Characterization and Safety Profile of Transfer Factors Peptides, a Nutritional Supplement for Immune System Regulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Nutritional Composition (Compositional Analysis)
2.3. Proteomic Analysis
2.4. In Vitro Safety Profile: Mutagenic Potential
2.5. In Vivo Safety Profile: Median Lethal Dose (LD50)
3. Results
3.1. Nutritional Composition
3.2. Proteomic Analysis
3.3. In Vitro Safety Profile: Mutagenic Potential
3.4. In Vivo Safety Profile: Median Lethal Dose (LD50)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fudenberg, H.H.; Fudenberg, H.H. Transfer factor: Past, present and future. Annu. Rev. Pharmacol. Toxicol. 1989, 29, 475–516. [Google Scholar] [CrossRef]
- Welch, T.M.; Wilson, G.B.; Fudenberg, H.H. Human transfer factor in guinea pigs: Further studies. In Transfer Factor; Academic Press: Cambridge, MA, USA, 1976; pp. 399–408. [Google Scholar]
- Wilson, G.B.; Poindexter, C.; Fort, J.D.; Ludden, K.D. Specific pathogen-free and standard commercial chickens as models for evaluating xenogenic transfers of cell-mediated immunity. In Proceedings of the Fifth International Symposium on Transfer Factor, Bratislava, Slovakia, 10–13 November 1987; pp. 257–274. [Google Scholar]
- Steele, R.W.; Myers, M.G.; Vincent, M.M. Transfer factor for the prevention of varicella-zoster infection in childhood leukemia. N. Engl. J. Med. 1980, 303, 355–359. [Google Scholar] [CrossRef] [Green Version]
- Viza, D.; Pizza, G.; De Vinci, C.; Brandi, G.; Ablashi, D. Transfer Factor as an Option for Managing the COVID-19 Pandemic. Folia Biol. 2020, 66, 86–90. [Google Scholar]
- Jones, J.; Jeter, W.; Fulginiti, V.; Minnich, L.; Pritchett, R.; Wedgwood, R. Treatment of childhood combined epstein-barr virus/cytomegalovirus infection with oral bovine transfer factor. Lancet 1981, 318, 122–124. [Google Scholar] [CrossRef]
- Viza, D.; Fudenberg, H.H.; Palareti, A.; Ablashi, D.; De Vinci, C.; Pizza, G. Transfer factor: An overlooked potential for the prevention and treatment of infectious diseases. Folia Biol. 2013, 59, 53. [Google Scholar]
- Pizza, G.; Viza, D.; De Vinci, C.; Palareti, A.; Cuzzocrea, D.; Fornarola, V.; Baricordi, R. Orally administered HSV-specific transfer factor (TF) prevents genital or labial herpes relapses. Biotherapy 1996, 9, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Parra, S.; Nagaya, A.; Serrano, E.; Rodriguez, O.; Santamaria, V.; Ondarza, R.; Chavez, R.; Correa, B.; Monges, A.; Cabezas, R.; et al. Comparative study of transfer factor and acyclovir in the treatment of herpes zoster. Int. J. Immunopharmacol. 1998, 20, 521–535. [Google Scholar] [CrossRef]
- Acosta-Rios, M.P.; Sauer-Ramírez, E.; Castro-Muñoz, L.J.; García-Solís, M.; Gómez-García, C.; Ocadiz-Delgado, R.; Martinez-Martinez, A.; Sánchez-Monroy, V.; Pérez-De la Mora, C.; Correa-Meza, B.; et al. Effect of Dialyzable Leukocyte extract on chronic cervicitis in patients with HPV infection. J. Med. Life 2017, 10, 237–243. [Google Scholar] [PubMed]
- Hernández, M.D.; Urrea, J.; Bascoy, L. Evolution of COVID-19 patients treated with ImmunoFormulation, a combination of nutraceuticals to reduce symptomatology and improve prognosis: A multi-centred, retrospective cohort study. medRxiv 2020. [Google Scholar] [CrossRef]
- Lawrence, H.S. The transfer in humans of delayed skin sensitivity to streptococcal M substance and to tuberculin with disrupted leucocytes. J. Clin. Invest. 1955, 34, 219–230. [Google Scholar] [CrossRef]
- Lawrence, H.S.; Borkowsky, W. A new basis for the immunoregulatory activities of transfer factor—an arcane dialect in the language of cells. Cell. Immunol. 1983, 82, 102–116. [Google Scholar] [CrossRef]
- Kirkpatrick, C.H. Structural nature and functions of transfer factors. Proc. Natl. Acad. Sci. USA 1993, 685, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Rozzo, S.J.; Kirkpatrick, C.H. Purification of transfer factors. Mol. Immunol. 1992, 29, 167–182. [Google Scholar] [CrossRef]
- Kirkpatrick, C.H. Activities and characteristics of transfer factors. Biotherapy 1996, 9, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Berrón-Pérez, R.; Chávez-Sánchez, R.; Estrada-García, I.; Espinosa-Padilla, S.; Cortez-Gómez, R.; Serrano-Miranda, E.; Portugués, A. Indications, usage, and dosage of the transfer factor. Rev. Alerg. Mex. 2007, 54, 134–139. [Google Scholar] [PubMed]
- Krishnaveni, M. A review on transfer factor an immune modulator. Drug Invent. Today 2013, 5, 153–156. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, R.; Wu, Y.; Wang, Y.; Che, H. Determination of free amino acids in transfer factor capsules by pre-column derivatization with RP-HPLC. Chin. J. Biochem. Pharm. 2007, 28, 233–235. [Google Scholar]
- Wang, G.; Zhao, C.; Wang, L.; Zhang, P. Basic research on physicochemical properties of three transfer factors. J. Jilin Univ. 1990, 16, 432–435. [Google Scholar]
- White, A. Transfer Factors & Immune System Health, 2nd ed.; BookSurge Publishing: Charleston, SC, USA, 2009. [Google Scholar]
- Hennen, W.J. The transfer factor report. In Transfer Factor: Natural Immune Booste; Woodland Publishing: Salt Lake City, UT, USA, 1998; pp. 1–32. [Google Scholar]
- Bernhisel-Broadbent, J.; Yolken, R.H.; Sampson, H.A. Allergenicity of orally administered immunoglobulin preparations in food-allergic children. Pediatrics 1991, 87, 208–214. [Google Scholar]
- AOAC International. AOAC International. AOAC official method 996.06: Fat (total, saturated, and unsaturated) in foods. In Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2019. [Google Scholar]
- AOAC International. AOAC International. AOAC official method 994.10: Cholesterol in foods. In Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2019. [Google Scholar]
- AOAC International. AOAC International. AOAC official method 991.43: Total, soluble, and insoluble dietary fibre in foods. In Official Methods of Analysis; Association of Official Analytical Chemists: Washington, DC, USA, 2019. [Google Scholar]
- Instituto Adolfo Lutz. Método de Kjeldahl clássico. In Métodos Físico-Químicos para Análise de Alimentos; Instituto Adolfo Lutz: Sao Paulo, Brazil, 2008; pp. 123–124. [Google Scholar]
- Casterline, J.L.; Oles, C.J.; Ku, Y. Measurement of sugars and starches in foods by a modification of the AOAC total dietary fiber method. J. AOAC Int. 1999, 82, 759–765. [Google Scholar] [CrossRef] [Green Version]
- United States Pharmacopeial Convention. USP 40–NF 35 The United States Pharmacopeia and National Formulary; United States Pharmacopeial Convention Inc.: Rockville, MD, USA, 2017. [Google Scholar]
- De Paula, L.N.; de Oliveira, I.N.; Pires, T.O.; Polonini, H.C. Toxic elements content of selected industrialized beverages. J. Multidiscip. Eng. Sci. Technol. 2019, 6, 9729–9735. [Google Scholar]
- Water Environmental Federation and APH Association. Metals by inductively coupled plasma–Mass spectrometry. In Standard Methods for the Examination of Water and Wastewater; American Public Health Association (APHA): Washington, DC, USA, 2017. [Google Scholar]
- Martins-de-Souza, D.; Guest, P.C.; Steiner, J. A proteomic signature associated to atypical antipsychotic response in schizophrenia patients: A pilot study. Eur. Arch. Psychiatry Clin. Neurosci. 2020, 270, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Martins-de-Souza, D.; Solari, F.A.; Guest, P.C.; Zahedi, R.P.; Steiner, J. Biological pathways modulated by antipsychotics in the blood plasma of schizophrenia patients and their association to a clinical response. NPJ Schizophr. 2015, 1, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- OECD—Organisation for Economic Co-operation and Development. Test No. 487: In Vitro Mammalian Cell Micronucleus Test; OECD: Paris, France, 2016. [Google Scholar]
- OECD—Organisation for Economic Co-operation and Development. Test No. 423: Acute Oral toxicity–Acute Toxic Class Method; OECD: Paris, France, 2001. [Google Scholar]
- EUR-Lex. European Commission regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006 and (EC) No 1925/2006 of the European Parliament and of the Council. Off. J. Eur. Union 2011, 304, 18–63. [Google Scholar]
- Zaiko, M.V.; Кozin, S.V.; Pavlova, L.A. History and perspectives of medical use raw animal materials on the example of pig spleen drugs. Tradit. Med. 2014, 1, 42–48. [Google Scholar]
- European Food Safety Authority. European food safety authority scientific opinion on the safety and efficacy of selenium in the form of organic compounds produced by the selenium-enriched yeast Saccharomyces cerevisiae NCYC R645 (SelenoSource AF 2000) for all species. EFSA J. 2011, 9, 2279. [Google Scholar] [CrossRef]
- EFSA. Scientific Opinion on the substantiation of health claims related to zinc and function of the immune system, DNA synthesis and cell division, protection of DNA, proteins and lipids from oxidative damage, maintenance of bone, cognitive function, fertility and reproduction, reproductive development, muscle function, metabolism of fatty acids, maintenance of joints, function of the heart and blood vessels, prostate function, thyroid function, acid-base metabolism, vitamin A metabolism and maintenance of vision pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J. 2009, 7, 1–34. [Google Scholar] [CrossRef]
- European Commission. Discussion Paper on Nutritional Claims and Functional Claims; National Consumer Council: Pretoria, South Africa, 2001. [Google Scholar]
- Klann, J.E.; Remedios, K.A.; Kim, S.H.; Metz, P.J.; Lopez, J.; Mack, L.A.; Zheng, Y.; Ginsberg, M.H.; Petrich, B.G.; Chang, J.T. Talin plays a critical role in the maintenance of the regulatory T cell pool. J. Immunol. 2017, 198, 4639–4651. [Google Scholar] [CrossRef] [Green Version]
- Fabregat, A.; Sidiropoulos, K.; Viteri, G.; Forner, O.; Marin-Garcia, P.; Arnau, V.; D’Eustachio, P.; Stein, L.; Hermjakob, H. Reactome pathway analysis: A high-performance in-memory approach. BMC Bioinform. 2017, 18, 142. [Google Scholar] [CrossRef] [Green Version]
- Desjardins, M. ER-mediated phagocytosis: A new membrane for new functions. Nat. Rev. Immunol. 2003, 3, 280–291. [Google Scholar] [CrossRef]
- Salazar-Ramiro, A.; Hernández, P.; Rangel-Lopez, E.; Pérez de la Cruz, V.; Estrada-Parra, S.; Pineda, B. Dialyzable Leukocyte Extract (transfer factor) as adjuvant immunotherapy in the treatment of cancer. MOJ Autoimmune Dis. 2018, 1, 1–7. [Google Scholar] [CrossRef]
- Amatya, N.; Garg, A.V.; Gaffen, S.L. IL-17 signaling: The yin and the yang. Trends Immunol. 2017, 38, 310–322. [Google Scholar] [CrossRef] [Green Version]
- Kazi, J.U.; Rönnstrand, L. The role of SRC family kinases in FLT3 signaling. Int. J. Biochem. Cell Biol. 2019, 107, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, H.T. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002, 12, 9–18. [Google Scholar] [CrossRef] [PubMed]
Energy | Value per 100 mg | Reference Intake [36] |
---|---|---|
Energy value | 0.321 Kcal/1347 KJ | 2000 Kcal |
General Components | Amount (mg per 100 mg) | Reference intake |
Total fat | <0.3 | 70 g |
of which | ||
– saturated fat | <0.01 | 20 g |
– monounsaturated fat | <0.01 | - |
– polyunsaturated fat | <0.01 | - |
– trans fat | <0.002 | - |
– cholesterol | <0.002 | - |
Total carbohydrates | 260 g | |
of which | ||
– starch | <0.09 | - |
– fructose | <0.1 | - |
– glucose | <0.1 | - |
– sucrose | <0.1 | - |
– maltose | <0.1 | - |
– lactose | <0.2 | - |
– sorbitol | <0.1 | - |
Fiber | 0.5 | - |
Protein | 63.97 | 50 g |
of which (amino acids) | ||
– aspartic acid | 2.95 | - |
– glutamic acid | 5.19 | - |
– serine | 1.89 | - |
– histidine | 0.93 | - |
– glycine | 3.06 | - |
– threonine | 1.41 | - |
– arginine | 4.16 | - |
– alanine | 0.50 | - |
– tyrosine | 1.83 | - |
– cystine | <0.1 | - |
– valine | 1.30 | - |
– methionine | 1.17 | - |
– phenylalanine | 0.06 | - |
– isoleucine | 0.96 | - |
– leucine | 1.39 | - |
– lysine | 3.49 | - |
– proline | 0.10 | - |
Salt (sodium) | 0.7 | 6 g |
Specific Components | Amount (per 100 mg) | Nutrient Reference Value (NRV) |
Vitamins and minerals | ||
Vitamin A | <0.0005 µg | 800 µg |
Vitamin B1 | <0.0004 mg | 1.1 mg |
Vitamin B2 | 0.00074 mg | 1.4 mg |
Vitamin B3 | 0.00002 mg | 16 mg |
Vitamin B6 | 0.00645 mg | 1.4 mg |
Vitamin B9 | <0.42 µg | 200 µg |
Vitamin B12 | <0.004 µg | 2.5 µg |
Vitamin C | 0.02 mg | 80 mg |
Vitamin E (alfa-tocopherol) | <0.0002 µg | 12 mg |
Vitamin E (gamma-tocopherol) | <0.00035 mg | - |
Potassium | 1.91 mg | 2,000 mg |
Calcium | 0.028 mg | 800 mg |
Phosphorous | 0.72 mg | 700 mg |
Magnesium | 0.078 mg | 375 mg |
Iron | 0.099 mg | 14 mg |
Zinc | 0.0093 mg | 10 mg |
Copper | 0.0065 mg | 1 mg |
Manganese | 0.00011 mg | 2 mg |
Selenium | 0.0011 mcg | 55 mcg |
Chromium | <0.000005 mcg | 40 mcg |
Molybdenum | 0.019 mcg | 50 mcg |
Proteome Identifier (UPID) | Gene Name | Description |
---|---|---|
P01965 | HBA | Hemoglobin subunit alpha |
P02067 | HBB | Hemoglobin subunit beta |
P02067 | HBB | Hemoglobin subunit beta |
F1SFZ8 | TLN1 | Talin-1 |
A0A287AZA7 | RPS27A | 40S ribosomal protein S27a (Ubiquitin-40S ribosomal protein S27a) |
A0A5K1UHC4 | AGPAT5 | PlsC domain-containing protein |
P01965 | HBA | Hemoglobin subunit alpha |
Q06AT1 | HPCA | Neuron-specific calcium-binding protein hippocalcin |
A0A480JNE4 | FAM184A | Protein FAM184A isoform 1 |
P49756 | RBM25 | RNA-binding protein 25 |
P09571 | TF | Serotransferrin |
Q8WXA9 | SREK1 | Splicing regulatory glutamine/lysine-rich protein 1 |
Q96A84 | EMD1 | EMI domain-containing protein |
A0A287AAR0 | GIMAP7 | AIG1-type G domain-containing protein |
A0A287AHD6 | LOC100622504 | Uncharacterized protein |
P00819 | ACYP2 | Acylphosphatase-2 |
P63053 | UBA52 | Ubiquitin-60S ribosomal protein L40 |
P13796 | LCP1 | Plastin-2 |
A0A5G2Q920 | ENSSSCG00000049439 | Uncharacterized protein |
Q99873 | PRMT1 | Protein arginine N-methyltransferase 1 |
A0A287AL08 | TAFA2 | Protein FAM19A2 isoform X1/ Chemokine-like protein TAFA-2 |
A0A5G2QDH3 | ENSSSCG00000051012 | Reverse transcriptase domain-containing protein |
F1SVA9 | SH2D6 | SH2D6 (signal transductor) |
Condition | Negative Control (100%) | Positive Control (20 µg mL−1) | Imuno TF® (5 mg mL−1) | Imuno TF® (1.67 mg mL−1) | Imuno TF® (0.56 mg mL−1) |
---|---|---|---|---|---|
3h, S9− | |||||
CBPI | 1.93 ± 0.002 | 1.92 ± 0.004 | 1.93 ± 0.008 | 1.93 ± 0.002 | 1.93 ± 0.003 |
RI (%) | 100.00 ± 0.00 | 99.25 ± 0.74 | 99.65 ± 0.65 | 99.94 ± 0.05 | 99.94 ± 0.57 |
%BCMN | 1.85 ± 0.07 | 1.85 ± 0.07 | 2.15 ± 0.07 | 2.05 ± 0.07 | 1.85 ± 0.07 |
3h, S9+ | |||||
CBPI | 1.91 ± 0.016 | 1.90 ± 0.002 | 1.89 ± 0.004 | 1.92 ± 0.007 | 1.91 ± 0.006 |
RI (%) | 100.00 ± 0.00 | 98.84 ± 1.92 | 98.20 ± 2.16 | 101.11 ± 0.98 | 99.81 ± 1.16 |
%BCMN | 2.00 ± 0.00 | 5.00 ± 0.14 * | 2.15 ± 0.07 | 2.05 ± 0.07 | 1.95 ± 0.07 |
24h, S9− | |||||
CBPI | 1.94 ± 0.020 | 1.66 ± 0.005 | 1.85 ± 0.022 | 1.91 ± 0.007 | 1.93 ± 0.007 |
RI (%) | 100.00 ± 0.00 | 70.87 ± 0.97 | 90.93 ± 0.35 | 97.26 ± 1.35 | 98.75 ± 1.39 |
%BCMN | 1.85 ± 0.07 | 6.55 ± 0.35 * | 2.45 ± 0.07 | 2.25 ± 0.07 | 2.05 ± 0.07 |
Experiment | Animal Number | Animal Weight (g) | Mortality Index (%) | ||
---|---|---|---|---|---|
Day 0 | Day 7 | Day 14 | |||
1 | 1 | 225 | 240 | 251 | 0.0 * |
2 | 204 | 230 | 237 | ||
3 | 185 | 197 | 207 | ||
2 | 1 | 167 | 185 | 192 | 0.0 * |
2 | 191 | 211 | 229 | ||
3 | 202 | 222 | 243 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Polonini, H.; Gonçalves, A.E.d.S.S.; Dijkers, E.; Ferreira, A.d.O. Characterization and Safety Profile of Transfer Factors Peptides, a Nutritional Supplement for Immune System Regulation. Biomolecules 2021, 11, 665. https://doi.org/10.3390/biom11050665
Polonini H, Gonçalves AEdSS, Dijkers E, Ferreira AdO. Characterization and Safety Profile of Transfer Factors Peptides, a Nutritional Supplement for Immune System Regulation. Biomolecules. 2021; 11(5):665. https://doi.org/10.3390/biom11050665
Chicago/Turabian StylePolonini, Hudson, Any Elisa de Souza Schmidt Gonçalves, Eli Dijkers, and Anderson de Oliveira Ferreira. 2021. "Characterization and Safety Profile of Transfer Factors Peptides, a Nutritional Supplement for Immune System Regulation" Biomolecules 11, no. 5: 665. https://doi.org/10.3390/biom11050665
APA StylePolonini, H., Gonçalves, A. E. d. S. S., Dijkers, E., & Ferreira, A. d. O. (2021). Characterization and Safety Profile of Transfer Factors Peptides, a Nutritional Supplement for Immune System Regulation. Biomolecules, 11(5), 665. https://doi.org/10.3390/biom11050665