Comparison of the Benzanthrone Luminophores: They Are Not Equal for Rapid Examination of Parafasciolopsis fasciolaemorpha (Trematoda: Digenea)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Fluorophore 2-Bromo-3-N-(N′,N′-Dimethylformamidino)benzanthrone
2.2. Synthesis of Fluorophore 3-N-(2-Piperidinylacetamido)benzanthrone
2.3. Fluorescence Measurements
2.4. Collection of Adult Parafasciolopsis fasciolaemorpha
2.5. Chemical Fixation
2.6. Staining Procedure for Parafasciolopsis fasciolaemorpha
2.7. Confocal Laser Scanning Microscopy
3. Results
3.1. Synthesis
3.2. Photophysical Parameters
3.3. Chemical Fixation
3.4. Staining and Examination of Parafasciolopsis fasciolaemorpha
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kirilova, E.M.; Kalnina, I.; Kirilov, G.K.; Meirovics, I. Spectroscopic study of benzanthrone 3-N-derivatives as new hydrophobic fluorescent probes for biomolecules. J. Fluoresc. 2008, 18, 645–648. [Google Scholar] [CrossRef] [PubMed]
- Zhytniakivska, O.; Trusova, V.; Gorbenko, G.; Kirilova, E.; Kalnina, I.; Kirilov, G.; Kinnunen, P. Newly synthesized benzanthrone derivatives as prospective fluorescent membrane probes. J. Lumin. 2014, 146, 307–313. [Google Scholar] [CrossRef]
- Kirilova, E.; Kecko, S.; Mežaraupe, L.; Gavarāne, I.; Pučkins, A.; Mickeviča, I.; Rubeniņa, I.; Osipovs, S.; Bulanovs, A.; Pupiņš, M.; et al. Novel luminescent dyes for confocal laser scanning microscopy used in Trematoda parasite diagnostics. Acta Biochim. Pol. 2018, 65, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Kirilova, E.; Mickevica, I.; Mezaraupe, L.; Puckins, A.; Rubenina, I.; Osipovs, S.; Kokina, I.; Bulanovs, A.; Kirjusina, M.; Gavarane, I. Novel dye for detection of callus embryo by confocal laser scanning fluorescence microscopy. Luminescence 2019, 34, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Ulucan, A.; Yuksel, H.; Dortbudak, B.; Yakut, S. Comparative Examination of Commonly Used Some Fixatives with Routine Histochemical Staining’s for The Optimal Histological Appearance in The Gill Tissue of Zebrafish. Kocatepe Vet. J. 2019, 12, 158–167. [Google Scholar] [CrossRef]
- Moelans, C.; Ter Hoeve, N.; van Ginkel, J.W.; Ten Kate, F.J.; van Diest, P.J. Formaldehyde substitute fixatives. Analysis of macroscopy, morphologic analysis, and immunohistochemical analysis. Am. J. Clin. Pathol. 2011, 136, 548–556. [Google Scholar] [CrossRef] [PubMed]
- Camacho, S.; Ostos-Garrido, M.V.; Domezain, A.; Carmona, R. Study of the olfactory epithelium in the developing sturgeon. Characterization of the crypt cells. Chem. Senses 2010, 35, 147–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doldan, M.; Cid, P.; Mantilla, L.; de Miguel Villegas, E. Development of the olfactory system in turbot (Psetta maxima L.). J. Chem. Neuroanat. 2011, 41, 148–157. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, J.D.; Gamble, M. Theory and practice of histology techniques. In Fixation of Tissues, 8th ed.; Editor Layton, C., Bancroft, J.D., Suvarna, S.K., Eds.; Churchill Livingstone Elsevier: London, UK, 2019; pp. 40–63. [Google Scholar]
- Devitsina, L.V.; Radishcheva, O.L. Development of the olfactory organ during early ontogeny of threespine stickleback. J. Ichthyol. 1989, 29, 42–48. [Google Scholar]
- Ahmed, H.G.; Mohammed, A.; Hussein, M. A comparison study of histochemical staining of various tissues after Carnoy’s and formalin fixation. Sudan J. Med Sci. 2011, 5, 84–87. [Google Scholar] [CrossRef]
- Pereira, M.A.; Dias, A.R.; Faraj, S.F.; Cirqueira, C.D.S.; Tomitao, M.T.; Carlos, N.S.; Ribeiro, J.R.U.; De Mello, E.S. Carnoy’s solution is an adequate tissue fixative for routine surgical pathology, preserving cell morphology and molecular integrity. Histopathology 2014, 66, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Roberts, R.J.; Smail, D.A.; Munro, E.S. Laboratory methods. In Fish Pathology, 4th ed.; Roberts, R.J., Ed.; John Wiley & Sons: Chichester, West Sussex, UK, 2012; pp. 439–480. [Google Scholar]
- Weber, E.P.S.; Govett, P. Parasitology and necropsy of fish. Compendium (Yardley PA) 2009, 31, E12. [Google Scholar]
- Wali, A.; Balkhi, M.H.; Maqbool, R.; Darzi, M.M.; Shah, F.A.; Bhat, F.A.; Bhat, B.A. Distribution of Helminth Parasites in Intestines and Their Seasonal Rate of Infestation in Three Freshwater Fishes of Kashmir. J. Parasitol. Res. 2016, 2016, 8901518. [Google Scholar] [CrossRef] [Green Version]
- Campião, K.M.; Ribas, A.C.A.; Silva, I.C.O.; Dalazen, G.T.; Tavares, L.E.R. Anuran helminth communities from contrasting nature reserve and pasture sites in the Pantanal wetland, Brazil. J. Helminthol. 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Casselbrant, A.; Helander, H.F. Effects of fixation on electrophysiology and structure of human jejunal villi. Microsc. Res. Tech. 2018, 81, 376–383. [Google Scholar] [CrossRef]
- Paddock, S.W. Confocal Laser Scanning Microscopy. BioTechniques 1999, 27, 992–1004. [Google Scholar] [CrossRef] [PubMed]
- Krupenko, D.Y. Muscle system of Diplodiscus subclavatus (Trematoda: Paramphistomida) cercariae, pre-ovigerous, and ovigerous adults. Parasitol. Res. 2014, 113, 941–952. [Google Scholar] [CrossRef] [PubMed]
- Krupenko, D.Y. Oral sucker in Digenea: Structure and muscular arrangement. Zoomorphology 2019, 138, 29–37. [Google Scholar] [CrossRef]
- Machado-Silva, J.R.; Neves, R.H.; Gomes, D.C. Schistosoma mansoni specimens first described by Pirajá da Silva in Brazil (1908) re-examined by confocal laser scanning microscopy. Rev. Soc. Bras. Med. Trop. 2011, 44, 331–333. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dapson, R.W. The history, chemistry and modes of action of carmine and related dyes. Biotech. Histochem. 2007, 82, 173–187. [Google Scholar] [CrossRef] [PubMed]
- Fakhar, M.; Ghobaditara, M. Phenazopyridine as an innovative stain for permanent staining of trematodes. Trop. Parasitol. 2016, 6, 86–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gower, W.C. A Modified Stain and Procedure for Trematodes. Stain. Technol. 1939, 14, 31–32. [Google Scholar] [CrossRef]
- Drózdz, J. Materials contributing to the knowledge of the helminth fauna of Cervus (Russa unicolor Kerr and Muntjacus muntjac Zimm of Vietnam, including two new nematode species: Oesophagostomum labiatum sp. n. and Trichocephalus muntjaci sp. n. Acta Parasitol. Polon. 1973, 21, 465–474. [Google Scholar]
- Rikovski, A.S. On the mutual exchange of helminths between the elk and domestic sheep (with reference to Parafasciolopsis fasciolaemorpha). Dokl. Akad. Nauk SSSR 1955, 104, 335–336. [Google Scholar]
- Lachowicz, J. Experimental infection with Parafasciolopsis fasciolaemorpha in sheep. Med. Weter. (Pol.) 1987, 43, 461–465. [Google Scholar]
- Filip-Hutsch, K.; Hutsch, T.; Kolasa, S.; Demiaszkiewicz, A.W. First Description of Histopathological Lesions associated with a Fatal Infection of Moose (Alces Alces) with the Liver Fluke Parafasciolopsis fasciolaemorpha Ejsmont, 1932. J. Vet. Res. 2019, 63, 549–554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filip, K.J.; Pyziel, A.M.; Demiaszkiewicz, A.W. A massive invasion of Parafasciolopsis fasciolaemorpha in elk (Alces alces) in Lublin Province, Poland. Ann. Parasitol. 2016, 62, 107–110. [Google Scholar] [CrossRef]
- Polaz, S.; Anisimova, A.; Labanouskaya, P.; Viarbitskaya, A.; Kudzelic, V. The role of wild and domestic ungulates in forming the helminth fauna of European bison in Belarus. Eur. Bison Conserv. Newsl. 2017, 10, 79–86. [Google Scholar]
- Bergmane, B.; Keidāne, D.; Krūklīte, A.; Berziņa, D. Invasion of Parafasciolopsosis in elks in Latvia. In Proceedings of the Dzīvnieki. Veselība. Pārtikas higiena. Konferences “Veterinārmedicīnas zinātnes un prakses aktualitātes” RAKSTI, Jelgava, Latvia, 24 November 2017. [Google Scholar]
- Bergmane, B.; Bērziņa, D.; Visocka, A. Histopathological changes in liver of elks with Parafasciolopsis fasciolaemorpha invasion. Res. Rural. Dev. 2019, 1, 262–264. [Google Scholar]
- Samojlovskaja, N.A. The comparative analysis of parasitofauna of spotty deers and lambs in national park “Losinyj island”. Russ. J. Parasitol. 2008, 4, 13–15, (In Russian, with English summary). [Google Scholar]
- Filip, K.J.; Demiaszkiewicz, A.W. Internal parasitic fauna of elk (Alces alces) in Poland. Acta Parasitol. 2016, 61, 657–664. [Google Scholar] [CrossRef] [PubMed]
- Majoras, G.; Erdélyi, K.; Sztojkov, V.A. Parafasciolopsis fasciolaemorpha (Trematoda: Digenea) metely elofordulasa Magyarorszagon (Translated title of the contribution: Occurence of Parafasciolopsis fasciolaemorpha (Tematoda: Digenea) in Hungary). Magy. Allatorv. Lapja 2000, 122, 469–474. [Google Scholar]
- Maslennikova, O.V.; Panova, S.V. Morphological characteristics of trematodes Parafasciolopsis fasciolaemorpha (Ejsmont, 1932). Int. J. Exp. Educ. 2015, 8, 82–83, (In Russian, with English summary). [Google Scholar]
- Gulakov, A.V.; Penkevich, V.A. Parafasciolopsis and distributions of 137Cs by the bodies and tissues of organs and tissue of elk and roe deer living in the territory of the Polesian radiation-ecological reserve. Bulletin of MSPU named after I. P. Shamyakin. 2020, Volume 55, pp. 30–36. Available online: https://cyberleninka.ru/article/n/parafastsiolopsoz-i-raspredelenie-137cs-po-organam-i-tkanyam-losya-i-kosuli-obitayuschih-na-territorii-polesskogo-radiatsionno (accessed on 18 April 2021).
- Eckert, J.; Friedhoff, K.T.; Zahner, H.; Deplazes, P. Lehrbuch der Parasitologie für die Tiermedizin; MVS Medizinverlage Stuttgart GmbH&Co.: Stuttgart, Germany, 2005; pp. 150–165. [Google Scholar]
- Chikhlyaev, I.V.; Kirillova, N.Y.; Kirillov, A.A. Ecological analysis of trematodes (Trematoda) of march frog Pelophylax ridibundus (Ranidae, Anura) from various habitats of the national park “Samarskaya luka” (Russia). J. Nat. Conserv. 2018, 3 (Suppl. 1), 36–50. [Google Scholar] [CrossRef] [Green Version]
- Kirilova, E.; Yanichev, A.; Puckins, A.; Fleisher, M.; Belyakov, S. Experimental and Theoretical Study on Structure and Spectroscopic Properties of 2-Bromo-3-N-(N’,N’-dimethylformamidino) benzanthrone. Luminescence 2018, 33, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Kirilova, E.M.; Nikolaeva, I.D.; Romanovska, E.; Puckins, A.I.; Belyakov, S.V. The synthesis of novel heterocyclic 3-acetamide derivatives of benzanthrone. Chem. Heterocycl. Compd. 2020, 56, 192–198. [Google Scholar] [CrossRef]
- Kapusta, P.; Machalický, O.; Hrdina, R.; Nepraš, M.; Zimmt, M.B.; Fidler, V. Photophysics of 3-substituted benzanthrones: Substituent and solvent control of intersystem crossing. J. Phys. Chem. A 2003, 107, 9740–9746. [Google Scholar] [CrossRef]
- Valeur, B. Molecular Fluorescence: Principles and Applications; Wiley-VCH: New York, NY, USA, 2001. [Google Scholar]
- Gonta, S.; Utinans, M.; Kirilov, G.; Belyakov, S.; Ivanova, I.; Fleisher, M.; Savenkov, V.; Kirilova, E. Fluorescent substituted amidines of benzanthrone: Synthesis, spectroscopy and quantum chemical calculations. Spectrochim. Acta Part A 2013, 101, 325–334. [Google Scholar] [CrossRef]
- Kirilova, E.M.; Puckins, A.I.; Romanovska, E.; Fleisher, M.; Belyakov, S.V. Novel amidine derivatives of benzanthrone: Effect of bromine atom on the spectral parameters. Spectrochim. Acta A 2018, 202, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Mair, G.R.; Maule, A.G.; Shaw, C.; Johnston, D.F.; Halton, D.W. Gross anatomy of the muscle systems of Fasciola hepatica as visualized by phalloidin-fluorescence and confocal microscopy. Parasitology 1998, 117, 75–82. [Google Scholar] [CrossRef]
- Kumar, D.; Mcgeown, J.G.; Reynoso-Ducoing, O.; Ambrosio, J.R.; Fairweather, I. Observations on the musculature and isolated muscle fibres of the liver fluke, Fasciola hepatica. Parasitology 2003, 127, 457–473. [Google Scholar] [CrossRef]
- Terenina, N.B.; Kreshchenko, N.D.; Mochalova, N.V.; Nefedova, D.; Voropaeva, E.L.; Movsesyan, S.O.; Demiaszkiewicz, A.; Yashin, V.A.; Kuchin, A.V. The New Data on the Serotonin and FMRFamide Localization in the Nervous System of Opisthorchis felineus Metacercaria. Acta Parasitol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Gavarane, I.; Kirilova, E.; Rubeniņa, I.; Mežaraupe, L.; Osipovs, S.; Deksne, G.; Pučkins, A.; Kokina, I.; Bulanovs, A.; Kirjušina, M. A Simple and Rapid Staining Technique for Sex Determination of Trichinella Larvae Parasites by Confocal Laser Scanning Microscopy. Microsc. Microanal. 2019, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Halton, D.W.; Maule, A.G. Flatworm nerve-muscle: Structural and functional analysis. Can. J. Zool. 2004, 82, 316–333. [Google Scholar] [CrossRef]
- Tyler, S.; Hooge, M. Comparative morphology of the body wall in flatworms (Platyhelminthes). Can. J. Zool. 2004, 82, 194–210. [Google Scholar] [CrossRef]
- Sednev, M.V.; Belov, V.N.; Hell, S.W. Fluorescent Dyes with Large Stokes Shifts for Super-Resolution Optical Microscopy of Biological Objects: A Review. Methods Appl. Fluoresc. 2015, 3, 042004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krupenko, D.; Dobrovolskij, A.A. Morphological framework for attachment and locomotion in several Digenea of the families Microphallidae and Heterophyidae. Parasitol. Res. 2018, 117, 3799–3807. [Google Scholar] [CrossRef]
- Krupenko, D.Y.; Dobrovolskij, A.A. Somatic musculature in trematode hermaphroditic generation. BMC Evol. Biol. 2015, 15, 189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirjusina, M.; Gavarane, I.; Mezaraupe, L.; Kecko, S.; Kirilova, E. Application of novel synthesized luminophore AZP5 for efficient staining of Trematoda: Fasciolidae parasites. Int. Multidiscip. Sci. GeoConference SGEM 2018, 18, 27–34. [Google Scholar] [CrossRef]
- Skrjabin, K.I. Trematodes of animals and human. In Basic Trematodology. Vol. III; Publishing House of the USSR Academy of Sciences: Moscow-Leningrad, Russia, 1949; pp. 63–66. [Google Scholar]
- Świderski, Z.; Kacem, H.; Mackiewicz, J.S.; Miquel, J. Functional ultrastructure and cytochemistry of vitellogenesis and mature vitellocytes of the digenean Cainocreadium labracis (Dujardin, 1845), parasite of Dicentrarchus labrax (L., 1758). Parasitol. Res. 2019, 118, 493–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Chemical Fixative | ||||||
---|---|---|---|---|---|---|
Chemical Fixative | 70% Ethanol | 96% Ethanol | AFA Solution | Carnoy’s Solution | Bouin’s Solution | 10% Neutral Buffered Formalin |
Content of chemical fixative | 70% ethanol | 96% ethanol | (17:2:1) 85% ethanol: 40% formalin: glacial acetic; pH = 4.5 | 6:3:1 absolute ethanol: chloroform: glacial acetic acid | (15:4:1) picric acid, saturated aqueous solution: 40% formalin; glacial acetic acid | 40% formalin; distilled water; sodium dihydrogen phosphate; sodium hydrogen phosphate |
Time of fixation | Until examination | Until examination | 2 h | 2 h | 2 h | Until examination |
Washing | N/A | N/A | 70% ethanol | 70% ethanol | 70% ethanol | N/A |
Chemical fixative | 70% ethanol | 96% ethanol | 70% ethanol | 70% ethanol | 70% ethanol | 10% neutral buffered formalin |
Storage | 4 °C until required |
Solvent | Dielectric Constant | AM323 | AZPP | ||||||
---|---|---|---|---|---|---|---|---|---|
Absorption λabs (lgε), nm | Emission λem, nm | Φ0 | Stokes Shift, cm−1 | Absorption λabs (lgε), nm | Emission λem, nm | Φ0 | Stokes Shift, cm−1 | ||
Hexane | 1.89 | 430 (2.68) | 523 | 0.25 | 4135 | 442 (2.62) | 531 | 0.12 | 3792 |
Benzene | 2.28 | 446 (2.90) | 558 | 0.23 | 4500 | 447 (2.72) | 549 | 0.17 | 4156 |
CHCl3 | 4.70 | 447 (2.94) | 593 | 0.32 | 5508 | 445 (2.88) | 561 | 0.58 | 4647 |
EtOAc | 6.02 | 448 (2.88) | 576 | 0.23 | 4960 | 438 (2.91) | 545 | 0.32 | 4482 |
Acetone | 20.70 | 448 (2.87) | 603 | 0.15 | 5738 | 438 (2.95) | 554 | 0.57 | 4781 |
EtOH | 24.30 | 464 (2.80) | 660 | 0.01 | 6400 | 430 (2.97) | 562 | 0.70 | 5462 |
DMF | 36.70 | 464 (2.83) | 624 | 0.03 | 5526 | 439 (2.92) | 661 | 0.57 | 7650 |
DMSO | 49.00 | 465 (3.00) | 627 | 0.02 | 5556 | 434 (2.96) | 570 | 0.58 | 5498 |
PBS buffer | 79.00 | 469 (2.97) | 667 | 0.01 | 6329 | 433 (2.98) | 658 | 0.07 | 7897 |
Chemical Fixative | Physical Changes in Specimen | Comments |
---|---|---|
70% ethanol | − | Optimal concentration of ethanol for trematode sample fixation, no damages to the sample, sample after fixation became a little darker |
96% ethanol | + | Specimen became robust; challenging to squeeze between coverslip and slide, sample after fixation became a little darker |
AFA solution | − | No physical changes in the specimen were observed |
Carnoy’s solution | + | Specimen became impregnated with fixative, which caused enlargement of sample (data not shown) |
Bouin’s solution | + | Fixative did not washout; specimen turned yellow |
10% neutral buffered formalin | − | No physical changes in specimen observed |
Characteristic | Benzanthrone Dye | Confocal Microscopy Results Observed (+)/Not Observed (−) | |||||
---|---|---|---|---|---|---|---|
Chemical Fixative | |||||||
70% Ethanol | 96% Ethanol | AFA Solution | Carnoy’s Solution | Bouin’s Solution | 10% Neutral Buffered Formalin | ||
Contours of the whole body are well outlined | AZPP | + | − | + | − | + | + |
AM323 | + | − | + | + | − | − | |
Spikes and layout on the surface are well outlined | AZPP | + | + | + | + | + | − |
AM323 | − | − | + | + | − | − | |
Spatial structure of spikes | AZPP | + | − | + | − | − | − |
AM323 | − | − | − | − | − | − | |
Tegument | AZPP | + | − | − | − | − | + |
AM323 | − | − | − | − | − | − | |
Muscle layers of the body (circular, diagonal, and longitudinal) at the same magnification | AZPP | + | − | + | + | − | − |
AM323 | − | − | + | + | − | − | |
Muscle fibers of oral sucker, radial symmetry | AZPP | + | − | − | − | − | − |
AM323 | − | − | − | − | − | − | |
Muscle fibers of ventral sucker, radial symmetry | AZPP | + | − | − | − | − | − |
AM323 | − | − | − | − | − | − | |
Pharynx, muscle fibers of it can be easily distinguished | AZPP | + | + | + | − | − | − |
AM323 | − | − | + | − | − | − | |
Esophagus can be easily distinguished | AZPP | + | − | + | − | − | − |
AM323 | + | − | − | − | − | − | |
Intestine can be easily distinguished | AZPP | + | − | + | − | − | − |
AM323 | − | − | + | − | − | − | |
Parenchyma cells are well outlined | AZPP | − | − | − | + | − | − |
AM323 | − | − | + | + | − | − | |
Cirrus is well outlined | AZPP | + | − | − | − | − | − |
AM323 | − | − | + | − | − | − | |
Ovary is well outlined | AZPP | + | − | − | − | − | − |
AM323 | − | − | − | − | − | − | |
Uterus filled with eggs | AZPP | + | − | − | − | − | − |
AM323 | − | − | − | − | − | − | |
Vitellaria is well outlined | AZPP | − | − | - | − | − | + |
AM323 | − | − | − | − | + | − | |
Testis can be easily distinguished | AZPP | − | − | + | − | − | − |
AM323 | − | − | + | − | − | − | |
Total +/− (16) | AZPP | 13/3 | 2/14 | 8/8 | 2/14 | 2/14 | 3/13 |
Total +/− (16) | AM323 | 2/14 | 0/16 | 7/9 | 4/12 | 1/15 | 0/16 |
Fluorescent Dye | Chemical Fixator Used | Structure | Object and Description on Stained Systems | References |
---|---|---|---|---|
P8 | AFA solution | Prosotocus confusus adults | [3] | |
overall view: spikes, oral and ventral suckers; digestive system: prepharynx, pharynx, esophagus, intestine; reproductive system: uterus with eggs, cirrus | ||||
AM1 | AFA solution | Prosotocus confusus adults | [3] | |
overall view: spikes, oral and ventral suckers; integumentary system: radial and longitudinal muscle fibers; digestive system: prepharynx, pharynx, esophagus, intestine, excretory bladder, excretory pore; reproductive system: ovary, testis, vitellaria, uterus with eggs, cirrus | ||||
AM2 | AFA solution | Diplostomum sp. | [3] | |
overall view: oral and ventral suckers, pseudosuckers, holdfast, calcareous bodies; digestive system: pharynx, esophagus, intestine; primary excretory system (very bright) | ||||
AM4 | AFA solution | Prosotocus confusus adults | [3] | |
overall view: spikes, oral and ventral suckers; integumentary system: diagonal and longitudinal muscle fibers in poor quality; digestive system: prepharynx, pharynx, esophagus, intestine; reproductive system: ovary, testis, vitellaria, cirrus, eggs | ||||
AM16 | AFA solution | Diplostomum sp. | [3] | |
overall view: oral and ventral suckers, pseudosuckers (very bright), holdfast; digestive system: pharynx, esophagus, intestine; primary excretory system (very bright) | ||||
AM323 | AFA solution | Parafasciolopsis fasciolaemorpha adults | Current study | |
overall view: spikes, oral and ventral suckers; integumentary system: three muscle layers and radial muscles of suckers in poor quality; digestive system: prepharynx, pharynx, esophagus, intestine, reproductive system: testis, eggs, cirrus | ||||
AZP5 | AFA solution | Parafasciolopsis fasciolaemorpha adults | [55] | |
overall view: spikes, oral and ventral suckers; integumentary system: tegument not in details, three muscle layers and radial muscles of suckers; digestive system: prepharynx, pharynx, esophagus, intestine, reproductive system: testis, eggs, cirrus | ||||
AZPP | AFA solution | Parafasciolopsis fasciolaemorpha | Current study | |
overall view: spikes, oral and ventral suckers in detail, the dimensional structure of the whole body; integumentary system: tegument (in details) connected with spikes, three muscle layers and radial muscles of suckers in details and very bright; digestive system: prepharynx, pharynx, esophagus, intestine, reproductive system: ovary, testis, vitellaria, uterus with eggs, cirrus and its canal |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubenina, I.; Gavarane, I.; Kirilova, E.; Mezaraupe, L.; Kirjusina, M. Comparison of the Benzanthrone Luminophores: They Are Not Equal for Rapid Examination of Parafasciolopsis fasciolaemorpha (Trematoda: Digenea). Biomolecules 2021, 11, 598. https://doi.org/10.3390/biom11040598
Rubenina I, Gavarane I, Kirilova E, Mezaraupe L, Kirjusina M. Comparison of the Benzanthrone Luminophores: They Are Not Equal for Rapid Examination of Parafasciolopsis fasciolaemorpha (Trematoda: Digenea). Biomolecules. 2021; 11(4):598. https://doi.org/10.3390/biom11040598
Chicago/Turabian StyleRubenina, Ilze, Inese Gavarane, Elena Kirilova, Ligita Mezaraupe, and Muza Kirjusina. 2021. "Comparison of the Benzanthrone Luminophores: They Are Not Equal for Rapid Examination of Parafasciolopsis fasciolaemorpha (Trematoda: Digenea)" Biomolecules 11, no. 4: 598. https://doi.org/10.3390/biom11040598
APA StyleRubenina, I., Gavarane, I., Kirilova, E., Mezaraupe, L., & Kirjusina, M. (2021). Comparison of the Benzanthrone Luminophores: They Are Not Equal for Rapid Examination of Parafasciolopsis fasciolaemorpha (Trematoda: Digenea). Biomolecules, 11(4), 598. https://doi.org/10.3390/biom11040598