; Wicksteed, B.L.; Rhodes, C.J. Specific Regulation of IRS-2 Expression by Glucose in Rat Primary Pancreatic Islet β-Cells. J. Biol. Chem. 2006, 281, 15884–15892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iglesias-Osma, M.C.; Blanco, E.J.; Carretero-Hernandez, M.; Catalano-Iniesta, L.; Sanchez-Robledo, V.; Garcia-Barrado, M.J.; Vicente-Garcia, T.; Burks, D.J.; Carretero, J. The influence of the lack of insulin receptor substrate 2 (IRS2) on the thyroid gland. Sci. Rep. 2019, 9, 5673. [Google Scholar] [CrossRef] [Green Version]
- Cerf, M.E. Beta Cell Dysfunction and Insulin Resistance. Front. Endocrinol. 2013, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.K.; Lam, K.S.; Wu, D.; Wang, Y.; Sweeney, G.; Hoo, R.L.; Zhang, J.; Xu, A. APPL1 potentiates insulin secretion in pancreatic β cells by enhancing protein kinase Akt-dependent expression of SNARE proteins in mice. Proc. Natl. Acad. Sci. USA 2012, 109, 8919–8924. [Google Scholar] [CrossRef] [Green Version]
- Elghazi, L.; Rachdi, L.; Weiss, A.; CrasMéneur, C.; BernalMizrachi, E. Regulation of βcell mass and function by the Akt/protein kinase B signalling pathway. Diabetes Obes. Metab. 2007, 9, 147–157. [Google Scholar] [CrossRef]
- Yang, C.; Chang, T.-J.; Chang, J.-C.; Liu, M.-W.; Tai, T.-Y.; Hsu, W.H.; Chuang, L.-M. Rosiglitazone (BRL 49653) enhances insulin secretory response via phosphatidylinositol 3-kinase pathway. Diabetes 2001, 50, 2598–2602. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Zhao, L.; He, H.; Wan, X.; Wang, F.; Mo, Z. Silibinin protects β cells from glucotoxicity through regulation of the Insig-1/SREBP-1c pathway. Int. J. Mol. Med. 2014, 34, 1073–1080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhang, J.; Fu, Y.; Zhang, Y.; Zhang, C.; Sun, X.; Wu, F.; He, J. Antidiabetic compounds 8a, 8b, 8k, and 9h enhance insulin secretion: Activity and mechanism. Endocrine 2020, 1–13. [Google Scholar] [CrossRef]
- Kushner, J.A.; Ye, J.; Schubert, M.; Burks, D.J.; Dow, M.A.; Flint, C.L.; Dutta, S.; Wright, C.V.; Montminy, M.R.; White, M.F. Pdx1 restores β cell function in Irs2 knockout mice. J. Clin. Investig. 2002, 109, 1193–1201. [Google Scholar] [CrossRef] [PubMed]
- Vetterli, L.M.; Brun, T.; Giovannoni, L.; Bosco, D.; Maechler, P. Resveratrol Potentiates Glucose-stimulated Insulin Secretion in INS-1E β-Cells and Human Islets through a SIRT1-dependent Mechanism. J. Biol. Chem. 2011, 286, 6049–6060. [Google Scholar] [CrossRef] [Green Version]
Name | Amount Obtained (Yield %/Extract) | Name | Amount Obtained (Yield %/Extract) |
---|---|---|---|
Prunasin amide (1) [22] | 459.8 mg (1.957%) | Benzyl α–L-xylpyranosyl-(1→6)-β-glucopyranoside (9) [23] | 22.7 mg (0.097%) |
Amygdalin amide (2) [24] | 19.6 mg (0.083%) | ||
Prunasin acid (3) [22] | 99.3 mg (0.423%) | Prunin (10) [25] | 16.7 mg (0.071%) |
Mandelamide (4) [24,26] | 125.6 mg (0.534%) | Naringenin (11) [27] | 15.1 mg (0.064%) |
Caffeic acid (5) [28] | 22.9 mg (0.097%) | Nicotiflorin (12) [29] | 4.3 mg (0.018%) |
Methyl caffeate (6) [30] | 9.0 mg (0.038%) | Astragalin (13) [31] | 17.6 mg (0.075%) |
Ferulic acid (7) [32] | 8.3 mg (0.035%) | Afzelin (14) [33] | 20.9 mg (0.089%) |
Chlorogenic acid (8) [34] | 150.7 mg (0.641%) | Uridine (15) [35] | 10.1 mg (0.043%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, D.; Qi, Y.; Kim, R.; Song, J.; Kim, H.; Kim, H.Y.; Jang, D.S.; Kang, K.S. Methyl Caffeate Isolated from the Flowers of Prunus persica (L.) Batsch Enhances Glucose-Stimulated Insulin Secretion. Biomolecules 2021, 11, 279. https://doi.org/10.3390/biom11020279
Lee D, Qi Y, Kim R, Song J, Kim H, Kim HY, Jang DS, Kang KS. Methyl Caffeate Isolated from the Flowers of Prunus persica (L.) Batsch Enhances Glucose-Stimulated Insulin Secretion. Biomolecules. 2021; 11(2):279. https://doi.org/10.3390/biom11020279
Chicago/Turabian StyleLee, Dahae, Yutong Qi, Ranhee Kim, Jungbin Song, Hocheol Kim, Hyun Young Kim, Dae Sik Jang, and Ki Sung Kang. 2021. "Methyl Caffeate Isolated from the Flowers of Prunus persica (L.) Batsch Enhances Glucose-Stimulated Insulin Secretion" Biomolecules 11, no. 2: 279. https://doi.org/10.3390/biom11020279
APA StyleLee, D., Qi, Y., Kim, R., Song, J., Kim, H., Kim, H. Y., Jang, D. S., & Kang, K. S. (2021). Methyl Caffeate Isolated from the Flowers of Prunus persica (L.) Batsch Enhances Glucose-Stimulated Insulin Secretion. Biomolecules, 11(2), 279. https://doi.org/10.3390/biom11020279