Epipregnanolone as a Positive Modulator of GABAA Receptor in Rat Cerebellar and Hippocampus Neurons
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Preparation
2.2. Current Recordings
2.3. Reagents
2.4. Data Analysis
3. Results
3.1. Epipregnanolone Potentiates the IGABA in Purkinje Cells from Cerebellum
3.2. Isopregnanolone Antagonizes the Potentiating Effect of Epipregnanolone
3.3. The Effects of Epipregnanolone and Allopregnanolone on the IGABA Are Not Additive
3.4. Epipregnanolone-Induced Potentiation of the IGABA Is More Efficacious at Low vs. High GABA Concentrations
3.5. Epipregnanolone Potentiates the IGABA in Pyramidal Neurons from Hippocampus
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sugasawa, Y.; Cheng, W.W.; Bracamontes, J.R.; Chen, Z.-W.; Wang, L.; Germann, A.L.; Pierce, S.R.; Senneff, T.C.; Krishnan, K.; Reichert, D.E.; et al. Site-specific effects of neurosteroids on GABAA receptor activation and desensitization. eLife 2020, 9, e55331. [Google Scholar] [CrossRef] [PubMed]
- Bukanova, J.V.; Solntseva, E.I.; Kolbaev, S.N.; Kudova, E. Modulation of GABA and glycine receptors in rat pyramidal hippocampal neurones by 3α5β-pregnanolone derivatives. Neurochem. Int. 2018, 118, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.S.; Scott, S.; Masiulis, S.; De Colibus, L.; Pardon, E.; Steyaert, J.; Aricescu, A.R. Structural basis for GABAA receptor potentiation by neurosteroids. Nat. Struct. Mol. Biol. 2017, 24, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; He, Y.; Eisenman, L.N.; Fields, C.; Zeng, C.-M.; Mathews, J.; Benz, A.; Fu, T.; Zorumski, E.; Covey, D.F.; et al. 3β-Hydroxypregnane steroids are pregnenolone sulfate-like GABA(A) receptor antagonists. J. Neurosci. 2002, 22, 3366–3375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poisbeau, P.; Feltz, P.; Schlicht, R. Modulation of GABAA receptor-mediated IPSCs by neuroactive steroids in a rat hypothalamo-hypophyseal coculture model. J. Physiol. 1997, 500 Pt 2, 475–485. [Google Scholar] [CrossRef] [Green Version]
- Le Foll, F.; Louiset, E.; Castel, H.; Vaudry, H.; Cazin, L. Electrophysiological effects of various neuroactive steroids on the GABA(A) receptor in pituitary melanotrope cells. Eur. J. Pharmacol. 1997, 331, 303–311. [Google Scholar] [CrossRef]
- Weir, C.J.; Ling, A.T.Y.; Belelli, D.; Wildsmith, J.A.W.; Peters, J.A. The interaction of anaesthetic steroids with recombinant glycine and GABAA receptors. Br. J. Anaesth. 2004, 92, 704–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kokate, T.G.; Svensson, B.E.; Rogawski, M.A. Anticonvulsant activity of neurosteroids: Correlation with gamma-aminobutyric acid-evoked chloride current potentiation. J. Pharmacol. Exp. Ther. 1994, 270, 1223–1229. [Google Scholar]
- Strömberg, J.; Haage, D.; Taube, M.; Bäckström, T.; Lundgren, P. Neurosteroid modulation of allopregnanolone and GABA effect on the GABA-A receptor. Neuroscience 2006, 143, 73–81. [Google Scholar] [CrossRef]
- Ayoola, C.; Hwang, S.M.; Hong, S.J.; Rose, K.E.; Boyd, C.; Bozic, N.; Park, J.-Y.; Osuru, H.P.; DiGruccio, M.R.; Covey, D.F.; et al. Inhibition of CaV3.2 T-type calcium channels in peripheral sensory neurons contributes to analgesic properties of epipregnanolone. Psychopharmacology 2014, 231, 3503–3515. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.M.; Pinna, G.; Guidotti, A. Allopregnanolone: From molecular pathophysiology to therapeutics. A historical perspective. Neurobiol. Stress 2020, 12, 100215. [Google Scholar] [CrossRef] [PubMed]
- O’Dell, L.E.; Purdy, R.H.; Covey, D.F.; Richardson, H.N.; Roberto, M.; Koob, G.F. Epipregnanolone and a novel synthetic neuroactive steroid reduce alcohol self-administration in rats. Pharmacol. Biochem. Behav. 2005, 81, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Joksimovic, S.L.; Donald, R.R.; Park, J.-Y.; Todorovic, S.M. Inhibition of multiple voltage-gated calcium channels may contribute to spinally mediated analgesia by epipregnanolone in a rat model of surgical paw incision. Channels 2019, 13, 48–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vorobjev, V.S. Vibrodissociation of sliced mammalian nervous tissue. J. Neurosci. Methods 1991, 8, 145–150. [Google Scholar] [CrossRef]
- Hood, S.D.; Norman, A.; Hince, D.A.; Melichar, J.K.; Hulse, G.K. Benzodiazepine dependence and its treatment with low dose flumazenil. Br. J. Clin. Pharmacol. 2014, 77, 285–294. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Shu, H.-J.; Wang, C.; Mennerick, S.; Zorumski, C.F.; Covey, D.F.; Steinbach, J.H.; Akk, G. Neurosteroid migration to intracellular compartments reduces steroid concentration in the membrane and diminishes GABA-A receptor potentiation. J. Physiol. 2007, 584 Pt 3, 789–800. [Google Scholar] [CrossRef]
- Pignataro, L.; de Plazas, S.F. Epipregnanolone acts as a partial agonist on a common neurosteroid modulatory site of the GABA(A) receptor complex in avian CNS. Neurochem. Res. 1997, 22, 221–225. [Google Scholar] [CrossRef]
- Prince, R.J.; Simmonds, M.A. Differential antagonism by epipregnanolone of alphaxalone and pregnanolone potentiation of [3H]flunitrazepam binding suggests more than one class of binding site for steroids at GABAA receptors. Neuropharmacology 1993, 32, 59–63. [Google Scholar] [CrossRef]
- Sieghart, W. Structure, pharmacology, and function of GABAA receptor subtypes. Adv. Pharmacol. 2006, 54, 231–263. [Google Scholar] [CrossRef]
- Chen, Z.W.; Bracamontes, J.R.; Budelier, M.M.; Germann, A.L.; Shin, D.J.; Kathiresan, K.; Qian, M.X.; Manion, B.; Cheng, W.W.L.; Reichert, D.E.; et al. Multiple functional neurosteroid binding sites on GABAA receptors. PLoS Biol. 2019, 17, e3000157. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.J.; Germann, A.L.; Covey, D.F.; Steinbach, J.H.; Akk, G. Analysis of GABA A receptor activation by combinations of agonists acting at the same or distinct binding sites. Mol. Pharmacol. 2019, 95, 70–81. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bukanova, J.; Solntseva, E.; Kondratenko, R.; Kudova, E. Epipregnanolone as a Positive Modulator of GABAA Receptor in Rat Cerebellar and Hippocampus Neurons. Biomolecules 2021, 11, 791. https://doi.org/10.3390/biom11060791
Bukanova J, Solntseva E, Kondratenko R, Kudova E. Epipregnanolone as a Positive Modulator of GABAA Receptor in Rat Cerebellar and Hippocampus Neurons. Biomolecules. 2021; 11(6):791. https://doi.org/10.3390/biom11060791
Chicago/Turabian StyleBukanova, Julia, Elena Solntseva, Rodion Kondratenko, and Eva Kudova. 2021. "Epipregnanolone as a Positive Modulator of GABAA Receptor in Rat Cerebellar and Hippocampus Neurons" Biomolecules 11, no. 6: 791. https://doi.org/10.3390/biom11060791
APA StyleBukanova, J., Solntseva, E., Kondratenko, R., & Kudova, E. (2021). Epipregnanolone as a Positive Modulator of GABAA Receptor in Rat Cerebellar and Hippocampus Neurons. Biomolecules, 11(6), 791. https://doi.org/10.3390/biom11060791