Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies
Abstract
:1. Introduction
2. Surgical Approaches and Adhesions
3. Pharmaceutical Strategies for Adhesion Prevention
3.1. Agents Targeting Angiotensin
3.2. Hypoxia-Inducible Factors (HIF) Inhibitor and N-Acetyl-Cysteine
3.3. 3-Hydroxy-3-Methylglutaryl Coenzyme A (HMG-CoA) Reductase Inhibitors
3.4. Neurokinin-1 Receptor (NK-1R) Antagonist
3.5. Lubricin
3.6. Chymase Inhibitor and Sodium Cromoglycate
3.7. NSAIDs and Anti-Inflammatory Drugs
3.8. Alcohol
3.9. Small Molecule Inhibitors
3.10. Hormones and Other Pharmacological Agents
4. Inert Polymers in Adhesion Prevention Strategies
4.1. Barriers
4.1.1. Natural Polymers
Hyaluronic Acid (HA) Based
Cellulose Based Barriers
Chitosan Based
Natural Films
4.1.2. Synthetic Polymer Meshes
4.1.3. Collagen Sheets
4.1.4. Composite Polymers
4.1.5. Spray Type Barriers
4.1.6. Solutions as Barriers
4.1.7. Xenograft Membranes
5. Functional Biomaterials for Adhesion Prevention
5.1. Integrated Pharmaceuticals in Barriers
5.2. Nanoparticles and Gene Therapy
Type | Material | Company | Model | Reference |
---|---|---|---|---|
Natural Polymers (biodegradable) | ||||
Alginate | Rat (peritoneal) | [233,425] | ||
HA-mildly crosslinked alginate hydrogel | Rat (peritoneal) | [426] | ||
Pluronic mixtures/crosslinked alginate | Guardix-SG (Genewel) | Rat, Rabbit (peritoneal) | [427,428] | |
Rabbit (pericardial) | [429] | |||
Rat (pelvic) | [430] | |||
Human (abdominal) | [431] | |||
HA-crosslinked alginate (powder) | [432] | |||
Gelatin | Rat (peritoneal) | [433,434] | ||
Canine (abdominal) | [435] | |||
Canine (pelvic) | [436] | |||
Chitostan-gelatin films | Rat (peritoneal) | [437] | ||
Gelatin-polyglycolic acid sheets | Canine (pericardial) | [315] | ||
Genipin-crosslinked gelatin microspheres | Mouse (peritoneal) | [438] | ||
Gellan Gum | Rat (peritoneal) | [439] | ||
Poly-γ-glutamic acid | Rat (peritoneal) | [440] | ||
Fibrinogen/thrombin (Fibrin glue) | Evicel (Johnson & Johnson Medical) | Rat, Rabbit, Human (pelvic) | [441,442,443,444] | |
Fibrin glue | Canine (pericardial) | [445] | ||
Hyaluronic Acid (HA) Based | ||||
Auto-crosslinked HA | Rat (peritoneal) | [446,447,448] | ||
Human (pelvic) | [236,449] | |||
Crosslinkable HA derivative-alginate | Rat (peritoneal) | [450] | ||
Phenolic hydroxyl modified HA hydrogel | Mouse (abdominal) | [451] | ||
HA-adipicdihydrazide-HA-aldehyde | Rabbit (peritoneal) | [452] | ||
HA-hydrazide-celluloses-aldehyde [Celluloses: HA, CMC, hydroxypropylmethylcellulose (HPMC), methylcellulose (MC)] | Mouse (peritoneal) | [453] | ||
Pullan | Rat (peritoneal) | [454] | ||
Synthetic Polymers | ||||
Polyethylene glycol (PEG) | Rat (peritoneal) | [455] | ||
PEG-aliphatic polyester | Rat, Rabbit (abdominal) | [456,457] | ||
PEG dicarboxylate-poly(ethylene oxide) hydrogel film | Rat (abdominal) | [458] | ||
Polylactide-PEG tri-block copolymer (PELA) | Mouse, Rat (abdominal) | [459,460] | ||
Poloxamer 407 (PEG-polypropylene glycol-PEG) | FloGel (Alliance Pharm Co.) | Rat, Hamster, Rabbit (peritoneal) | [428,461,462,463] | |
PEG-poly(α-hydroxy acid) diacrylate macromers | Rat (peritoneal), Rabbit (pelvic) | [464] | ||
PEG-chitostan | Rat (peritoneal) | [465] | ||
PEG-poly(ε-caprolactone)-PEG (PECE) hydrogel | Mouse, Rat (peritoneal) | [466] | ||
Silicone | Canine (peritoneal) | [467] | ||
Polyethylene | Rat (peritoneal) | [45] | ||
Poly(vinyl alcohol) (PVA) | Rabbit (peritoneal) | [468] | ||
Rat (pericardial) | [469] | |||
PVA-gelatin membrane | Rat (peritoneal) | [470] | ||
PVA hydrogel | Porcine, Rat, Human (peritoneal) | [471,472,473] | ||
Rabbit (abdominal) | [474] | |||
PVA-coated polyester mesh | Rat (peritoneal) | [475] | ||
PVA-CMC hydrogel | Rabbit (abdominal) | [476] | ||
PVA-CMC trilaminar membrane | Rabbit (pericardial) | [477] | ||
Polylactic acid (PLA) | Rat (peritoneal) | [270,335,465,478] | ||
Rabbit, Porcine (pericardial) | [314,479] | |||
PLA nanosheets | Mouse (peritoneal) | [480] | ||
PLA gel | Human (skin-flap) | [481] | ||
PLA-PEG copolymer membrane | Rat (Peritoneal, pericardial) | [482] | ||
Canine (pericardial) | [483] | |||
PLA-PEG-ePTFE bioresorbable polymer | Rabbit (pericardial) | [484] | ||
Poly ε-caprolactone (PCLA) | Rat (abdominal) | [485,486] | ||
Hyaluronic acid-loaded poly(ε-caprolactone) | Rat (abominal) | [487] | ||
Poly(ε-caprolactone-co-lactide)-bpoly(ethyleneglycol)-b-poly(ε-caprolactoneco-lactide)(PCLA-PEG-PCLA) | Rabbit (peritoneal) | [488] | ||
Poly(ethylene glycol)-poly (ε-caprolactone)-poly(ethylene glycol) (PEG-PCLA-PEG, PECE) | Rat (peritoneal) | [489] | ||
Poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCLA-PEG-PCLA) micelles | Rat (peritoneal) | [490] | ||
Poly-β-hydroxybutyrate | Bovine, Ovine (pericardial) | [491,492] | ||
PEG-poly-β-hydroxybutyrate valerate | Rat (peritoneal) | [465] | ||
Composite Polymers | ||||
Polyethylene oxide-sodium carboxymethylcellulose gel | Oxiplex/AP Gel (FzioMed) Intercoat (Ethicon) | Human (pelvic) | [493,494,495,496] | |
Rat (peritoneal) | [497] | |||
Silicone-urethane-polyester copolymer | (UBE Sheet, UBE Industries Ltd.) | Canine (pericardial) | [498] | |
HA-3,3′ -dithiopropionic dihydrazide/PEG diacrylate (HA-DTPH/PEGDA) | Carbylan-SX (Carbylan Biosurgery Inc.) | Rat (peritoneal), Rabbit (pericardial) | [499] | |
Rabbit (pericardial) | [500] | |||
Poloxamer-alginate-CaCl2 (gel) | Rabbit (pericardial) | [501] | ||
Carboxymethyldextranhydrazide-DX-aldehyde | Rabbit (peritoneal) | [427] | ||
Poly(lactic acid)-poly(oxyethylene-cooxypropylene) (PLA-Pluronic F68) | Rat (peritoneal) | [337] | ||
d,l-polylactide-ε-caprolactonetrimethylenecarbonate (PCT co-polymer) | Rat (peritoneal) | [370] | ||
Monomethoxy poly(ethylene glycol)-poly(lactic acid) hydrogel | Rat (abdominal) | [502] | ||
PLGA-poly(lactide-co-caprolactone) (PLCA)-poly(L-phenylalanine-co-p-dioxanone (PDPA) film | Rabbit (abdominal) | [503] | ||
Oxidized regenerated cellulose-polypropylene-poly(ε-caprolactone) | Rat (abdominal) | [504] | ||
Drug-Loaded Composite Polymers | ||||
Antibiotics | ||||
Cefoxitin sodium in PLGA/PEG-PLA membrane (nanofibrous sheet) | Rat (peritoneal) | [412] | ||
Ornidazole in PCL (nanofibrous sheet) | Rat (peritoneal) | [486] | ||
Chloramphenicol in dextran (solution) | Rat (peritoneal) | [505] | ||
Anti-coagulant (Heparin) | ||||
Heparin in Interceed | Rabbit, human (peritoneal) | [240,506] | ||
Heparin in Seprafilm | Rat (peritoneal) | [507] | ||
Heparin in collagen | Canine (peritoneal) | [508] | ||
Anti-inflammatory | ||||
Ibuprofen in PLLA-PEG copolymer (dense or nanofibrous sheet) | Rat (peritoneal) | [410] | ||
Ibuprofen in pluronic mixtures-crosslinked ALG (hydrogel) | Rat (peritoneal) | [428] | ||
Ibuprofen in poly(lactic-co-glycolic acid) (nanofibrous mesh) | Mouse (abdominal) | [509] | ||
Ibuprofen in PVA cryobarrier | Rat (abdominal) | [510] | ||
Dexamethasone in poly(lactide-co-glycolide) microparticles | Rat (peritoneal) | [511] | ||
Dexamethasone in PLA-PEG copolymer | Rabbit (pericardial) | [512] | ||
Budesonide in cross-linking HA (hydrogel) | Rabbit (abdominal) | [513] | ||
Tolmetin in HA | Rat (abdominal) | [170] | ||
Naproxen nanoparticles in chitosan hydrogel | Rat (abdominal) | [417] | ||
Atorvasain in Seprafilm (sheet) | Rat (peritoneal) | [514] | ||
Vitamin E/Seprafilm (sheet) | Rat (peritoneal) | [515] | ||
Methylene blue in polyhydroxybutyrate (nanofiber sheet) | Rat (abdominal) | [174] | ||
Fibrinolytic Agents | ||||
tPA in Interceed | Rat (peritoneal) | [516] | ||
tPA in HA-adipic dihydrazide-HA-aldehyde (hydrogel) | Rabbit (peritoneal) | [517] | ||
Tranilast-encapsulated polydioxanone fiber in CMC (hydrogel) | Rabbit (peritoneal) | [518] | ||
Streptokinase in polyhydroxybutyrate-co-hydroxyvalerate membrane | Rat (peritoneal) | [215] | ||
Anti-Cancer and Anti-Tumour Drugs | ||||
Paclitaxel in crosslinked HA | Rat (peritoneal) | [519] | ||
Doxorubicin in poly(ethylene glycol)-poly(ε-caprolactone)-poly(ethylene glycol) (PECE) copolymer | Mouse (peritoneal) | [520] | ||
Mitomycin C in crosslinked HA (hydrogel) | Rat (abdominal) | [225] | ||
Rapamycin in poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) (PCL-PEG-PCL) (sheet) | Porcine (pericardial) | [521] | ||
Growth Factors | ||||
Keratinocyte growth factor (KGF) in N,O-carboxymethyl chitosan (hydrogel) | Rat (abdominal) | [522] | ||
Epidermal growth factor (EGF) in gelatin (sheet) | Porcine (pericardial) | [523] | ||
Other Drugs | ||||
Tranilast in sodium carboxymethylcellulose (sheet) | Rabbit (abdominal, pelvic) | [524] | ||
Ginsenoside Rg1 in acellular bovine pericardium | Rabbit (pericardium) | [525] | ||
Fibrin in agarose hydrogel patch | Rat (abdominal) | [526] |
6. Perspective
7. Conclusions
Funding
Conflicts of Interest
References
- Diamond, M.P.; Freeman, M.L. Clinical implications of postsurgical adhesions. Hum. Reprod. Update 2001, 7, 567–576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lauder, C.I.; Garcea, G.; Strickland, A.; Maddern, G.J. Abdominal Adhesion Prevention: Still a Sticky Subject. Dig. Surg. 2010, 27, 347–358. [Google Scholar] [CrossRef]
- Weibel, M.-A.; Majno, G. Peritoneal adhesions and their relation to abdominal surgery: A postmortem study. Am. J. Surg. 1973, 126, 345–353. [Google Scholar] [CrossRef]
- Menzies, D.; Ellis, H. Intestinal obstruction from adhesions—How big is the problem? Ann. R. Coll. Surg. Engl. 1990, 72, 60–63. [Google Scholar]
- Arung, W.; Meurisse, M.; Detry, O. Pathophysiology and prevention of postoperative peritoneal adhesions. World J. Gastroenterol. 2011, 17, 4545–4553. [Google Scholar] [CrossRef]
- Capella-Monsonís, H.; Kearns, S.; Kelly, J.; Zeugolis, D.I. Battling adhesions: From understanding to prevention. BMC Biomed. Eng. 2019, 1, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Baek, S.; Kang, H.; Lee, D. Biomaterials to Prevent Post-Operative Adhesion. Materials 2020, 13, 3056. [Google Scholar] [CrossRef]
- Thakur, M.; Rambhatla, A.; Qadri, F.; Chatzicharalampous, C.; Awonuga, M.; Saed, G.; Diamond, M.P.; Awonuga, A.O. Is There a Genetic Predisposition to Postoperative Adhesion Development? Reprod. Sci. 2020. [Google Scholar] [CrossRef]
- Strik, C.; Wever, K.E.; Stommel, M.W.J.; Van Goor, H.; Broek, R.P.G.T. Adhesion reformation and the limited translational value of experiments with adhesion barriers: A systematic review and meta-analysis of animal models. Sci. Rep. 2019, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Lih, E.; Oh, S.H.; Joung, Y.K.; Lee, J.H.; Han, D.K. Polymers for cell/tissue anti-adhesion. Prog. Polym. Sci. 2015, 44, 28–61. [Google Scholar] [CrossRef]
- Fortin, C.N.; Saed, G.M.; Diamond, M. Predisposing factors to post-operative adhesion development. Hum. Reprod. Update 2015, 21, 536–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sikirica, V.; Bapat, B.; Candrilli, S.D.; Davis, K.L.; Wilson, M.; Johns, A. The inpatient burden of abdominal and gynecological adhesiolysis in the US. BMC Surg. 2011, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coleman, M.G.; McLain, A.D.; Moran, B.J. Impact of previous surgery on time taken for incision and division of adhesions during laparotomy. Dis. Colon Rectum 2000, 43, 1297–1299. [Google Scholar] [CrossRef] [PubMed]
- Broek, R.P.T.; Issa, Y.; van Santbrink, E.J.; Bouvy, N.D.; Kruitwagen, R.F.; Jeekel, J.; Bakkum, E.; Rovers, M.; Van Goor, H. Burden of adhesions in abdominal and pelvic surgery: Systematic review and metanalysis. BMJ 2013, 347, f5588. [Google Scholar] [CrossRef] [Green Version]
- Lower, A.M.; Hawthorn, R.J.; Ellis, H.; O’Brien, F.; Buchan, S.; Crowe, A.M. The impact of adhesions on hospital readmissions over ten years after 8849 open gynaecological operations: An assessment from the Surgical and Clinical Adhesions Research Study. BJOG Int. J. Obstet. Gynaecol. 2000, 107, 855–862. [Google Scholar] [CrossRef]
- Nkere, U.U. Postoperative Adhesion Formation and the Use of Adhesion Preventing Techniques in Cardiac and General Surgery. ASAIO J. 2000, 46, 654–656. [Google Scholar] [CrossRef]
- Nkere, U.U.; Whawell, S.A.; Sarraf, C.E.; Schofield, J.B.; Thompson, J.N.; Taylor, K.M. Pericardial Trauma and Adhesions in Relation to Reoperative Cardiac Surgery. Thorac. Cardiovasc. Surg. 1995, 43, 338–346. [Google Scholar] [CrossRef]
- Ellis, H.; Moran, B.J.; Thompson, J.N.; Parker, M.C.; Wilson, M.S.; Menzies, D.; McGuire, A.; Lower, A.M.; Hawthorn, R.J.; O’Brien, F.; et al. Adhesion-related hospital readmissions after abdominal and pelvic surgery: A retrospective cohort study. Lancet 1999, 353, 1476–1480. [Google Scholar] [CrossRef]
- Parker, M.C.; Wilson, M.S.; Menzies, D.; Sunderland, G.; Clark, D.; Knight, A.D.; Crowe, A.M. The SCAR-3 study: 5-year adhesion-related readmission risk following lower abdominal surgical procedures. Color. Dis. 2005, 7, 551–558. [Google Scholar] [CrossRef]
- Parker, M.C.; Ellis, H.; Moran, B.J.; Thompson, J.N.; Wilson, M.S.; Menzies, D.; McGuire, A.; Lower, A.M.; Hawthorn, R.J.; O’Briena, F.; et al. Postoperative adhesions: Ten-year follow-up of 12,584 patients undergoing lower abdominal surgery. Dis. Colon Rectum 2001, 44, 822–829. [Google Scholar] [CrossRef]
- Ray, N.F.; Denton, W.G.; Thamer, M.; Henderson, S.C.; Perry, S. Abdominal adhesiolysis: Inpatient care and expenditures in the United States in 1994. J. Am. Coll. Surg. 1998, 186, 1–9. [Google Scholar] [CrossRef]
- Broek, R.P.T.; Bakkum, E.A.; Laarhoven, C.J.; van Goor, H. Epidemiology and Prevention of Postsurgical Adhesions Revisited. Ann. Surg. 2016, 263, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Liakakos, T.; Thomakos, N.; Fine, P.M.; Dervenis, C.; Young, R.L. Peritoneal Adhesions: Etiology, Pathophysiology, and Clinical Significance. Dig. Surg. 2001, 18, 260–273. [Google Scholar] [CrossRef]
- Goel, G.; King, T.; Daveson, A.J.; Andrews, J.M.; Krishnarajah, J.; Krause, R.; Brown, G.J.E.; Fogel, R.; Barish, C.F.; Epstein, R.; et al. Epitope-specific immunotherapy targeting CD4-positive T cells in coeliac disease: Two randomised, double-blind, placebo-controlled phase 1 studies. Lancet Gastroenterol. Hepatol. 2017, 2, 479–493. [Google Scholar] [CrossRef]
- Herrick, S.E.; Mutsaers, S.E.; Ozua, P.; Sulaiman, H.; Omer, A.; Boulos, P.; Foster, M.L.; Laurent, G.J. Human peritoneal adhesions are highly cellular, innervated, and vascularized. J. Pathol. 2000, 192, 67–72. [Google Scholar] [CrossRef]
- Arjmand, M.-H. The association between visceral adiposity with systemic inflammation, oxidative stress, and risk of post-surgical adhesion. Arch. Physiol. Biochem. 2020, 2020, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Pismensky, S.V.; Kalzhanov, Z.R.; Eliseeva, M.Y.; Kosmas, I.P.; Mynbaev, O.A. Severe inflammatory reaction induced by peritoneal trauma is the key driving mechanism of postoperative adhesion formation. BMC Surg. 2011, 11, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, Z.; Sessler, D.I.; Dalton, J.E.; Devereaux, P.J.; Shahinyan, A.; Naylor, A.J.; Hutcherson, M.T.; Finnegan, P.S.; Tandon, V.; Darvish-Kazem, S.; et al. Postoperative Hypoxemia is Common and Persistent: A Prospective Blinded Observational Study. Anesth. Analg. 2015, 121, 709–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coccolini, F.; Ansaloni, L.; Manfredi, R.; Campanati, L.; Poiasina, E.; Bertoli, P.; Capponi, M.G.; Sartelli, M.; Di Saverio, S.; Cucchi, M.; et al. Peritoneal adhesion index (PAI): Proposal of a score for the “ignored iceberg” of medicine and surgery. World J. Emerg. Surg. 2013, 8, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binda, M.M.; Molinas, C.R.; Koninckx, P.R. Reactive oxygen species and adhesion formation: Clinical implications in adhesion prevention. Hum. Reprod. 2003, 18, 2503–2507. [Google Scholar] [CrossRef] [Green Version]
- Risberg, B.; Stenberg, B. Modulation of tissue fibrinolysis from hypoxia and hyperoxia. Thromb. Res. 1985, 38, 129–136. [Google Scholar] [CrossRef]
- Yan, S.-F.; Mackman, N.; Kisiel, W.; Stern, D.M.; Pinsky, D.J. Hypoxia/Hypoxemia-Induced Activation of the Procoagulant Pathways and the Pathogenesis of Ischemia-Associated Thrombosis. Arter. Thromb. Vasc. Biol. 1999, 19, 2029–2035. [Google Scholar] [CrossRef] [Green Version]
- Gertler, J.P.; Perry, L.; L’Italien, G.; Chung-Welch, N.; Cambria, R.P.; Orkin, R.; Abbott, W.M. Ambient oxygen tension modulates endothelial fibrinolysis. J. Vasc. Surg. 1993, 18, 939–946. [Google Scholar] [CrossRef] [Green Version]
- Di Zerega, G.S. Biochemical events in peritoneal tissue repair. Eur. J. Surg. Suppl. 1997, 577, 10–16. [Google Scholar]
- Chegini, N. Peritoneal molecular environment, adhesion formation and clinical implication. Front. Biosci. 2002, 7, e91–e115. [Google Scholar]
- Boland, G.M.; Weigel, R. Formation and Prevention of Postoperative Abdominal Adhesions. J. Surg. Res. 2006, 132, 3–12. [Google Scholar] [CrossRef]
- Holmdahl, L.; Eriksson, E.; Al-Jabreen, M.; Risberg, B. Fibrinolysis in human peritoneum during operation. Surgery 1996, 119, 701–705. [Google Scholar] [CrossRef]
- Holmdahl, L.; Ivarsson, M.L. The role of cytokines, coagulation, and fibrinolysis in peritoneal tissue repair. Eur. J. Surg. Suppl. 1999, 165, 1012–1019. [Google Scholar]
- Hellebrekers, B.W.J.; Kooistra, T. Pathogenesis of postoperative adhesion formation. BJS 2011, 98, 1503–1516. [Google Scholar] [CrossRef] [PubMed]
- Foster, D.S.; Marshall, C.D.; Gulati, G.S.; Chinta, M.S.; Nguyen, A.; Salhotra, A.; Jones, R.E.; Burcham, A.; Lerbs, T.; Cui, L.; et al. Elucidating the fundamental fibrotic processes driving abdominal adhesion formation. Nat. Commun. 2020, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Rivkind, A.; Pappo, O.; Pikarsky, A.; Levi-Schaffer, F. Role of Mast Cells and Myofibroblasts in Human Peritoneal Adhesion Formation. Ann. Surg. 2002, 236, 593–601. [Google Scholar] [CrossRef]
- Cannata, A.; Petrella, D.; Russo, C.F.; Bruschi, G.; Fratto, P.; Gambacorta, M.; Martinelli, L. Postsurgical Intrapericardial Adhesions: Mechanisms of Formation and Prevention. Ann. Thorac. Surg. 2013, 95, 1818–1826. [Google Scholar] [CrossRef]
- Park, D.S.; Regmi, S.C.; Svystonyuk, D.A.; Teng, G.; Belke, D.; Turnbull, J.; Guzzardi, D.G.; Kang, S.; Cowman, M.K.; Schmidt, T.A.; et al. Human pericardial proteoglycan 4 (lubricin): Implications for postcardiotomy intrathoracic adhesion formation. J. Thorac. Cardiovasc. Surg. 2018, 156, 1598–1608.e1. [Google Scholar] [CrossRef]
- Di Zerega, G.S.; Campeau, J.D. Peritoneal repair and post-surgical adhesion formation. Hum. Reprod. Update 2001, 7, 547–555. [Google Scholar] [CrossRef]
- Ellis, H.; Harrison, W.; Hugh, T.B. The healing of the peritoneum under normal and pathological conditions. Br. J. Surg. 1965, 52, 471–476. [Google Scholar] [CrossRef]
- Raftery, A.T. Regeneration of parietal and visceral peritoneum: An electron microscopical study. J. Anat. 1973, 115, 375–392. [Google Scholar]
- Cheong, Y.C.; Laird, S.M.; Li, T.C.; Shelton, J.B.; Ledger, W.L.; Cooke, I.D. Peritoneal healing and adhesion formation/reformation. Hum. Reprod. Update 2001, 7, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Lucas, P.; Warejcka, D.J.; Young, H.E.; Lee, B.Y. Formation of Abdominal Adhesions Is Inhibited by Antibodies to Transforming Growth Factor-β1. J. Surg. Res. 1996, 65, 135–138. [Google Scholar] [CrossRef]
- Mutsaers, S.E.; Birnie, K.; Lansley, S.; Herrick, S.E.; Lim, C.-B.; Prêle, C.M. Mesothelial cells in tissue repair and fibrosis. Front. Pharmacol. 2015, 6, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, J.M.; Shoham, M.; Fernhoff, N.B.; George, B.M.; Marjon, K.D.; McCracken, M.N.; Kao, K.S.; Sinha, R.; Volkmer, A.K.; Miyanishi, M.; et al. Neutrophil and monocyte kinetics play critical roles in mouse peritoneal adhesion formation. Blood Adv. 2019, 3, 2713–2721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandoval, P.; Jiménez-Heffernan, J.A.; Guerra-Azcona, G.; Pérez-Lozano, M.L.; Rynne-Vidal, A.; Albar-Vizcaíno, P.; Gil-Vera, F.; Martín, P.; Coronado, M.J.; Barcena, C.; et al. Mesothelial-to-mesenchymal transition in the pathogenesis of post-surgical peritoneal adhesions. J. Pathol. 2016, 239, 48–59. [Google Scholar] [CrossRef]
- Wallach, E.E.; Holtz, G. Prevention and management of peritoneal adhesions. Fertil. Steril. 1984, 41, 497–507. [Google Scholar] [CrossRef]
- Tsai, J.M.; Sinha, R.; Seita, J.; Fernhoff, N.; Christ, S.; Koopmans, T.; Krampitz, G.W.; McKenna, K.; Xing, L.; Sandholzer, M.; et al. Surgical adhesions in mice are derived from mesothelial cells and can be targeted by antibodies against mesothelial markers. Sci. Transl. Med. 2018, 10, eaan6735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binnebösel, M.; Rosch, R.; Junge, K.; Lynen-Jansen, P.; Schumpelick, V.; Klinge, U. Macrophage and T-lymphocyte Infiltrates in Human Peritoneal Adhesions Indicate a Chronic Inflammatory Disease. World J. Surg. 2007, 32, 296–304. [Google Scholar] [CrossRef]
- Turza, K.C.; Butler, C.E. Adhesions and meshes: Synthetic versus bioprosthetic. Plast. Reconstr. Surg. 2012, 130, 206s–213s. [Google Scholar] [CrossRef] [PubMed]
- Ergül, E.; Korukluoglu, B. Peritoneal adhesions: Facing the enemy. Int. J. Surg. 2008, 6, 253–260. [Google Scholar] [CrossRef] [Green Version]
- Cantürk, N.Z.; Vural, B.; Esen, N.; Cantürk, Z.; Oktay, G.; Kirkali, G.; Solakoglu, S. Effects of granulocyte-macrophage colony-stimulating factor on incisional wound healing in an experimental diabetic rat model. Endocr. Res. 1999, 25, 105–116. [Google Scholar] [CrossRef]
- Menzies, D. Peritoneal adhesions. Incidence, cause, and prevention. Surg. Annu. 1992, 24, 27–45. [Google Scholar]
- Ar’Rajab, A.; Dawidson, I.; Sentementes, J.; Sikes, P.; Harris, R.; Mileski, W. Enhancement of Peritoneal Macrophages Reduces Postoperative Peritoneal Adhesion Formation. J. Surg. Res. 1995, 58, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, K.E.; Dizerega, G.S. Modulation of peritoneal re-epithelialization by postsurgical macrophages. J. Surg. Res. 1992, 53, 542–548. [Google Scholar] [CrossRef]
- Raftery, A.T. Regeneration of parietal and visceral peritoneum in the immature animal: A light and electron microscopical study. Br. J. Surg. 2005, 60, 969–975. [Google Scholar] [CrossRef]
- Arfors, K.E.; Lundberg, C.; Lindbom, L.; Lundberg, K.; Beatty, P.G.; Harlan, J.M. A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 1987, 69, 338–340. [Google Scholar] [CrossRef]
- Ar’Rajab, A.; Mileski, W.; Sentementes, J.T.; Sikes, P.; Harris, R.B.; Dawidson, I.J. The Role of Neutrophils in Peritoneal Adhesion Formation. J. Surg. Res. 1996, 61, 143–146. [Google Scholar] [CrossRef]
- Raa, S.; van den Tol, M.P.; Sluiter, W.; Hofland, L.J.; van Eijck, C.H.; Jeekel, H. The role of neutrophils and oxygen free radicals in post-operative adhesions. J. Surg. Res. 2006, 136, 45–52. [Google Scholar] [PubMed]
- Chung, D.R.; Chitnis, T.; Panzo, R.J.; Kasper, D.L.; Sayegh, M.H.; Tzianabos, A.O. CD4+ T Cells Regulate Surgical and Postinfectious Adhesion Formation. J. Exp. Med. 2002, 195, 1471–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzianabos, A.O.; Holsti, M.A.; Zheng, X.X.; Stucchi, A.F.; Kuchroo, V.K.; Strom, T.B.; Glimcher, L.H.; Cruikshank, W.W. Functional Th1 cells are required for surgical adhesion formation in a murine model. J. Immunol. 2008, 180, 6970–6976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozbilgin, K.; Üner, M.A.; Ozkut, M.; Hasdemir, P.S. The effects of pirfenidone on T helper cells in prevention of intraperitoneal adhesions. Kaohsiung J. Med. Sci. 2017, 33, 271–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cantürk, N.Z.; Vural, B.; Cubukcu, A.; Duzcen, E.; Utkan, Z.; Dülger, M. Experimental study on the role of mast cells in peritoneal adhesion formation. East Afr. Med. J. 1999, 76, 233–236. [Google Scholar]
- Yao, Y.-L.; Ishihara, T.; Takai, S.; Miyazaki, M.; Mita, S. Association between the Expression of Mast Cell Chymase and Intraperitoneal Adhesion Formation in Mice. J. Surg. Res. 2000, 92, 40–44. [Google Scholar] [CrossRef]
- Cahill, R.A.; Wang, J.H.; Soohkai, S.; Redmond, H.P. Mast cells facilitate local VEGF release as an early event in the pathogenesis of postoperative peritoneal adhesions. Surgery 2006, 140, 108–112. [Google Scholar] [CrossRef]
- Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian J. Anaesth. 2014, 58, 515–523. [Google Scholar] [CrossRef]
- Holmdahl, L. The role of fibrinolysis in adhesion formation. Eur. J. Surg. Suppl. 1997, 577, 24–31. [Google Scholar]
- Cheong, Y.C.; Shelton, J.B.; Laird, S.M.; Li, T.C.; Ledger, W.L.; Cooke, I.D. Peritoneal fluid concentrations of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, and transforming growth factor-beta in women with pelvic adhesions. Fertil. Steril. 2003, 79, 1168–1175. [Google Scholar] [CrossRef]
- Chegini, N.; Kotseos, K.; Bennett, B.; Diamond, M.; Holmdahl, L.; Burns, J. Matrix metalloproteinase (MMP-1) and tissue inhibitor of MMP in peritoneal fluids and sera and correlation with peritoneal adhesions. Fertil. Steril. 2001, 76, 1207–1211. [Google Scholar] [CrossRef]
- Chegini, N.; Kotseos, K.; Zhao, Y.; Ma, C.; McLean, F.; Diamond, M.; Holmdahl, L.; Burns, J. Expression of matrix metalloproteinase (MMP-1) and tissue inhibitor of MMP in serosal tissue of intraperitoneal organs and adhesions. Fertil. Steril. 2001, 76, 1212–1219. [Google Scholar] [CrossRef]
- Christodoulidis, G.; Tsilioni, I.; Spyridakis, M.-E.; Kiropoulos, T.; Oikonomidi, S.; Koukoulis, G.; Tepetes, K. Matrix Metaloproteinase-2 and -9 Serum Levels as Potential Markers of Intraperitoneal Adhesions. J. Investig. Surg. 2013, 26, 134–140. [Google Scholar] [CrossRef]
- Chegini, N.; Zhao, Y.; Kotseos, K.; Ma, C.; Bennett, B.; Diamond, M.P.; Holmdahl, L.; Skinner, K. Differential expression of matrix metalloproteinase and tissue inhibitor of MMP in serosal tissue of intraperitoneal organs and adhesions. BJOG Int. J. Obstet. Gynaecol. 2002, 109, 1041–1049. [Google Scholar] [CrossRef]
- Buyalos, R.P.; Funari, V.A.; Azziz, R.; Watson, J.M.; Martinez-Maza, O. Elevated interleukin-6 levels in peritoneal fluid of patients with pelvic pathology. Fertil. Steril. 1992, 58, 302–306. [Google Scholar] [CrossRef]
- Kaidi, A.A.; Gurchumelidze, T.; Nazzal, M.; Figert, P.; Vanterpool, C.; Silva, Y. Tumor Necrosis Factor-α: A Marker for Peritoneal Adhesion Formation. J. Surg. Res. 1995, 58, 516–518. [Google Scholar] [CrossRef]
- Cheong, Y.; Laird, S.; Shelton, J.; Ledger, W.; Li, T.C.; Cooke, I. The correlation of adhesions and peritoneal fluid cytokine concentrations: A pilot study. Hum. Reprod. 2002, 17, 1039–1045. [Google Scholar] [CrossRef] [Green Version]
- Cheong, Y.C.; Shelton, J.B.; Laird, S.M.; Richmond, M.; Kudesia, G.; Li, T.C.; Ledger, W.L. IL-1, IL-6 and TNF-α concentrations in the peritoneal fluid of women with pelvic adhesions. Hum. Reprod. 2002, 17, 69–75. [Google Scholar] [CrossRef]
- Wang, G.; Wu, K.; Li, W.; Zhao, E.; Shi, L.; Wang, J.; Shuai, X.; Cai, K.; Lu, X.; Tao, K.; et al. Role of IL-17 and TGF-beta in peritoneal adhesion formation after surgical trauma. Wound Repair Regen. 2014, 22, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Saed, G.M.; Zhang, W.; Diamond, M.P. Molecular characterization of fibroblasts isolated from human peritoneum and adhesions. Fertil. Steril. 2001, 75, 763–768. [Google Scholar] [CrossRef]
- Tsukada, K.; Katoh, H.; Suzuki, T.; Takenoshita, S.; Nagamachi, Y. Correlations of peritoneal interleukin-6, serum beta-2 microglobulin and urinary beta-2 microglobulin after elective abdominal surgery. APMIS 1993, 101, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, H.; Kawamura, I.; Fujita, M.; Tsukada, H.; Arakawa, M.; Mitsuyama, M. Membrane damage and interleukin-1 production in murine macrophages exposed to listeriolysin O. Infect. Immun. 1993, 61, 1334–1339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whawell, S.A.; Wang, Y.; Fleming, K.A.; Thompson, E.M.; Thompson, J.N. Localization of plasminogen activator inhibitor-1 production in inflamed appendix byin situ mRNA hybridization. J. Pathol. 1993, 169, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Betjes, M.G.; Tuk, C.W.; Struijk, D.G.; Krediet, R.T.; Arisz, L.; Hart, M.; Beelen, R.H. Interleukin-8 production by human peritoneal mesothelial cells in response to tumor necrosis factor-alpha, interleukin-1, and medium conditioned by macrophages cocultured with Staphylococcus epidermidis. J. Infect. Dis. 1993, 168, 1202–1210. [Google Scholar] [CrossRef]
- Kaidi, A.A.; Nazzal, M.; Gurchumelidze, T.; Ali, M.; Dawe, E.J.; Silva, Y.J. Preoperative administration of antibodies against tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1) and their impact on peritoneal adhesion formation. Am. Surg. 1995, 61, 569–572. [Google Scholar]
- Williams, R.; Rossi, A.M.; Chegini, N.; Schultz, G. Effect of transforming growth factor β on postoperative adhesion formation and intact peritoneum. J. Surg. Res. 1992, 52, 65–70. [Google Scholar] [CrossRef]
- Chegini, N. The role of growth factors in peritoneal healing: Transforming growth factor beta (TGF-beta). Eur. J. Surg. Suppl. Acta Chir. Suppl. 1997, 1997, 17–23. [Google Scholar]
- Chegini, N. TGF-beta system: The principal profibrotic mediator of peritoneal adhesion formation. Semin. Reprod. Med. 2008, 26, 298–312. [Google Scholar] [CrossRef] [PubMed]
- Holmdahl, L.; Kotseos, K.; Bergström, M.; Falk, P.; Ivarsson, M.L.; Chegini, N. Overproduction of transforming growth factor-beta1 (TGF-beta1) is associated with adhesion formation and peritoneal fibrinolytic impairment. Surgery 2001, 129, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Hobson, K.G.; Dewing, M.; Ho, H.S.; Wolfe, B.M.; Cho, K.; Greenhalgh, D.G. Expression of Transforming Growth Factor β1 in Patients with and without Previous Abdominal Surgery. Arch. Surg. 2003, 138, 1249–1252. [Google Scholar] [CrossRef] [Green Version]
- Chegini, N.; Kotseos, K.; Zhao, Y.; Bennett, B.; McLean, F.W.; Diamond, M.P.; Holmdahl, L.; Burns, J. Differential expression of TGF-β1 and TGF-β3 in serosal tissues of human intraperitoneal organs and peritoneal adhesions. Hum. Reprod. 2001, 16, 1291–1300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cahill, R.A.; Redmond, H.P. Cytokine orchestration in post-operative peritoneal adhesion formation. World J. Gastroenterol. 2008, 14, 4861–4866. [Google Scholar] [CrossRef]
- Imudia, A.N.; Kumar, S.; Saed, G.M.; Diamond, M.P. Pathogenesis of Intra-abdominal and Pelvic Adhesion Development. Semin. Reprod. Med. 2008, 26, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Molinas, C.R.; Binda, M.M.; Koninckx, P.R. Angiogenic factors in peritoneal adhesion formation. Gynecol. Surg. 2006, 3, 157–167. [Google Scholar] [CrossRef] [Green Version]
- Sutton, C. Adhesions following surgery: Pathogenesis and current experience with adhesion barriers. Surg. Technol. Int. 2009, 18, 144–156. [Google Scholar]
- Lundorff, P.; Hahlin, M.; Källfelt, B.; Thorburn, J.; Lindblom, B. Adhesion formation after laparoscopic surgery in tubal pregnancy: A randomized trial versus laparotomy. Fertil. Steril. 1991, 55, 911–915. [Google Scholar] [CrossRef]
- Schäfer, M.; Krähenbühl, L.; Büchler, M. Comparison of Adhesion Formation in Open and Laparoscopic Surgery. Dig. Surg. 1998, 15, 148–152. [Google Scholar] [CrossRef]
- Ten Broek, R.P.; Kok-Krant, N.; Bakkum, E.A.; Bleichrodt, R.P.; van Goor, H. Different surgical techniques to reduce post-operative adhesion formation: A systematic review and meta-analysis. Hum. Reprod. Update 2013, 19, 12–25. [Google Scholar] [CrossRef] [Green Version]
- Tittel, A.; Treutner, K.; Titkova, S.; Öttinger, A.; Schumpelick, V. Comparison of adhesion reformation after laparoscopic and conventional adhesiolysis in an animal model. Langenbeck’s Arch. Surg. 2001, 386, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Nagle, A.; Ujiki, M.; Denham, W.; Murayama, K. Laparoscopic adhesiolysis for small bowel obstruction. Am. J. Surg. 2004, 187, 464–470. [Google Scholar] [CrossRef]
- Tabibian, N.; Swehli, E.; Boyd, A.; Umbreen, A.; Tabibian, J. Abdominal adhesions: A practical review of an often overlooked entity. Ann. Med. Surg. 2017, 15, 9–13. [Google Scholar] [CrossRef]
- De Souza, A.M.; Wang, C.C.; Chu, C.Y.; Lam, P.M.; Rogers, M.S. The effect of intra-abdominal pressure on the generation of 8-iso prostaglandin F2alpha during laparoscopy in rabbits. Hum. Reprod. 2003, 18, 2181–2188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bulletti, C.; Polli, V.; Negrini, V.; Giacomucci, E.; Flamigni, C. Adhesion formation after laparoscopic myomectomy. J. Am. Assoc. Gynecol. Laparoscopists 1996, 3, 533–536. [Google Scholar] [CrossRef]
- Alpay, Z.; Saed, G.; Diamond, M. Postoperative Adhesions: From Formation to Prevention. Semin. Reprod. Med. 2008, 26, 313–321. [Google Scholar] [CrossRef]
- Ott, D.E. Laparoscopy and Tribology: The Effect of Laparoscopic Gas on Peritoneal Fluid. J. Am. Assoc. Gynecol. Laparoscopists 2001, 8, 117–123. [Google Scholar] [CrossRef]
- Molinas, C.R.; Mynbaev, O.; Pauwels, A.; Novak, P.; Koninckx, P.R. Peritoneal mesothelial hypoxia during pneumoperitoneum is a cofactor in adhesion formation in a laparoscopic mouse model. Fertil. Steril. 2001, 76, 560–567. [Google Scholar] [CrossRef]
- Binda, M.; Molinas, C.; Mailova, K.; Koninckx, P. Effect of temperature upon adhesion formation in a laparoscopic mouse model. Hum. Reprod. 2004, 19, 2626–2632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mais, V. Peritoneal adhesions after laparoscopic gastrointestinal surgery. World J. Gastroenterol. 2014, 20, 4917–4925. [Google Scholar] [CrossRef] [Green Version]
- Diamond, M.P. Reduction of postoperative adhesion development. Fertil. Steril. 2016, 106, 994–997. [Google Scholar] [CrossRef] [Green Version]
- Ferrario, C.M.; Strawn, W.B. Role of the Renin-Angiotensin-Aldosterone System and Proinflammatory Mediators in Cardiovascular Disease. Am. J. Cardiol. 2006, 98, 121–128. [Google Scholar] [CrossRef]
- Weber, K.T.; Brilla, C.G. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 1991, 83, 1849–1865. [Google Scholar] [CrossRef] [Green Version]
- Brilla, C.G. Renin-angiotensin-aldosterone system and myocardial fibrosis. Cardiovasc. Res. 2000, 47, 1–3. [Google Scholar] [CrossRef] [Green Version]
- Pereira, R.M.; Dos Santos, R.A.S.; Dias, F.L.D.C.; Teixeira, M.M.; Silva, A.C.S.E. Renin-angiotensin system in the pathogenesis of liver fibrosis. World J. Gastroenterol. 2009, 15, 2579–2586. [Google Scholar] [CrossRef] [PubMed]
- Wynn, T. Cellular and molecular mechanisms of fibrosis. J. Pathol. 2007, 214, 199–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schnee, J.M.; Hsueh, W. Angiotensin II, adhesion, and cardiac fibrosis. Cardiovasc. Res. 2000, 46, 264–268. [Google Scholar] [CrossRef] [Green Version]
- Nakamoto, H.; Imai, H.; Fukushima, R.; Ishida, Y.; Yamanouchi, Y.; Suzuki, H. Role of the renin-angiotensin system in the pathogenesis of peritoneal fibrosis. Perit. Dial. Int. 2008, 28, 83–87. [Google Scholar] [CrossRef]
- Oparil, S.; Haber, E. The renin-angiotensin system (first of two parts). N. Engl. J. Med. 1974, 291, 389–401. [Google Scholar] [CrossRef] [PubMed]
- Jia, G.; Aroor, A.R.; Hill, M.; Sowers, J.R. Role of Renin-Angiotensin-Aldosterone System Activation in Promoting Cardiovascular Fibrosis and Stiffness. Hypertension 2018, 72, 537–548. [Google Scholar] [CrossRef]
- Ruiz-Ortega, M.; Rupérez, M.; Esteban, V.; Rodriguez-Vita, J.; Sánchez-López, E.; Carvajal, G.; Egido, J. Angiotensin II: A key factor in the inflammatory and fibrotic response in kidney diseases. Nephrol. Dial. Transplant. 2006, 21, 16–20. [Google Scholar] [CrossRef]
- Vaughan, D.E. Angiotensin and vascular fibrinolytic balance. Am. J. Hypertens. 2002, 15, S3–S8. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.K.; Vaughan, D.E. PAI-1 in tissue fibrosis. J. Cell. Physiol. 2012, 227, 493–507. [Google Scholar] [CrossRef] [Green Version]
- Koh, K.K.; Chung, W.-J.; Ahn, J.Y.; Han, S.H.; Kang, W.C.; Seo, Y.-H.; Ahn, T.H.; Choi, I.S.; Shin, E.K. Angiotensin II type 1 receptor blockers reduce tissue factor activity and plasminogen activator inhibitor type-1 antigen in hypertensive patients: A randomized, double-blind, placebo-controlled study. Atherosclerosis 2004, 177, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Tokinaga, Y.; Kimoto, Y.; Ogawa, K.; Mizumoto, K.; Tange, K.; Hatano, Y. Reduction of adhesion formation by an angiotensin type 1 receptor antagonist. Langenbeck’s Arch. Surg. 2010, 396, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Del Borgo, M.; Lee, H.W.; Baraldi, D.; Hirmiz, B.; Gaspari, T.A.; Denton, K.M.; Aguilar, M.-I.; Samuel, C.S.; Widdop, R.E. Anti-fibrotic Potential of AT2 Receptor Agonists. Front. Pharmacol. 2017, 8, 564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, A.; Leibowitz, A.; Yamamoto, N.; Rautureau, Y.; Paradis, P.; Schiffrin, E.L. Angiotensin Type 2 Receptor Agonist Compound 21 Reduces Vascular Injury and Myocardial Fibrosis in Stroke-Prone Spontaneously Hypertensive Rats. Hypertension 2012, 59, 291–299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, C.; Sommerfeld, M.; Namsolleck, P.; Kintscher, U.; Unger, T.; Kaschina, E. AT 2 R (Angiotensin AT2 Receptor) Agonist, Compound 21, Prevents Abdominal Aortic Aneurysm Progression in the Rat. Hypertension 2018, 72, e20–e29. [Google Scholar] [CrossRef]
- Koulis, C.; Chow, B.S.; McKelvey, M.; Steckelings, U.M.; Unger, T.; Thallas-Bonke, V.; Thomas, M.C.; Cooper, M.E.; Jandeleit-Dahm, K.A.; Allen, T.J. AT2R Agonist, Compound 21, Is Reno-Protective Against Type 1 Diabetic Nephropathy. Hypertension 2015, 65, 1073–1081. [Google Scholar] [CrossRef] [Green Version]
- Rathinasabapathy, A.; Horowitz, A.; Horton, K.; Kumar, A.; Gladson, S.; Unger, T.; Martinez, D.; Bedse, G.; West, J.; Raizada, M.K.; et al. The Selective Angiotensin II Type 2 Receptor Agonist, Compound 21, Attenuates the Progression of Lung Fibrosis and Pulmonary Hypertension in an Experimental Model of Bleomycin-Induced Lung Injury. Front. Physiol. 2018, 9, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boudreau, C.; LeVatte, T.; Jones, C.; Gareau, A.; Legere, S.; Bezuhly, M. The Selective Angiotensin II Type 2 Receptor Agonist Compound 21 Reduces Abdominal Adhesions in Mice. J. Surg. Res. 2020, 256, 231–242. [Google Scholar] [CrossRef]
- Bülbüller, N.; Ilhan, Y.S.; Kirkil, C.; Çetiner, M.; Gogebakan, Ö.; Ilhan, N. Can Angiotensin Converting Enzyme Inhibitors Prevent Postoperative Adhesions? J. Surg. Res. 2005, 125, 94–97. [Google Scholar] [CrossRef] [PubMed]
- Ilhan, Y.S.; Bülbüller, N.; Kirkil, C.; Ozercan, R.; Seckin, D. The Effect of an Angiotensin Converting Enzyme Inhibitor on Intestinal Wound Healing. J. Surg. Res. 2005, 128, 61–65. [Google Scholar] [CrossRef]
- Noh, H.; Ha, H.; Yu, M.R.; Kim, Y.O.; Kim, J.H.; Lee, H.B. Angiotensin II mediates high glucose-induced TGF-beta1 and fibronectin upregulation in HPMC through reactive oxygen species. Perit. Dial. Int. 2005, 25, 38–47. [Google Scholar] [CrossRef]
- Awonuga, A.O.; Belotte, J.; Abuanzeh, S.; Fletcher, N.M.; Diamond, M.P.; Saed, G.M. Advances in the Pathogenesis of Adhesion Development: The Role of Oxidative Stress. Reprod. Sci. 2014, 21, 823–836. [Google Scholar] [CrossRef] [Green Version]
- Strowitzki, M.J.; Ritter, A.S.; Radhakrishnan, P.; Harnoss, J.M.; Opitz, V.M.; Biller, M.; Wehrmann, J.; Keppler, U.; Scheer, J.; Wallwiener, M.; et al. Pharmacological HIF-inhibition attenuates postoperative adhesion formation. Sci. Rep. 2017, 7, 1–14. [Google Scholar] [CrossRef]
- Lu, R.-M.; Hwang, Y.-C.; Liu, I.-J.; Lee, C.-C.; Tsai, H.-Z.; Li, H.-J.; Wu, H.-C. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020, 27, 1–30. [Google Scholar] [CrossRef]
- Colak, N.; Nazli, Y.; Alpay, M.F.; Aksoy, O.N.; Akkaya, I.O.; Bayrak, R.; Cakir, O. Effect of topical N-acetylcysteine in the prevention of postoperative pericardial adhesion formation in a rabbit model. Cardiovasc. Pathol. 2013, 22, 368–372. [Google Scholar] [CrossRef] [PubMed]
- Chu, D.I.; Lim, R.; Heydrick, S.; Gainsbury, M.L.; Abdou, R.; D’Addese, L.; Reed, K.L.; Stucchi, A.F.; Becker, J.M. N-acetyl-l-cysteine decreases intra-abdominal adhesion formation through the upregulation of peritoneal fibrinolytic activity and antioxidant defenses. Surgery 2011, 149, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Haslinger, B.; Goedde, M.F.; Toet, K.H.; Kooistra, T. Simvastatin increases fibrinolytic activity in human peritoneal mesothelial cells independent of cholesterol lowering. Kidney Int. 2002, 62, 1611–1619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoscan, Y.; Karabulut, Z.; Hoscan, M.; Arikan, S.; Ögüs, E.; Muderrisoglu, I.H.; Hoscan, Y.; Karabulut, Z.; Hoscan, M.; Arikan, S.; et al. Oral fluvastatin reduces the severity of peritoneal adhesions in rats. Acta Chir. Belg. 2010, 110, 66–70. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Yan, S.; Li, H.; Zong, Y.; Yue, J.; Zeng, L. The role of oral fluvastatin on postoperative peritoneal adhesion formation in an experimental rat model. Acta Chir. Belg. 2018, 118, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Aarons, C.B.; Cohen, P.A.; Gower, A.; Reed, K.L.; Leeman, S.E.; Stucchi, A.F.; Becker, J.M. Statins (HMG-CoA reductase inhibitors) decrease postoperative adhesions by increasing peritoneal fibrinolytic activity. Ann. Surg. 2007, 245, 176–184. [Google Scholar] [CrossRef]
- Reed, K.L.; Stucchi, A.F.; Leeman, S.E.; Becker, J.M. Inhibitory Effects of a Neurokinin-1 Receptor Antagonist on Postoperative Peritoneal Adhesion Formation. Ann. N. Y. Acad. Sci. 2008, 1144, 116–126. [Google Scholar] [CrossRef]
- Reed, K.L.; Heydrick, S.J.; Aarons, C.B.; Prushik, S.; Gower, A.C.; Stucchi, A.F.; Becker, J.M. A neurokinin-1 receptor antagonist that reduces intra-abdominal adhesion formation decreases oxidative stress in the peritoneum. Am. J. Physiol. Liver Physiol. 2007, 293, G544–G551. [Google Scholar] [CrossRef] [PubMed]
- Prushik, S.G.; Aarons, C.B.; Matteotti, R.; Reed, K.L.; Gower, A.C.; Leeman, S.E.; Stucchi, A.F.; Becker, J.M. A neurokinin 1 receptor antagonist decreases adhesion reformation after laparoscopic lysis of adhesions in a rat model of adhesion formation. Surg. Endosc. 2007, 21, 1790–1795. [Google Scholar] [CrossRef]
- Cohen, P.A.; Gower, A.C.; Stucchi, A.F.; Leeman, S.E.; Becker, J.M.; Reed, K.L. A neurokinin-1 receptor antagonist that reduces intraabdominal adhesion formation increases peritoneal matrix metalloproteinase activity. Wound Repair Regen. 2007, 15, 800–808. [Google Scholar] [CrossRef]
- Lim, R.; Morrill, J.M.; Prushik, S.G.; Reed, K.L.; Gower, A.C.; Leeman, S.E.; Stucchi, A.F.; Becker, J.M. An FDA Approved Neurokinin-1 Receptor Antagonist is Effective in Reducing Intraabdominal Adhesions when Administered Intraperitoneally, But Not Orally. J. Gastrointest. Surg. 2008, 12, 1754–1761. [Google Scholar] [CrossRef]
- Cohen, P.A.; Reed, K.L.; Gower, A.C.; Stucchi, A.F.; Lehrmann, J.; Fruin, A.; Leeman, S.E.; Becker, J.M. A substance P receptor antagonist (SPRA) that reduces intraabdominal adhesion formation decreases peritoneal matrix metalloproteinase (MMP) activity. J. Am. Coll. Surg. 2004, 199, 21–22. [Google Scholar] [CrossRef]
- Jay, G.D.; Torres, J.R.; Warman, M.L.; Laderer, M.C.; Breuer, K.S. The role of lubricin in the mechanical behavior of synovial fluid. Proc. Natl. Acad. Sci. USA 2007, 104, 6194–6199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bielory, L.; Wagle, P. Ocular surface lubricants. Curr. Opin. Allergy Clin. Immunol. 2017, 17, 382–389. [Google Scholar] [CrossRef]
- Das, N.; Schmidt, T.A.; Krawetz, R.J.; Dufour, A. Proteoglycan 4: From Mere Lubricant to Regulator of Tissue Homeostasis and Inflammation: Does proteoglycan 4 have the ability to buffer the inflammatory response? Bioessays 2019, 41, e1800166. [Google Scholar] [CrossRef] [Green Version]
- Wulff, B.C.; Wilgus, T.A. Mast cell activity in the healing wound: More than meets the eye? Exp. Dermatol. 2013, 22, 507–510. [Google Scholar] [CrossRef] [Green Version]
- Overed-Sayer, C.; Rapley, L.; Mustelin, T.; Clarke, D.L. Are mast cells instrumental for fibrotic diseases? Front. Pharmacol. 2014, 4, 174. [Google Scholar] [CrossRef] [Green Version]
- Soga, Y.; Takai, S.; Koyama, T.; Okamoto, Y.; Ikeda, T.; Nishimura, K.; Miyazaki, M.; Komeda, M. Attenuation of adhesion formation after cardiac surgery with a chymase inhibitor in a hamster model. J. Thorac. Cardiovasc. Surg. 2004, 127, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Soga, Y.; Takai, S.; Koyama, T.; Okamoto, Y.; Ikeda, T.; Nishimura, K.; Miyazaki, M.; Komeda, M. Attenuating Effects of Chymase Inhibitor on Pericardial Adhesion Following Cardiac Surgery. J. Card. Surg. 2007, 22, 343–347. [Google Scholar] [CrossRef] [PubMed]
- Ozeki, M.; Jin, D.; Miyaoka, Y.; Masubuchi, S.; Hirokawa, F.; Hayashi, M.; Takai, S.; Uchiyama, K. Comparison of a chymase inhibitor and hyaluronic acid/carboxymethylcellulose (Seprafilm) in a novel peritoneal adhesion model in rats. PLoS ONE 2019, 14, e0211391. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Takai, S.; Yamada, M.; Miyazaki, M. Chymase inhibitors may prevent postoperative adhesion formation. Fertil. Steril. 2002, 77, 1044–1048. [Google Scholar] [CrossRef]
- Okamoto, Y.; Takai, S.; Miyazaki, M. Significance of chymase inhibition for prevention of adhesion formation. Eur. J. Pharmacol. 2004, 484, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Takai, S.; Miyazaki, M. Effect of Chymase-Dependent Transforming Growth Factor β on Peritoneal Adhesion Formation in a Rat Model. Surg. Today 2004, 34, 865–867. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Takai, S.; Miyazaki, M. Chymase Inhibitor, BCEAB, Suppressed Peritoneal Adhesion Formation in Hamster. J. Surg. Res. 2002, 107, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Küçüközkan, T.; Ersoy, B.; Uygur, D.; Gundogdu, C. Prevention of adhesions by sodium chromoglycate, dexamethasone, saline and aprotinin after pelvic surgery. ANZ J. Surg. 2004, 74, 1111–1115. [Google Scholar] [CrossRef]
- Rodgers, K.; Girgis, W.; Dizerega, G.S.; Johns, D.B. Intraperitoneal tolmetin prevents postsurgical adhesion formation in rabbits. Int. J. Fertil. 1990, 35, 40–45. [Google Scholar] [PubMed]
- Jarrett, J.C.; Dawood, M.Y. Adhesion formation and uterine tube healing in the rabbit: A controlled study of the effect of ibuprofen and flurbiprofen. Am. J. Obstet. Gynecol. 1986, 155, 1186–1192. [Google Scholar] [CrossRef]
- De Leon, F.D.; Toledo, A.A.; Sanfilippo, J.S.; Yussman, M.A. The prevention of adhesion formation by nonsteroidal anti-inflammatory drugs: An animal study comparing ibuprofen and indomethacin. Fertil. Steril. 1984, 41, 639–642. [Google Scholar] [CrossRef]
- Montz, F.J.; Monk, B.J.; Lacy, S.M.; Fowler, J.M.; Montz, F.J.; Monk, B.J.; Lacy, S.M.; Fowler, J.M. Ketorolac tromethamine, a nonsteroidal anti-inflammatory drug: Ability to inhibit post-radical pelvic surgery adhesions in a porcine model. Gynecol. Oncol. 1993, 48, 76–79. [Google Scholar] [CrossRef]
- Orita, H.; Girgis, W.; Dizerega, G.S. Prevention of postsurgical peritoneal adhesion formation by intraperitoneal administration of ibuprofen. Drug Dev. Res. 1987, 10, 97–105. [Google Scholar] [CrossRef]
- Muzii, L.; Marana, R.; Brunetti, L.; Margutti, F.; Vacca, M.; Mancuso, S. Postoperative adhesion prevention with low-dose aspirin: Effect through the selective inhibition of thromboxane production. Hum. Reprod. 1998, 13, 1486–1489. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, K.E.; Johns, D.B.; Girgis, W.; Dizerega, G.S. Prevention of Adhesion Formation with Intraperitoneal Administration of Tolmetin and Hyaluronic Acid. J. Investig. Surg. 1997, 10, 367–373. [Google Scholar] [CrossRef]
- Aldemir, M.; Öztürk, H.; Büyükbayram, H.; Erten, G. The Preventive Effect of Rofecoxib in Postoperative Intraperitoneal Adhesions. Acta Chir. Belg. 2004, 104, 97–100. [Google Scholar] [CrossRef] [PubMed]
- Nishimura, K.; Nakamura, R.M.; Dizerega, G.S. Ibuprofen inhibition of postsurgical adhesion formation: A time and dose response biochemical evaluation in rabbits. J. Surg. Res. 1984, 36, 115–124. [Google Scholar] [CrossRef]
- Golan, A.; Maymon, R.; Winograd, I.; Bukovsky, I. Prevention of post-surgical adhesion formation using aspirin in a rodent model: A preliminary report. Hum. Reprod. 1995, 10, 1797–1800. [Google Scholar] [CrossRef]
- Maghsoudi, H.; Askary, B. The effect of piroxicam on the formation of postoperative, intraabdominal adhesion in rats. Saudi J. Gastroenterol. 2008, 14, 198–201. [Google Scholar] [CrossRef] [PubMed]
- Tan, V.; Nourbakhsh, A.; Capo, J.; Cottrell, J.A.; Meyenhofer, M.; O’Connor, J.P. Effects of Nonsteroidal Anti-Inflammatory Drugs on Flexor Tendon Adhesion. J. Hand Surg. 2010, 35, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, K.E.; Girgis, W.; Amand, K.S.; Campeau, J.D.; Dizerega, G.S. Reduction of Adhesion Formation by Intraperitoneal Administration of Various Anti-Inflammatory Agents. J. Investig. Surg. 1998, 11, 327–339. [Google Scholar] [CrossRef] [PubMed]
- Alizzi, A.M.; Summers, P.; Boon, V.H.; Tantiongco, J.P.; Thompson, T.; Leslie, B.J.; Williams, D.; Steele, M.; Bidstrup, B.P.; Diqer, A.M. Reduction of post-surgical pericardial adhesions using a pig model. Heart Lung Circ. 2012, 21, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Tarhan, O.R.; Barut, I.; Sutcu, R.; Akdeniz, Y.; Akturk, O. Pentoxifylline, a Methyl Xanthine Derivative, Reduces Peritoneal Adhesions and Increases Peritoneal Fibrinolysis in Rats. Tohoku J. Exp. Med. 2006, 209, 249–255. [Google Scholar] [CrossRef] [Green Version]
- Greene, A.K.; Alwayn, I.P.J.; Nose, V.; Flynn, E.; Sampson, D.; Zurakowski, D.; Folkman, J.; Puder, M. Prevention of Intra-abdominal Adhesions Using the Antiangiogenic COX-2 Inhibitor Celecoxib. Ann. Surg. 2005, 242, 140–146. [Google Scholar] [CrossRef]
- Ezberci, F.; Bulbuloglu, E.; Ciragil, P.; Gül, M.; Kurutas, E.B.; Bozkurt, S.; Kale, I.T. Intraperitoneal Tenoxicam to Prevent Abdominal Adhesion Formation in a Rat Peritonitis Model. Surg. Today 2006, 36, 361–366. [Google Scholar] [CrossRef]
- Guvenal, T.; Cetin, A.; Ozdemir, H.; Yanar, O.; Kaya, T. Prevention of postoperative adhesion formation in rat uterine horn model by nimesulide: A selective COX-2 inhibitor. Hum. Reprod. 2001, 16, 1732–1735. [Google Scholar] [CrossRef]
- Kim, Y.I. Comparative Study for Preventive Effects of Intra-Abdominal Adhesion Using Cyclo-Oxygenase-2 Enzyme (COX-2) Inhibitor, Low Molecular Weight Heparin (LMWH), and Synthetic Barrier. Yonsei Med. J. 2013, 54, 1491–1497. [Google Scholar] [CrossRef] [Green Version]
- Gómez, G.G.V.; Linares-Rivera, E.; Tena-Betancourt, E.; Castillo, G.A.D.; Reipen, L. Prevention of postoperative abdominal adhesions using systemic enoxaparin and local diclofenac. An experimental study. Surg. Pract. 2020, 24, 4–10. [Google Scholar] [CrossRef]
- LeGrand, E.; Rodgers, K.E.; Girgis, W.; Campeau, J.D.; Dizerega, G.S. Comparative Efficacy of Nonsteroidal Anti-Inflammatory Drugs and Anti-Thromboxane Agents in a Rabbit Adhesion-Prevention Model. J. Investig. Surg. 1995, 8, 187–194. [Google Scholar] [CrossRef]
- James, D.S. The multisystem adverse effects of NSAID therapy. J. Am. Osteopat. Assoc. 1999, 99, S1–S7. [Google Scholar] [CrossRef] [Green Version]
- Vonkeman, H.E.; van de Laar, M.A. Nonsteroidal anti-inflammatory drugs: Adverse effects and their prevention. Semin. Arthritis Rheum 2010, 39, 294–312. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.; Clark, D. CNS Adverse Effects of Nonsteroidal Anti-Inflammatory Drugs: Therapeutic Implications. CNS Drugs 1998, 9, 281–290. [Google Scholar] [CrossRef]
- Ng, S.C.; Chan, F.K. NSAID-induced gastrointestinal and cardiovascular injury. Curr. Opin. Gastroenterol. 2010, 26, 611–617. [Google Scholar] [CrossRef]
- Velo, G.P.; Milanino, R. Nongastrointestinal adverse reactions to NSAID. J. Rheumatol. Suppl. 1990, 20, 42–45. [Google Scholar] [PubMed]
- Bhala, N.; Emberson, J.; Merhi, A.; Abramson, S.; Arber, N.; Baron, J.; Bombardier, C.; Cannon, C.; Farkouh, M.; Fitzgerald, G.; et al. Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: Meta-analyses of individual participant data from randomised trials. Lancet 2013, 382, 769–779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, V.; Lévesque, L.E.; Zhang, B.; Hutchinson, T.; Brophy, J.M. Association of Selective and Conventional Nonsteroidal Antiinflammatory Drugs with Acute Renal Failure: A Population-based, Nested Case-Control Analysis. Am. J. Epidemiol. 2006, 164, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Elmadhun, N.Y.; Sabe, A.A.; Lassaletta, A.D.; Dalal, R.S.; Sellke, F.W. Effects of Alcohol on Postoperative Adhesion Formation in Ischemic Myocardium and Pericardium. Ann. Thorac. Surg. 2017, 104, 545–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lassaletta, A.D.; Chu, L.M.; Sellke, F.W. Effects of alcohol on pericardial adhesion formation in hypercholesterolemic swine. J. Thorac. Cardiovasc. Surg. 2012, 143, 953–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, M.; Kopp, J.B. Pirfenidone: An anti-fibrotic therapy for progressive kidney disease. Expert Opin. Investig. Drugs 2010, 19, 275–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayhan, Z.; Zeren, S.; Kocak, F.E.; Kocak, C.; Akcılar, R.; Kargı, E.; Tiryaki, C.; Yaylak, F.; Akcılar, A. Antiadhesive and anti-inflammatory effects of pirfenidone in postoperative intra-abdominal adhesion in an experimental rat model. J. Surg. Res. 2016, 201, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Fischer, A.; Koopmans, T.; Ramesh, P.; Christ, S.; Strunz, M.; Wannemacher, J.; Aichler, M.; Feuchtinger, A.; Walch, A.; Ansari, M.; et al. Post-surgical adhesions are triggered by calcium-dependent membrane bridges between mesothelial surfaces. Nat. Commun. 2020, 11, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Macarak, E.J.; Lotto, C.E.; Koganti, D.; Jin, X.; Wermuth, P.; Olsson, A.-K.; Montgomery, M.; Rosenbloom, J. Trametinib prevents mesothelial-mesenchymal transition and ameliorates abdominal adhesion formation. J. Surg. Res. 2018, 227, 198–210. [Google Scholar] [CrossRef] [Green Version]
- Kohan, M.; Muro, A.F.; White, E.S.; Berkman, N. EDA-containing cellular fibronectin induces fibroblast differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2-dependent signaling. FASEB J. 2010, 24, 4503–4512. [Google Scholar] [CrossRef]
- Fang, C.-C.; Chou, T.-H.; Huang, J.-W.; Lee, C.-C.; Chen, S.-C. The Small Molecule Inhibitor QLT-0267 Decreases the Production of Fibrin-Induced Inflammatory Cytokines and Prevents Post-Surgical Peritoneal Adhesions. Sci. Rep. 2018, 8, 1–12. [Google Scholar] [CrossRef]
- Ye, N.; Ding, Y.; Wild, C.; Shen, Q.; Zhou, J. Small Molecule Inhibitors Targeting Activator Protein 1 (AP-1). J. Med. Chem. 2014, 57, 6930–6948. [Google Scholar] [CrossRef]
- Grow, D.R.; Coddington, C.C.; Hsiu, J.-G.; Mikich, Y.; Hodgen, G.D. Role of hypoestrogenism or sex steroid antagonism in adhesion formation after myometrial surgery in primates**Prize Paper, The Society of Reproductive Surgeons. In Proceedings of the 50th Annual Meeting of The American Fertility Society, San Antonio, TX, USA, 5–10 November 1994. [Google Scholar]
- Bozkurt, S.; Yuzbasioglu, M.F.; Bulbuloglu, E.; Gul, M.; Kale, I.T. Prevention of Postoperative Peritoneal Adhesions by Administration of Estrogen. J. Investig. Surg. 2009, 22, 263–267. [Google Scholar] [CrossRef] [PubMed]
- Johary, J.; Xue, M.; Zhu, X.; Xu, D.; Velu, P.P. Efficacy of Estrogen Therapy in Patients with Intrauterine Adhesions: Systematic Review. J. Minim. Invasive Gynecol. 2014, 21, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Baatar, D.; Patel, K.; Taub, D.D. The effects of ghrelin on inflammation and the immune system. Mol. Cell. Endocrinol. 2011, 340, 44–58. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, E.; Boekelheide, K.; Sigman, M.; Lamb, D.J.; Hall, S.J.; Hwang, K. Ghrelin ameliorates adhesions in a postsurgical mouse model. J. Surg. Res. 2016, 201, 226–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bianchi, E.; Boekelheide, K.; Sigman, M.; Lamb, D.J.; Hall, S.J.; Hwang, K. Ghrelin Inhibits Post-Operative Adhesions via Blockage of the TGF-β Signaling Pathway. PLoS ONE 2016, 11, e0153968. [Google Scholar] [CrossRef] [Green Version]
- Yeo, Y.; Kohane, D.S. Polymers in the prevention of peritoneal adhesions. Eur. J. Pharm. Biopharm. 2008, 68, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Iskesen, I.; Aksoy, O.; Cerrahoglu, M.; Sirin, H. The effect of piroxicam on the prevention of postoperative retrosternal and pericardial adhesions. Acta Cardiol. 2007, 62, 559–564. [Google Scholar] [CrossRef]
- Berkkanoglu, M.; Zhang, L.; Ulukus, M.; Cakmak, H.; Kayisli, U.A.; Kursun, S.; Arici, A. Inhibition of chemokines prevents intraperitoneal adhesions in mice. Hum. Reprod. 2005, 20, 3047–3052. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.-H.; Chang, Y.; Sung, H.-W.; Chiu, Y.-T.; Yang, P.-C.; Hwang, B. Heparinization on pericardial substitutes can reduce adhesion and epicardial inflammation in the dog. J. Thorac. Cardiovasc. Surg. 1998, 115, 1111–1120. [Google Scholar] [CrossRef] [Green Version]
- Wiseman, D.M.; Kamp, L.; Linsky, C.B.; Jochen, R.F.; Pang, R.H.; Scholz, P.M. Fibrinolytic drugs prevent pericardial adhesions in the rabbit. J. Surg. Res. 1992, 53, 362–368. [Google Scholar] [CrossRef]
- Saeidi, M.; Movahedi, M.; Alsaeidi, S.; Sobhani, R.; Samani, R.E. Effect of melatonin in the prevention of postoperative pericardial adhesion formation. Interact. Cardiovasc. Thorac. Surg. 2009, 9, 26–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, J.B.; Dallan, L.A.; Lisboa, L.A.; Gutierrez, P.S.; Stolf, N.A.; Campana-Filho, S.P.; Moreira, L.F.P.; Oliveira, S.A. Keratinocyte growth factor: A new mesothelial targeted therapy to reduce postoperative pericardial adhesions? Eur. J. Cardio-Thoracic Surg. 2009, 35, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Hioki, M.; Iedokoro, Y.; Yamagishi, S.; Yamashita, Y.; Orii, K.; Hirano, S.; Hirata, T.; Masuda, S.; Kutukata, N.; Hisayoshi, T.; et al. Prevention of postoperative pericardial adhesions with a defibrinogenating agent. Int. Surg. 1998, 83, 11–14. [Google Scholar] [PubMed]
- Yagmurlu, A.; Barlas, M.; Gursel, I.; Gokcora, I.; Yagmurlu, A.; Barlas, M.; Gursel, I.; Gokcora, I. Reduction of Surgery-Induced Peritoneal Adhesions by Continuous Release of Streptokinase from a Drug Delivery System. Eur. Surg. Res. 2003, 35, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Fedan, J.S. Anticoagulant, antiplatelet, and fibrinolytic (thrombolytic) drugs. Mod. Pharmacol. 2004, 3, 370–385. [Google Scholar]
- Huemer, H.P. Possible Immunosuppressive Effects of Drug Exposure and Environmental and Nutritional Effects on Infection and Vaccination. Mediat. Inflamm. 2015, 2015, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Paccani, S.R.; Boncristiano, M.; Ulivieri, C.; D’Elios, M.M.; Del Prete, G.; Baldari, C.T. Nonsteroidal Anti-inflammatory Drugs Suppress T-cell Activation by Inhibiting p38 MAPK Induction. J. Biol. Chem. 2002, 277, 1509–1513. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Mehr, A.P.; Kreutz, R. Physiology of Local Renin-Angiotensin Systems. Physiol. Rev. 2006, 86, 747–803. [Google Scholar] [CrossRef]
- Schönberger, T.; Fandrey, J.; Prost-Fingerle, K. Ways into Understanding HIF Inhibition. Cancers 2021, 13, 159. [Google Scholar] [CrossRef]
- Jasińska, M.; Owczarek, J.; Orszulak-Michalak, D. Statins: A new insight into their mechanisms of action and consequent pleiotropic effects. Pharmacol. Rep. 2007, 59, 483–499. [Google Scholar]
- Huang, Y.; Furuno, M.; Arakawa, T.; Takizawa, S.; De Hoon, M.; Suzuki, H.; Arner, E. A framework for identification of on- and off-target transcriptional responses to drug treatment. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Efimova, E.V.; Ricco, N.; Labay, E.; Mauceri, H.J.; Flor, A.C.; Ramamurthy, A.; Sutton, H.G.; Weichselbaum, R.R.; Kron, S.J. HMG-CoA Reductase Inhibition Delays DNA Repair and Promotes Senescence After Tumor Irradiation. Mol. Cancer Ther. 2018, 17, 407–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arooj, M.; Sakkiah, S.D.; Cao, G.P.; Kim, S.; Arulalapperumal, V.; Lee, K.W. Finding off-targets, biological pathways, and target diseases for chymase inhibitors via structure-based systems biology approach. Proteins 2015, 83, 1209–1224. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Li, H.; Shu, X.Z.; Gray, S.D.; Prestwich, G.D. Crosslinked hyaluronan hydrogels containing mitomycin C reduce postoperative abdominal adhesions. Fertil. Steril. 2005, 83, 1275–1283. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.D.; Lee, R.; Hodakowski, G.T.; Neya, K.; Harringer, W. Prevention of postoperative pericardial adhesions with a hyaluronic acid coating solution: Experimental safety and efficacy studies. J. Thorac. Cardiovasc. Surg. 1993, 107, 1481–1488. [Google Scholar] [CrossRef]
- Urman, B.; Gomel, V.; Jetha, N. Effect of hyaluronic acid on postoperative intraperitoneal adhesion formation in the rat model. Fertil. Steril. 1991, 56, 563–567. [Google Scholar] [CrossRef]
- Hagberg, L.; Gerdin, B. Sodium hyaluronate as an adjunct in adhesion prevention after flexor tendon surgery in rabbits. J. Hand Surg. 1992, 17, 935–941. [Google Scholar] [CrossRef]
- Mitchell, J.D.; Lee, R.; Neya, K.; Vlahakes, G.J. Reduction in experimental pericardial adhesions using a hyaluronic acid bioabsorbable membrane. Eur. J. Cardio Thorac. Surg. 1994, 8, 149–152. [Google Scholar] [CrossRef]
- Himeda, Y.; Yanagi, S.; Kakema, T.; Fujita, F.; Umeda, T.; Miyoshi, T. Adhesion Preventive Effect of a Novel Hyaluronic Acid Gel Film in Rats. J. Int. Med. Res. 2003, 31, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Seeger, J.M.; Kaelin, L.D.; Staples, E.M.; Yaacobi, Y.; Bailey, J.C.; Normann, S.; Burns, J.W.; Goldberg, E.P. Prevention of Postoperative Pericardial Adhesions Using Tissue-Protective Solutions. J. Surg. Res. 1997, 68, 63–66. [Google Scholar] [CrossRef]
- Kataria, H.; Singh, V.P. Liquid Paraffin vs Hyaluronic Acid in Preventing Intraperitoneal Adhesions. Indian J. Surg. 2016, 79, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.J.; Oh, S.H.; Lee, J.H. Alginate Film as a Novel Post-Surgical Tissue Adhesion Barrier. J. Biomater. Sci. Polym. Ed. 2010, 21, 701–713. [Google Scholar] [CrossRef]
- Sawada, T.; Tsukada, K.; Hasegawa, K.; Ohashi, Y.; Udagawa, Y.; Gomel, V. Cross-linked hyaluronate hydrogel prevents adhesion formation and reformation in mouse uterine horn model. Hum. Reprod. 2001, 16, 353–356. [Google Scholar] [CrossRef]
- Can, S.; Kirpinar, G.; Dural, O.; Karamustafaoglu, B.B.; Tas, I.S.; Yasa, C.; Ugurlucan, F.G. Efficacy of a New Crosslinked Hyaluronan Gel in the Prevention of Intrauterine Adhesions. JSLS J. Soc. Laparoendosc. Surg. 2018, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mais, V.; Cirronis, M.G.; Peiretti, M.; Ferrucci, G.; Cossu, E.; Melis, G.B. Efficacy of auto-crosslinked hyaluronan gel for adhesion prevention in laparoscopy and hysteroscopy: A systematic review and meta-analysis of randomized controlled trials. Eur. J. Obstet. Gynecol. Reprod. Biol. 2012, 160, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Gago, L.A.; Saed, G.M.; Wang, R.X.; Kruger, M.; Diamond, M.P. Effects of oxidized regenerated cellulose on the expression of extracellular matrix and transforming growth factor-beta1 in human peritoneal fibroblasts and mesothelial cells. Am. J. Obstet. Gynecol. 2003, 189, 1620–1625. [Google Scholar] [CrossRef] [PubMed]
- Gago, L.; Saed, G.; Elhammady, E.; Diamond, M. Effect of oxidized regenerated cellulose (Interceed®) on the expression of tissue plasminogen activator and plasminogen activator inhibitor-1 in human peritoneal fibroblasts and mesothelial cells. Fertil. Steril. 2006, 86, 1223–1227. [Google Scholar] [CrossRef]
- Reddy, S.; Santanam, N.; Reddy, P.; Rock, J.A.; Murphy, A.A.; Parthasarathy, S. Interaction of Interceed oxidized regenerated cellulose with macrophages: A potential mechanism by which Interceed may prevent adhesions. Am. J. Obstet. Gynecol. 1997, 177, 1315–1321. [Google Scholar] [CrossRef]
- Diamond, M.P.; Linsky, C.B.; Cunningham, T.; Kamp, L.; Pines, E.; DeCherney, A.H.; Dizerega, G.S. Synergistic effects of INTERCEED(TC7) and heparin in reducing adhesion formation in the rabbit uterine horn model. Fertil. Steril. 1991, 55, 389–394. [Google Scholar] [CrossRef]
- Diamond, M.P.; Linsky, C.B.; Cunningham, T.; Kamp, L.; Pines, E.; DeCherney, A.H.; Dizerega, G.S. Adhesion Reformation: Reduction by the Use of Interceed (TC7) Plus Heparin. J. Gynecol. Surg. 1991, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Biçer, M.; Bayram, A.S.; Gürbüz, O.; Şenkaya, I.; Yerci, Ö.; Tok, M.; Anğ, E.; Moğol, E.B.; Saba, D. Assessment of the Efficacy of the Bio-Absorbable Oxidized Regenerated Cellulose for Prevention of Post-Operative Pericardial Adhesion in the Rabbit Model. J. Int. Med. Res. 2008, 36, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Menguellet, S.A.; Collinet, P.; Cosson, M.; Mariette, C.; Triboulet, J.P.; Vinatier, D. Interest in agents for adhesion prevention after gynecologic surgery. Gynecol. Obstet. Fertil. 2007, 35, 290–296. [Google Scholar]
- Sekiba, K. Use of INTERCEED (TC7) absorbable adhesion barrier to reduce postoperative adhesion formation in infertility and endometriosis surgery. Prog. Clin. Boil. Res. 1993, 381, 221–233. [Google Scholar]
- Franklin, R.R. Reduction of ovarian adhesions by the use of interceed. Obstet. Gynecol. 1995, 86, 335–340. [Google Scholar] [CrossRef]
- Azziz, R. Microsurgery alone or with INTERCEED Absorbable Adhesion Barrier for pelvic sidewall adhesion re-formation. The INTERCEED (TC7) Adhesion Barrier Study Group II. Surg. Gynecol. Obstet. 1993, 177, 135–139. [Google Scholar] [PubMed]
- Nordic Adhesion Prevention Study Group. The efficacy of Interceed (TC7)* for prevention of reformation of postoperative adhesions on ovaries, fallopian tubes, and fimbriae in microsurgical operations for fertility: A multicenter study. Fertil. Steril. 1995, 63, 709–714. [Google Scholar]
- Mais, V.; Ajossa, S.; Piras, B.; Guerriero, S.; Marongiu, D.; Melis, G.B. Prevention of de-novo adhesion formation after laparoscopic myomectomy: A randomized trial to evaluate the effectiveness of an oxidized regenerated cellulose absorbable barrier. Hum. Reprod. 1995, 10, 3133–3135. [Google Scholar] [CrossRef]
- Farquhar, C.M.; Vandekerckhove, P.; Watson, A.; Vail, A.; Wiseman, D. Barrier agents for preventing adhesions after surgery for subfertility. Cochrane Database Syst. Rev. 1999, 2000, CD000475. [Google Scholar] [CrossRef]
- Baysal, B. Comparison of the resorbable barrier interceed (TC7) and preoperative use of medroxyprogesterone acetate in postoperative adhesion prevention. Clin. Exp. Obstet. Gynecol. 2001, 28, 126–127. [Google Scholar]
- Best, C.L.; Rittenhouse, D.; Sueldo, C.; Best, C.L.; Rittenhouse, D.; Sueldo, C. A comparison of TC7 and 32% dextran 70 for prevention of postoperative adhesions in hamsters. Obstet. Gynecol. 1991, 78, 858–860. [Google Scholar]
- Ortega-Moreno, J. Effects of TC7 associated to 32% dextran 70, heparin and carboxymethylcellulose in adhesion prevention in the rat. Arch. Gynecol. Obstet. 1993, 253, 27–32. [Google Scholar] [CrossRef]
- Harris, E.S.; Morgan, R.F.; Rodeheaver, G.T. Analysis of the kinetics of peritoneal adhesion formation in the rat and evaluation of potential antiadhesive agents. Surgery 1995, 117, 663–669. [Google Scholar] [CrossRef]
- Wiseman, D.M.; Trout, J.R.; Franklin, R.R.; Diamond, M.P. Meta-analysis of the safety and efficacy of an adhesion barrier (Interceed TC7) in laparotomy. J. Reprod. Med. 1999, 44, 325–331. [Google Scholar]
- De Cherney, A.H.; di Zerega, G.S. Clinical problem of intraperitoneal postsurgical adhesion formation following general surgery and the use of adhesion prevention barriers. Surg. Clin. N. Am. 1997, 77, 671–688. [Google Scholar] [CrossRef]
- Ward, B.; Panitch, A. Abdominal Adhesions: Current and Novel Therapies. J. Surg. Res. 2011, 165, 91–111. [Google Scholar] [CrossRef] [PubMed]
- Haney, A.; Doty, E. Murine peritoneal injury and de novo adhesion formation caused by oxidized-regenerated cellulose (Interceed [TC7]) but not expanded polytetrafluoroethylene (Gore-Tex Surgical Membrane). Fertil. Steril. 1992, 57, 202–208. [Google Scholar] [CrossRef]
- Diamond, M.P.; Burns, E.L.; Accomando, B.; Mian, S.; Holmdahl, L. Seprafilm® adhesion barrier: (1) a review of preclinical, animal, and human investigational studies. Gynecol. Surg. 2012, 9, 237–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buckenmaier, C.C.; Pusateri, A.E.; Harris, R.A.; Hetz, S.P. Comparison of antiadhesive treatments using an objective rat model. Am. Surg. 1999, 65, 274–282. [Google Scholar] [PubMed]
- Szabo, A.; Haj, M.; Waxsman, I.; Eitan, A. Evaluation of seprafilm and amniotic membrane as adhesion prophylaxis in mesh repair of abdominal wall hernia in rats. Eur. Surg. Res. 2000, 32, 125–128. [Google Scholar] [CrossRef]
- Altuntas, I.; Tarhan, O.; Delibas, N. Seprafilm reduces adhesions to polypropylene mesh and increases peritoneal hydroxyproline. Am. Surg. 2002, 68, 759–761. [Google Scholar] [PubMed]
- Burns, J.W.; Colt, M.J.; Burgees, L.S.; Skinner, K.C. Preclinical evaluation of Seprafilm bioresorbable membrane. Eur. J. Surg. Suppl. Acta Chir. Suppl. 1997, 1997, 40–48. [Google Scholar]
- Alponat, A.; Lakshminarasappa, S.R.; Yavuz, N.; Goh, P.M. Prevention of adhesions by Seprafilm, an absorbable adhesion barrier: An incisional hernia model in rats. Am. Surg. 1997, 63, 818–819. [Google Scholar]
- Numanoğlu, V.; Cihan, A.; Salman, B.; Ucan, B.H.; Cakmak, G.K.; Cesur, A.; Balbaloglu, H.; Ilhan, M.N. Comparison Between Powdered Gloves, Powder-free Gloves and Hyaluronate/Carboxymethylcellulose Membrane on Adhesion Formation in a Rat Caecal Serosal Abrasion Model. Asian J. Surg. 2007, 30, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.-W.; Hung, C.-L.; Cheng, J.-C.; Wang, Y.-J. A new anti-adhesion film synthesized from polygalacturonic acid with 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide crosslinker. Biomaterials 2005, 26, 3793–3799. [Google Scholar] [CrossRef] [PubMed]
- El-Ghoul, W. The effects of combined liquid and membrane barriers in prevention of post-operative intra-abdominal adhesions after experimental jejunal anastomosis in dogs. Dtsch. Tierarztl. Wochenschr. 2005, 112, 3–10. [Google Scholar]
- Van ’t Riet, M.; de vos van Steenwijk, P.J.; Bonthuis, F.; Marquet, R.L.; Steyerberg, E.W.; Jeekel, J.; Bonjer, H.J. Prevention of adhesion to prosthetic mesh: Comparison of different barriers using an incisional hernia model. Ann. Surg. 2003, 237, 123–128. [Google Scholar] [CrossRef]
- Bülbüller, N.; Sapmaz, E.; Akpolat, N.; Ustundag, B.; Kirkil, C. Effect of a bioresorbable membrane on postoperative adhesions and wound healing. J. Reprod. Med. 2003, 48, 547–550. [Google Scholar]
- Eroglu, A.; Demirci, S.; Kurtman, C.; Akbay, A.; Eroglu, N. Prevention of intra-abdominal adhesions by using Seprafilm in rats undergoing bowel resection and radiation therapy. Colorectal Dis. 2001, 3, 33–37. [Google Scholar] [CrossRef]
- Ersoy, E.; Ozturk, V.; Yazgan, A.; Ozdogan, M.; Gundogdu, H. Comparison of the Two Types of Bioresorbable Barriers to Prevent Intra-Abdominal Adhesions in Rats. J. Gastrointest. Surg. 2008, 13, 282–286. [Google Scholar] [CrossRef]
- Osada, H.; Minai, M.; Tsunoda, I.; Fujii, T.; Tsubata, K.; Satoh, K. The Effect of Hyaluronic Acid-Carboxymethylcellulose in Reducing Adhesion Reformation in Rabbits. J. Int. Med. Res. 1999, 27, 292–296. [Google Scholar] [CrossRef]
- Naito, Y.; Shin’Oka, T.; Hibino, N.; Matsumura, G.; Kurosawa, H. A novel method to reduce pericardial adhesion: A combination technique with hyaluronic acid biocompatible membrane. J. Thorac. Cardiovasc. Surg. 2008, 135, 850–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ballore, L.; Orrù, F.; Nicolini, F.; Contini, S.; Galletti, G.; Gherli, T. Experimental results of the use of hyaluronic acid based materials (CV Seprafilm and CV Sepracoat) in postoperative pericardial adhesions. Acta Bio Med. L’Ateneo Parm. 2000, 71, 159–166. [Google Scholar]
- Mueller, X.; Tevaearai, H.; Augstburger, M.; Burki, M.; Von Segesser, L.K. Prevention of Pericardial Adhesions with a Bioresorbable Membrane. Swiss Surg. 1999, 5, 23–26. [Google Scholar] [CrossRef]
- Altuntas, Y.E.; Kement, M.; Oncel, M.; Sahip, Y.; Kaptanoglu, L. The Effectiveness of Hyaluronan-Carboxymethylcellulose Membrane in Different Severity of Adhesions Observed at the Time of Relaparotomies: An Experimental Study on Mice. Dis. Colon Rectum 2008, 51, 1562–1565. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, S.; Takahashi, K.; Yomo, H.; Fujiwara, M.; Kita, N.; Takebayashi, K.; Miyazaki, K.; Noda, Y. Effectiveness of antiadhesion barriers in preventing adhesion after myomectomy in patients with uterine leiomyoma. Eur. J. Obstet. Gynecol. Reprod. Biol. 2005, 123, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Salum, M.; Wexner, S.D.; Nogueras, J.J.; Weiss, E.; Koruda, M.; Behrens, K.; Cohen, S.; Binderow, S.; Cohen, J.; Thorson, A.; et al. Does sodium hyaluronate- and carboxymethylcellulose-based bioresorbable membrane (Seprafilm) decrease operative time for loop ileostomy closure? Tech. Coloproctol. 2006, 10, 187–191. [Google Scholar] [CrossRef]
- Kusunoki, M.; Ikeuchi, H.; Yanagi, H.; Noda, M.; Tonouchi, H.; Mohri, Y.; Uchida, K.; Inoue, Y.; Kobayashi, M.; Miki, C.; et al. Bioresorbable Hyaluronate-Carboxymethylcellulose Membrane (Seprafilm) in Surgery for Rectal Carcinoma: A Prospective Randomized Clinical Trial. Surg. Today 2005, 35, 940–945. [Google Scholar] [CrossRef]
- Khaitan, L.; Scholz, S.; Houston, H.; Richards, W. Results after laparoscopic lysis of adhesions and placement of seprafilm for intractable abdominal pain. Surg. Endosc. 2003, 17, 247–253. [Google Scholar] [CrossRef]
- Tsapanos, V.S.; Stathopoulou, L.P.; Papathanassopoulou, V.S.; Tzingounis, V.A. The role of Seprafilm? bioresorbable membrane in the prevention and therapy of endometrial synechiae. J. Biomed. Mater. Res. 2002, 63, 10–14. [Google Scholar] [CrossRef]
- Diamond, M. Reduction of adhesions after uterine myomectomy by Seprafilm membrane (HAL-F): A blinded, prospective, randomized, multicenter clinical study. Seprafilm Adhesion Study Group. Fertil. Steril. 1996, 66, 904–910. [Google Scholar] [CrossRef]
- Duffy, J.M.N.; Farquhar, C.; Vail, A.; Vandekerckhove, P.; Watson, A.; Wiseman, D.; Vanderkerchove, P. Barrier agents for adhesion prevention after gynaecological surgery. Cochrane Database Syst. Rev. 2008, 2008, CD000475. [Google Scholar] [CrossRef]
- Inoue, M.; Uchida, K.; Miki, C.; Kusunoki, M. Efficacy of Seprafilm for reducing reoperative risk in pediatric surgical patients undergoing abdominal surgery. J. Pediatr. Surg. 2005, 40, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Bristow, R.E.; Montz, F. Prevention of adhesion formation after radical oophorectomy using a sodium hyaluronate-carboxymethylcellulose (HA-CMC) barrier. Gynecol. Oncol. 2005, 99, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Mohri, Y.; Uchida, K.; Araki, T.; Inoue, Y.; Tonouchi, H.; Miki, C.; Kusunoki, M. Hyaluronic Acid–Carboxycellulose Membrane (Seprafilm) Reduces Early Postoperative Small Bowel Obstruction in Gastrointestinal Surgery. Am. Surg. 2005, 71, 861–863. [Google Scholar] [CrossRef] [PubMed]
- Vrijland, W.W.; Tseng, L.N.; Eijkman, H.J.; Hop, W.C.; Jakimowicz, J.J.; Leguit, P.; Stassen, L.P.; Swank, D.J.; Haverlag, R.; Bonjer, H.J.; et al. Fewer intraperitoneal adhesions with use of hyaluronic acid-carboxymethylcellulose membrane: A randomized clinical trial. Ann. Surg. 2002, 235, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Lefort, B.; El Arid, J.-M.; Bouquiaux, A.-L.; Soulé, N.; Chantreuil, J.; Tavernier, E.; Chantepie, A.; Neville, P. Is Seprafilm valuable in infant cardiac redo procedures? J. Cardiothorac. Surg. 2015, 10, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, Q.; Yu, Z.; You, J.; Zhang, Q. Efficacy and Safety of Seprafilm for Preventing Postoperative Abdominal Adhesion: Systematic Review and Meta-analysis. World J. Surg. 2007, 31, 2125–2131. [Google Scholar] [CrossRef]
- Takeuchi, H.; Kitade, M.; Kikuchi, I.; Shimanuki, H.; Kinoshita, K. A Novel Instrument and Technique for Using Seprafilm Hyaluronic Acid/Carboxymethylcellulose Membrane During Laparoscopic Myomectomy. J. Laparoendosc. Adv. Surg. Tech. 2006, 16, 497–502. [Google Scholar] [CrossRef]
- Johns, A. Evidence-based prevention of post-operative adhesions. Hum. Reprod. Update 2001, 7, 577–579. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Wong, P.F.; Leaper, D.J. Intra-peritoneal prophylactic agents for preventing adhesions and adhesive intestinal obstruction after non-gynaecological abdominal surgery. Cochrane Database Syst. Rev. 2009, 2009, CD005080. [Google Scholar] [CrossRef]
- Zhou, J.; Lee, J.M.; Jiang, P.; Henderson, S.; Lee, T.D. Reduction in postsurgical adhesion formation after cardiac surgery by application of N,O-carboxymethyl chitosan. J. Thorac. Cardiovasc. Surg. 2010, 140, 801–806. [Google Scholar] [CrossRef] [Green Version]
- Krause, T.J.; Zazanis, G.; Malatesta, P.; Solina, A. Prevention of Pericardial Adhesions with N-O Carboxymethylchitosan in the Rabbit Model. J. Investig. Surg. 2001, 14, 93–97. [Google Scholar] [CrossRef]
- Tian, L.; Li, H.; Li, Y.; Liu, K.; Sun, Y.; Cong, Z.; Luan, X.; Li, Y.; Chen, J.; Wang, L.; et al. A Combination of Chitosan, Cellulose, and Seaweed Polysaccharide Inhibits Postoperative Intra-abdominal Adhesion in Rats. J. Pharmacol. Exp. Ther. 2017, 364, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.-H.; Chen, S.-H.; Mao, S.-H.; Tsai, M.-J.; Chou, P.-Y.; Liao, C.-H.; Chen, J.-P. Injectable thermosensitive hydrogel containing hyaluronic acid and chitosan as a barrier for prevention of postoperative peritoneal adhesion. Carbohydr. Polym. 2017, 173, 721–731. [Google Scholar] [CrossRef]
- Wei, C.-Z.; Hou, C.-L.; Gu, Q.-S.; Jiang, L.-X.; Zhu, B.; Sheng, A.-L. A thermosensitive chitosan-based hydrogel barrier for post-operative adhesions’ prevention. Biomaterials 2009, 30, 5534–5540. [Google Scholar] [CrossRef]
- Lauder, C.I.; Garcea, G.; Strickland, A.; Maddern, G.J. Use of a Modified Chitosan–Dextran Gel to Prevent Peritoneal Adhesions in a Rat Model. J. Surg. Res. 2011, 171, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Daroz, L.R.; Lopes, J.B.; Dallan, L.A.; Campana-Filho, S.P.; Moreira, L.F.; Stolf, N.A. Prevention of postoperative pericardial adhesions using thermal sterile carboxymethyl chitosan. Rev. Bras. Cir. Cardiovasc. 2008, 23, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Liwski, R.S.; Elson, C.; Lee, T.D. Reduction in postsurgical adhesion formation after cardiac surgery in a rabbit model using N,O-carboxymethyl chitosan to block cell adherence. J. Thorac. Cardiovasc. Surg. 2008, 135, 777–783. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Zhang, D.-Y.; Lu, S.-T.; Li, P.-W.; Li, S.-D. Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Mar. Drugs 2018, 16, 273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, R.; Costain, D.J.; McAlister, V.C.; Lee, T.D. Prevention of experimental postoperative peritoneal adhesions by N,O-carboxymethyl chitosan. Surgery 1996, 120, 866–870. [Google Scholar] [CrossRef]
- Zhou, J.; Elson, C.; Lee, T.D.G. Reduction in postoperative adhesion formation and re-formation after an abdominal operation with the use of N,O-carboxymethyl chitosan. Surgery 2004, 135, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Diamond, M.P.; Luciano, A.; Johns, D.A.; Dunn, R.; Young, P.; Bieber, E. Reduction of postoperative adhesions by N,O-carboxymethylchitosan: A pilot study. Fertil. Steril. 2003, 80, 631–636. [Google Scholar] [CrossRef]
- Falabella, C.A.; Melendez, M.M.; Weng, L.; Chen, W. Novel Macromolecular Crosslinking Hydrogel to Reduce Intra-Abdominal Adhesions. J. Surg. Res. 2010, 159, 772–778. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Y.-Q. Postoperative anti-adhesion ability of a novel carboxymethyl chitosan from silkworm pupa in a rat cecal abrasion model. Mater. Sci. Eng. C 2016, 61, 387–395. [Google Scholar] [CrossRef]
- Cai, X.; Hu, S.; Yu, B.; Cai, Y.; Yang, J.; Li, F.; Zheng, Y.; Shi, X. Transglutaminase-catalyzed preparation of crosslinked carboxymethyl chitosan/carboxymethyl cellulose/collagen composite membrane for postsurgical peritoneal adhesion prevention. Carbohydr. Polym. 2018, 201, 201–210. [Google Scholar] [CrossRef]
- Cheng, F.; Wu, Y.; Li, H.; Yan, T.; Wei, X.; Wu, G.; He, J.; Huang, Y. Biodegradable N, O-carboxymethyl chitosan/oxidized regenerated cellulose composite gauze as a barrier for preventing postoperative adhesion. Carbohydr. Polym. 2019, 207, 180–190. [Google Scholar] [CrossRef]
- Okuyama, N.; Rodgers, K.E.; Wang, C.Y.; Girgis, W.; Oz, M.; Amand, K.S.; Pines, E.; DeCherney, A.H.; Rose, E.A.; Cohn, D.; et al. Prevention of Retrosternal Adhesion Formation in a Rabbit Model Using Bioresorbable Films of Polyethylene Glycol and Polylactic Acid. J. Surg. Res. 1998, 78, 118–122. [Google Scholar] [CrossRef]
- Schreiber, C.; Boening, A.; Kostolny, M.; Pines, E.; Cremer, J.; Lange, R.; Scheewe, J. European clinical experience with REPEL-CV®. Expert Rev. Med. Devices 2007, 4, 291–295. [Google Scholar] [CrossRef]
- Lodge, A.J.; Wells, W.J.; Backer, C.L.; O’Brien, J.E.; Austin, E.H.; Bacha, E.A.; Yeh, T.; De Campli, W.M.; Lavin, P.T.; Weinstein, S. A Novel Bioresorbable Film Reduces Postoperative Adhesions After Infant Cardiac Surgery. Ann. Thorac. Surg. 2008, 86, 614–621. [Google Scholar] [CrossRef] [PubMed]
- Allègre, L.; Le Teuff, I.; Leprince, S.; Warembourg, S.; Taillades, H.; Garric, X.; Letouzey, V.; Huberlant, S. A new bioabsorbable polymer film to prevent peritoneal adhesions validated in a post-surgical animal model. PLoS ONE 2018, 13, e0202285. [Google Scholar] [CrossRef] [Green Version]
- Rastan, A.; Mohr, F.W.; Haensig, M. Bioresorbable adhesion barrier for reducing the severity of postoperative cardiac adhesions: Focus on REPEL-CV®. Med. Devices Évid. Res. 2011, 4, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, K.; Cohn, D.; Hotovely, A.; Pines, E.; Diamond, M.P.; di Zerega, G. Evaluation of polyethylene glycol/polylactic acid films in the prevention of adhesions in the rabbit adhesion formation and reformation sidewall models. Fertil. Steril. 1998, 69, 403–408. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, J.; Zhang, J.; Li, S. A novel bioabsorbable pericardial membrane substitute to reduce postoperative pericardial adhesions in a rabbit model. Interact. Cardiovasc. Thorac. Surg. 2015, 21, 565–572. [Google Scholar] [CrossRef]
- Yoshioka, I.; Saiki, Y.; Sakuma, K.; Iguchi, A.; Moriya, T.; Ikada, Y.; Tabayashi, K. Bioabsorbable Gelatin Sheets Latticed with Polyglycolic Acid Can Eliminate Pericardial Adhesion. Ann. Thorac. Surg. 2007, 84, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Avital, S.; Bollinger, T.J.; Wilkinson, J.; Marchetti, F.; Hellinger, M.D.; Sands, L.R. Preventing Intra-Abdominal Adhesions with Polylactic Acid Film: An Animal Study. Dis. Colon Rectum 2005, 48, 153–157. [Google Scholar] [CrossRef]
- Schug-Paß, C.; Sommerer, F.; Tannapfel, A.; Lippert, H.; Köckerling, F. Does the additional application of a polylactide film (SurgiWrap) to a lightweight mesh (TiMesh) reduce adhesions after laparoscopic intraperitoneal implantation procedures? Experimental results obtained with the laparoscopic porcine model. Surg. Endosc. 2008, 22, 2433–2439. [Google Scholar] [CrossRef]
- Hsu, C.W.; Chang, M.C.; Wang, J.H.; Wu, C.C.; Chen, Y.H. Placement of SurgiWrap® adhesion barrier film around the protective loop stoma after laparoscopic colorectal cancer surgery may reduce the peristomal adhesion severity and facilitate the closure. Int. J. Colorectal Dis. 2019, 34, 513–518. [Google Scholar] [CrossRef] [PubMed]
- Al-Jaroudi, D.; Tulandi, T. Adhesion Prevention in Gynecologic Surgery. Obstet. Gynecol. Surv. 2004, 59, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Minale, C.; Nikol, S.; Hollweg, G.; Mittermayer, C.; Messmer, B.J. Clinical Experience with Expanded Polytetrafluoroethylene Gore-Tex® Surgical Membrane for Pericardial Closure: A Study of 110 Cases. J. Card. Surg. 1988, 3, 193–201. [Google Scholar] [CrossRef]
- González-Quintero, V.H.; Cruz-Pachano, F.E. Preventing Adhesions in Obstetric and Gynecologic Surgical Procedures. Rev. Obstet. Gynecol. 2009, 2, 38–45. [Google Scholar]
- Di Zerega, G.S. Contemporary adhesion prevention. Fertil. Steril. 1994, 61, 219–235. [Google Scholar] [CrossRef]
- Magro, B.; Mita, P.; Bracco, G.L.; Coccia, E.; Scarselli, G. Expanded polytetrafluoroethylene surgical membrane in ovarian surgery on the rabbit. Biocompatibility, adhesion prevention properties and ability to preserve reproductive capacity. J. Reprod. Med. 1996, 41, 73–78. [Google Scholar]
- Kaan, G.L.; Smedts, F.; Van Son, J.A.; Vincent, J.G.; Kubat, K.; Skotnicki, S.H.; Lacquet, L.K. Prevention of adhesion formation around the internal mammary artery pedicle by Gore-Tex surgical membrane. An experimental study in goats. Eur. J. Cardio-Thoracic Surg. 1993, 7, 81–83. [Google Scholar] [CrossRef]
- Hellebrekers, B.; Trimbos-Kemper, G.; Van Blitterswijk, C.; Bakkum, E.; Trimbos, J. Effects of five different barrier materials on postsurgical adhesion formation in the rat. Hum. Reprod. 2000, 15, 1358–1363. [Google Scholar] [CrossRef] [Green Version]
- The Myomectomy Adhesion Multicenter Study Group. An expanded polytetrafluoroethylene barrier (Gore-Tex Surgical Membrane) reduces post-myomectomy adhesion formation. Fertil. Steril. 1995, 63, 491–493. [Google Scholar] [CrossRef]
- Haney, A.F.; Doty, E. Expanded-polytetrafluoroethylene but not oxidized regenerated cellulose prevents adhesion formation and reformation in a mouse uterine horn model of surgical injury. Fertil. Steril. 1993, 60, 550–558. [Google Scholar] [CrossRef]
- Grow, D.R.; Seltman, H.J.; Coddington, C.C.; Hodgen, G.D. The reduction of postoperative adhesions by two different barrier methods versus control in cynomolgus monkeys: A prospective, randomized, crossover study. Fertil. Steril. 1994, 61, 1141–1146. [Google Scholar] [CrossRef]
- Anderson, J.M.; Rodriguez, A.; Chang, D.T. Foreign body reaction to biomaterials. Semin. Immunol. 2008, 20, 86–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, J.P.; Iyer, R.S.; Weston, J.S.; Amato, J.J.; Elliott, M.J.; De Leval, M.R.; Stark, J. Expanded PTFE Membrane to Prevent Cardiac Injury During Resternotomy for Congenital Heart Disease. Ann. Thorac. Surg. 1996, 62, 1778–1782. [Google Scholar] [CrossRef]
- Tsukihara, H.; Takamoto, S.; Kitahori, K.; Matsuda, K.; Murakami, A.; Novick, R.J.; Suematsu, Y. Prevention of postoperative pericardial adhesions with a novel regenerative collagen sheet. Ann. Thorac. Surg. 2006, 81, 650–657. [Google Scholar] [CrossRef]
- Hurst, B.S. Permanent implantation of expanded polytetrafluoroethylene is safe for pelvic surgery. Hum. Reprod. 1999, 14, 925–927. [Google Scholar] [CrossRef] [Green Version]
- Kuschel, T.J.; Gruszka, A.; Hermanns-Sachweh, B.; Elyakoubi, J.; Sachweh, J.S.; Vázquez-Jiménez, J.F.; Schnoering, H. Prevention of Postoperative Pericardial Adhesions with TachoSil. Ann. Thorac. Surg. 2013, 95, 183–188. [Google Scholar] [CrossRef]
- Quinino, R.M.; Araujo-Filho, I.; Lima, F.P.; Barbosa, A.L.; Tde, C.M.; Goldenberg, A. Adhesion prevention in reabsorbable polyethylene glycol hydrogel (Coseal(R)) coated polypropylene mesh in rabbits. Acta Cir. Bras. 2013, 28, 807–814. [Google Scholar] [CrossRef] [Green Version]
- Fukuhira, Y.; Ito, M.; Kaneko, H.; Sumi, Y.; Tanaka, M.; Yamamoto, S.; Shimomura, M. Prevention of postoperative adhesions by a novel honeycomb-patterned poly(lactide) film in a rat experimental model. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 86, 353–359. [Google Scholar] [CrossRef]
- Cho, W.J.; Oh, S.H.; Kim, I.G.; Lee, C.S.; Lee, J.H. Prevention of postsurgical tissue adhesion by a bi-layer membrane consisting of adhesion and lubrication layers. Tissue Eng. Regen. Med. 2010, 7, 49–56. [Google Scholar]
- Yamaoka, T.; Takahashi, Y.; Fujisato, T.; Lee, C.W.; Tsuji, T.; Ohta, T.; Murakami, A.; Kimura, Y. Novel adhesion prevention membrane based on a bioresorbable copoly(ester-ether) comprised of poly-L-lactide and Pluronic: In vitro and in vivo evaluations. J. Biomed. Mater. Res. 2001, 54, 470–479. [Google Scholar] [CrossRef]
- Abraham, L.C.; Zuena, E.; Perez-Ramirez, B.; Kaplan, D.L. Guide to collagen characterization for biomaterial studies. J. Biomed. Mater. Res. Part B Appl. Biomater. 2008, 87, 264–285. [Google Scholar] [CrossRef]
- Schreinemacher, M.H.F.; Emans, P.J.; Gijbels, M.J.J.; Greve, J.M.; Beets, G.L.; Bouvy, N.D. Degradation of mesh coatings and intraperitoneal adhesion formation in an experimental model. BJS 2009, 96, 305–313. [Google Scholar] [CrossRef] [PubMed]
- Riet, M.V.; Burger, J.W.; Bonthuis, F.; Jeekel, J.; Bonjer, H.J. Prevention of adhesion formation to polypropylene mesh by collagen coating: A randomized controlled study in a rat model of ventral hernia repair. Surg. Endosc. 2004, 18, 681–685. [Google Scholar]
- Rodríguez, M.; Pascual, G.; Sotomayor, S.; Köhler, B.P.; Cifuentes, A.; Bellón, J.M. Chemical Adhesion Barriers: Do They Affect the Intraperitoneal Behavior of a Composite Mesh? J. Investig. Surg. 2011, 24, 115–122. [Google Scholar] [CrossRef]
- Schönleben, F.; Reck, T.; Tannapfel, A.; Hohenberger, W.; Schneider, I. Collagen foil (TissuFoil E) reduces the formation of adhesions when using polypropylene mesh for the repair of experimental abdominal wall defects. Int. J. Color. Dis. 2006, 21, 840–846. [Google Scholar] [CrossRef]
- Brochhausen, C.; Schmitt, V.H.; Planck, C.N.E.; Rajab, T.K.; Hollemann, D.; Tapprich, C.; Krämer, B.; Wallwiener, C.W.; Hierlemann, H.; Zehbe, R.; et al. Current Strategies and Future Perspectives for Intraperitoneal Adhesion Prevention. J. Gastrointest. Surg. 2012, 16, 1256–1274. [Google Scholar] [CrossRef]
- Edwards, G.A.; Glattauer, V.; Nash, T.J.; White, J.F.; Brock, K.A.; Werkmeister, J.A.; Ramshaw, J.A. In vivo evaluation of a collagenous membrane as an absorbable adhesion barrier. J. Biomed. Mater. Res. 1997, 34, 291–297. [Google Scholar] [CrossRef]
- Butler, C.E.; Prieto, V.G. Reduction of Adhesions with Composite AlloDerm/Polypropylene Mesh Implants for Abdominal Wall Reconstruction. Plast. Reconstr. Surg. 2004, 114, 464–473. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, R.; Rodeheaver, G.T.; Moody, D.L.; Foresman, P.A.; Ramshaw, B.J. Resistance to adhesion formation: A comparative study of treated and untreated mesh products placed in the abdominal cavity. Hernia 2004, 8, 213–219. [Google Scholar] [CrossRef] [PubMed]
- De Araújo, U.R.; Czeczko, N.G.; Ribas-Filho, J.M.; Malafaia, O.; Budel, V.M.; Balderrama, C.M.; Zimmermann, E.; Dietz, U.A. Intraperitoneal meshes in the repair of abdominal wall defects: Comparison of polyester with collagen versus polypropylene with polyglycolic acid. Rev. Col. Bras. Cir. 2009, 36, 241–249. [Google Scholar] [PubMed]
- Judge, T.W.; Parker, D.M.; Dinsmore, R.C. Abdominal Wall Hernia Repair: A Comparison of Sepramesh and Parietex Composite Mesh in a Rabbit Hernia Model. J. Am. Coll. Surg. 2007, 204, 276–281. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.W.; Salgado, C.J.; Kent, K.; Finnegan, M.; Pello, M.; Simons, R.; Atabek, U.; Kann, B. Evaluation of porcine dermal collagen (Permacol) used in abdominal wall reconstruction. J. Plast. Reconstr. Aesthetic Surg. 2009, 62, 1484–1489. [Google Scholar] [CrossRef]
- Loganathan, A.; Ainslie, W.; Wedgwood, K. Initial evaluation of Permacol bioprosthesis for the repair of complex incisional and parastomal hernias. Surgery 2010, 8, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Ayubi, F.S.; Armstrong, P.J.; Mattia, M.S.; Parker, D.M. Abdominal wall hernia repair: A comparison of Permacol® and Surgisis® grafts in a rat hernia model. Hernia 2008, 12, 373–378. [Google Scholar] [CrossRef]
- Bellón, J.M.; Rodríguez, M.; Honduvilla, N.G.; Pascual, G.; Gil, V.G.; Bujan, J. Peritoneal Effects of Prosthetic Meshes Used to Repair Abdominal Wall Defects: Monitoring Adhesions by Sequential Laparoscopy. J. Laparoendosc. Adv. Surg. Tech. 2007, 17, 160–166. [Google Scholar] [CrossRef]
- Bellón, J.M.; Rodríguez, M.; Gómez-Gil, V.; Sotomayor, S.; Bujan, J.; Pascual, G. Postimplant intraperitoneal behavior of collagen-based meshes followed by laparoscopy. Surg. Endosc. 2011, 26, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Ansaloni, L.; Catena, F.; Coccolini, F.; Fini, M.; Gazzotti, F.; Giardino, R.; Pinna, A.D. Peritoneal Adhesions to Prosthetic Materials: An Experimental Comparative Study of Treated and Untreated Polypropylene Meshes Placed in the Abdominal Cavity. J. Laparoendosc. Adv. Surg. Tech. 2009, 19, 369–374. [Google Scholar] [CrossRef] [PubMed]
- Wiseman, D.M.; Gravagna, P.; Bayon, Y.; Tayot, J.-L. Collagen membrane/fleece composite film reduces adhesions in the presence of bleeding in a rabbit uterine horn model. Fertil. Steril. 2001, 76, 175–180. [Google Scholar] [CrossRef]
- Bel, A.; Kachatryan, L.; Bruneval, P.; Peyrard, S.; Gagnieu, C.; Fabiani, J.-N.; Menasché, P. A new absorbable collagen membrane to reduce adhesions in cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2010, 10, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Taksaudom, N.; Ketwong, M.; Lertprasertsuke, N.; Kongkaew, A. Postoperative Pericardial Adhesion Prevention Using Collagen Membrane in Pigs: A Pilot Study. Open J. Cardiovasc. Surg. 2017, 9. [Google Scholar] [CrossRef]
- Armoiry, X.; Viprey, M.; Constant, H.; Aulagner, G.; Roux, A.S.; Huot, L.; Roubertie, F.; Ninet, J.; Henaine, R. Potential interest of a new absorbable collagen membrane in the prevention of adhesions in paediatric cardiac surgery: A feasibility study. Arch. Cardiovasc. Dis. 2013, 106, 433–439. [Google Scholar] [CrossRef] [Green Version]
- Bel, A.; Ricci, M.; Piquet, J.; Bruneval, P.; Perier, M.-C.; Gagnieu, C.; Fabiani, J.-N.; Menasché, P. Prevention of postcardiopulmonary bypass pericardial adhesions by a new resorbable collagen membrane. Interact. Cardiovasc. Thorac. Surg. 2012, 14, 469–473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dabrowski, A.; Lepère, M.; Zaranis, C.; Coelio, C.; Hauters, P. Efficacy and safety of a resorbable collagen membrane COVA+™ for the prevention of postoperative adhesions in abdominal surgery. Surg. Endosc. 2015, 30, 2358–2366. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.-W.; Fang, J.-F.; Yang, C.-L.; Chen, J.-H.; Su, L.-T.; Jan, S.-H. Preparation and Evaluation of a Hyaluronate-Collagen Film for Preventing Post-Surgical Adhesion. J. Int. Med. Res. 2005, 33, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Zardo, P.; Zhang, R.; Freermann, S.; Fischer, S. Properties of novel composite meshes in chest wall reconstruction: A comparative animal study. Ann. Thorac. Med. 2014, 9, 158–161. [Google Scholar] [CrossRef]
- Arung, W.; Drion, P.; Detry, O. Sepramesh and postoperative peritoneal adhesions in a rat model. Acta Chir. Belg. 2016, 116, 357–361. [Google Scholar] [CrossRef]
- Gruber-Blum, S.; Petter-Puchner, A.H.; Brand, J.; Fortelny, R.H.; Walder, N.; Oehlinger, W.; Koenig, F.; Redl, H. Comparison of three separate antiadhesive barriers for intraperitoneal onlay mesh hernia repair in an experimental model. BJS 2011, 98, 442–449. [Google Scholar] [CrossRef]
- Karacam, V.; Onen, A.; Sanli, A.; Gurel, D.; Kargi, A.; Karapolat, S.; Ozdemir, N. Prevention of Pleural Adhesions Using a Membrane Containing Polyethylene Glycol in Rats. Int. J. Med. Sci. 2011, 8, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Canis, M.J.; Triopon, G.; Daraï, E.; Madelenat, P.; LeVêque, J.; Panel, P.; Fernandez, H.; Audebert, A.; Descamps, P.; Castaing, N.; et al. Adhesion prevention after myomectomy by laparotomy: A prospective multicenter comparative randomized single-blind study with second-look laparoscopy to assess the effectiveness of PREVADH™. Eur. J. Obstet. Gynecol. Reprod. Biol. 2014, 178, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Mabrut, J.-Y.; Favre, J.-P.; Desrousseaux, B.; Chipponi, J.; Arnaud, J.-P.; Domergue, J.; Duffas, J.P.; Fourtanier, G.; Flament, J.-B.; Gouillat, C.; et al. Safety and long-term outcome of a new concept for surgical adhesion-reduction strategies (Prevadh): A prospective, multicenter study. Hepatogastroenterology 2008, 55, 517–521. [Google Scholar] [PubMed]
- Grainger, D.A.; Meyer, W.R.; DeCherney, A.H.; Diamond, M.P. The Use of Hyaluronic Acid Polymers to Reduce Postoperative Adhesions. J. Gynecol. Surg. 1991, 7, 97–101. [Google Scholar] [CrossRef]
- Attard, J.-A.P.; MacLean, A.R. Adhesive small bowel obstruction: Epidemiology, biology and prevention. Can. J. Surg. 2007, 50, 291–300. [Google Scholar] [PubMed]
- Rajab, T.K.; Wallwiener, C.W.; Brochhausen, C.; Hierlemann, H.; Kraemer, B.; Wallwiener, M. Adhesion prophylaxis using a copolymer with rationally designed material properties. Surgery 2009, 145, 196–201. [Google Scholar] [CrossRef]
- Stapleton, L.M.; Steele, A.N.; Wang, H.; Lopez Hernandez, H.; Yu, A.C.; Paulsen, M.J.; Smith, A.A.A.; Roth, G.A.; Thakore, A.D.; Lucian, H.J.; et al. Use of a supramolecular polymeric hydrogel as an effective post-operative pericardial adhesion barrier. Nat. Biomed. Eng. 2019, 3, 611–620. [Google Scholar] [CrossRef] [PubMed]
- Konertz, W.F.; Kostelka, M.; Mohr, F.W.; Hetzer, R.; Hübler, M.; Ritter, J.; Liu, J.; Koch, C.; Block, J. Reducing the incidence and severity of pericardial adhesions with a sprayable polymeric matrix. Ann. Thorac. Surg. 2003, 76, 1270–1274. [Google Scholar] [CrossRef]
- Hendrikx, M.M.; Mees, U.; Hill, A.C.; Egbert, B.; Coker, G.T.; Estridge, T.D. Evaluation of a novel synthetic sealant for inhibition of cardiac adhesions and clinical experience in cardiac surgery procedures. Heart Surg. Forum 2001, 4, 204–209. [Google Scholar]
- Napoleone, C.P.; Valori, A.; Crupi, G.; Ocello, S.; Santoro, F.; Vouhé, P.; Weerasena, N.; Gargiulo, G. An observational study of CoSeal for the prevention of adhesions in pediatric cardiac surgery. Interact. Cardiovasc. Thorac. Surg. 2009, 9, 978–982. [Google Scholar] [CrossRef]
- Ferland, R.; Campbell, P.K. Pre-clinical evaluation of a next-generation spray adhesion barrier for multiple site adhesion protection. Surg. Technol. Int. 2009, 18, 137–143. [Google Scholar] [PubMed]
- Mettler, L.; Audebert, A.; Lehmann-Willenbrock, E.; Schive-Peterhansl, K.; Jacobs, V.R. A randomized, prospective, controlled, multicenter clinical trial of a sprayable, site-specific adhesion barrier system in patients undergoing myomectomy. Fertil. Steril. 2004, 82, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Tchartchian, G.; Hackethal, A.; Herrmann, A.; Bojahr, B.; Wallwiener, C.; Ohlinger, R.; Ebert, A.D.; De Wilde, R.L. Evaluation of SprayShield™ Adhesion Barrier in a single center: Randomized controlled study in 15 women undergoing reconstructive surgery after laparoscopic myomectomy. Arch. Gynecol. Obstet. 2014, 290, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, H.K.; Gainsbury, M.L.; Cassidy, M.R.; Chu, D.I.; Stucchi, A.F.; Becker, J.M. A Sprayable Hyaluronate/Carboxymethylcellulose Adhesion Barrier Exhibits Regional Adhesion Reduction Efficacy and Does Not Impair Intestinal Healing. J. Gastrointest. Surg. 2012, 16, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Fossum, G.T.; Silverberg, K.M.; Miller, C.E.; Diamond, M.P.; Holmdahl, L. Gynecologic use of Sepraspray Adhesion Barrier for reduction of adhesion development after laparoscopic myomectomy: A pilot study. Fertil. Steril. 2011, 96, 487–491. [Google Scholar] [CrossRef]
- Berdah, S.V.; Mariette, C.; DeNet, C.; Panis, Y.; Laurent, C.; Cotte, E.; Huten, N.; Feuillet, E.L.P.; Duron, J.-J. A multicentre, randomised, controlled trial to assess the safety, ease of use, and reliability of hyaluronic acid/carboxymethylcellulose powder adhesion barrier versus no barrier in colorectal laparoscopic surgery. Trials 2014, 15, 413. [Google Scholar] [CrossRef] [Green Version]
- Suto, T.; Watanabe, M.; Endo, T.; Komori, K.; Ohue, M.; Kanemitsu, Y.; Itou, M.; Takii, Y.; Yatsuoka, T.; Shiozawa, M.; et al. The Primary Result of Prospective Randomized Multicenter Trial of New Spray-Type Bio-absorbable Adhesion Barrier System (TCD-11091) Against Postoperative Adhesion Formation. J. Gastrointest. Surg. 2017, 21, 1683–1691. [Google Scholar] [CrossRef]
- De Wilde, R.L.; Trew, G. Postoperative abdominal adhesions and their prevention in gynaecological surgery: Expert consensus position. Gynecol. Surg. 2007, 4, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Trew, G.H.; Pistofidis, G.A.; Brucker, S.Y.; Krämer, B.; Ziegler, N.M.; Korell, M.; Ritter, H.; McConnachie, A.; Ford, I.; Crowe, A.M.; et al. A first-in-human, randomized, controlled, subject- and reviewer-blinded multicenter study of Actamax™ Adhesion Barrier. Arch. Gynecol. Obstet. 2017, 295, 383–395. [Google Scholar] [CrossRef] [Green Version]
- Kai, M.; Maeda, K.; Tasaki, M.; Kira, S.; Nakamura, S.; Chino, N.; Hagiwara, H.; Nishida, H.; Kawanishi, T. Evaluation of a Spray-type, Novel Dextrin Hydrogel Adhesion Barrier Under Laparoscopic Conditions in a Porcine Uterine Horn Adhesion Model. J. Minim. Invasive Gynecol. 2018, 25, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Yue, Y.-Z.; Zeng, L.; Yue, J.; Li, W.-L.; Mao, C.-Q.; Yang, L. Effect of intra-abdominal administration of ligustrazine nanoparticles nano spray on postoperative peritoneal adhesion in rat model. J. Obstet. Gynaecol. Res. 2015, 41, 1942–1950. [Google Scholar] [CrossRef] [PubMed]
- Dasiran, F.; Eryilmaz, R.; Isik, A.; Okan, I.; Somay, A.; Sahin, M.; Dasiran, F.; Eryilmaz, R.; Isik, A.; Okan, I.; et al. The effect of polyethylene glycol adhesion barrier (Spray Gel) on preventing peritoneal adhesions. Bratisl Lek List. 2015, 116, 379–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhandarkar, D.; Nathanson, L.K.; Hills, B.A. Spray of phospholipid powder reduces peritoneal adhesions in rabbits. ANZ J. Surg. 1999, 69, 388–390. [Google Scholar] [CrossRef]
- Wiseman, D.M.; Trout, J.R.; Diamond, M.P. The rates of adhesion development and the effects of crystalloid solutions on adhesion development in pelvic surgery. Fertil. Steril. 1998, 70, 702–711. [Google Scholar] [CrossRef]
- Larsson, B.; Lalos, O.; Marsk, L.; Tronstad, S.-E.; Bygdeman, M.; Pehrson, S.; Joelsson, I. Effect of Intraperitoneal Instillation of 32% Dextran 70 on Postoperative adhesion Formation after tubal surgery. Acta Obstet. Gynecol. Scand. 1985, 64, 437–441. [Google Scholar] [CrossRef]
- Robison, R.J.; Brown, J.W.; Deschner, W.P.; Highes, B.; King, H. Prevention of Pericardial Adhesions with Dextran 70. Ann. Thorac. Surg. 1984, 37, 488–490. [Google Scholar] [CrossRef]
- Brown, C.B.; Luciano, A.A.; Martin, D.; Peers, E.; Scrimgeour, A.; Dizerega, G.S. Adept (icodextrin 4% solution) reduces adhesions after laparoscopic surgery for adhesiolysis: A double-blind, randomized, controlled study. Fertil. Steril. 2007, 88, 1413–1426. [Google Scholar] [CrossRef]
- Van den Tol, P.; Raa, S.; van Grevenstein, H.; Marquet, R.; van Eijck, C.; Jeekel, H. Icodextrin reduces postoperative adhesion formation in rats without affecting peritoneal metastasis. Surgery 2005, 137, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Wallwiener, C.; Brucker, S.; Hierlemann, H.; Brochhausen, C.; Solomayer, E. Innovative barriers for peritoneal adhesion prevention: Liquid or solid? A rat uterine horn model. Fertil. Steril. 2006, 86, 1266–1276. [Google Scholar] [CrossRef] [PubMed]
- Müller, S.A.; Treutner, K.H.; Anurov, M.; Titkova, S.; Oettinger, A.; Schumpelick, V. Experimental evaluation of phospholipids and icodextrin in re-formation of peritoneal adhesions. BJS 2003, 90, 1604–1607. [Google Scholar] [CrossRef]
- Menzies, D.; Pascual, M.H.; Walz, M.K.; Duron, J.J.; Tonelli, F.; Crowe, A.; Knight, A. Use of Icodextrin 4% Solution in the Prevention of Adhesion Formation Following General Surgery: From the Multicentre ARIEL Registry. Ann. R. Coll. Surg. Engl. 2006, 88, 375–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Zerega, G.S.; Verco, S.J.; Young, P.; Kettel, M.; Kobak, W.; Martin, D.; Sanfilippo, J.; Peers, E.M.; Scrimgeour, A.; Brown, C.B. A randomized, controlled pilot study of the safety and efficacy of 4% icodextrin solution in the reduction of adhesions following laparoscopic gynaecological surgery. Hum. Reprod. 2002, 17, 1031–1038. [Google Scholar] [CrossRef] [Green Version]
- Trew, G.; Pistofidis, G.; Pados, G.; Lower, A.; Mettler, L.; Wallwiener, D.; Korell, M.; Pouly, J.-L.; Coccia, M.E.; Audebert, A.; et al. Gynaecological endoscopic evaluation of 4% icodextrin solution: A European, multicentre, double-blind, randomized study of the efficacy and safety in the reduction of de novo adhesions after laparoscopic gynaecological surgery. Hum. Reprod. 2011, 26, 2015–2027. [Google Scholar] [CrossRef] [Green Version]
- Mathisen, S.R.; Wu, H.D.; Sauvage, L.R.; Walker, M.W. Prevention of retrosternal adhesions after pericardiotomy. J. Thorac. Cardiovasc. Surg. 1986, 92, 92–98. [Google Scholar] [CrossRef]
- Segesser, L.; Cox, J.; Faidutti, B. Equine pericardial xenograft in orthotopic position: Early results. Thorac. Cardiovasc. Surg. 1986, 34, 35–38. [Google Scholar] [CrossRef]
- Shen, J.; Xu, Z.W. Combined Application of Acellular Bovine Pericardium and Hyaluronic Acid in Prevention of Postoperative Pericardial Adhesion. Artif. Organs 2014, 38, 224–230. [Google Scholar] [CrossRef]
- He, T.; Zou, C.; Song, L.; Wang, N.; Yang, S.; Zeng, Y.; Wu, Q.; Zhang, W.; Chen, Y.; Gong, C. Improving Antiadhesion Effect of Thermosensitive Hydrogel with Sustained Release of Tissue-type Plasminogen Activator in a Rat Repeated-Injury Model. ACS Appl. Mater. Interfaces 2016, 8, 33514–33520. [Google Scholar] [CrossRef]
- Choi, G.J.; Kang, H.; Hong, M.E.; Shin, H.Y.; Baek, C.W.; Jung, Y.H.; Lee, Y.; Kim, J.W.; Park, I.L.K.; Cho, W.J. Effects of a Lidocaine-Loaded Poloxamer/Alginate/CaCl2 Mixture on Postoperative Pain and Adhesion in a Rat Model of Incisional Pain. Anesth. Analg. 2017, 125, 320–327. [Google Scholar] [CrossRef]
- Baek, S.; Park, H.; Park, Y.; Kang, H.; Lee, D. Development of a Lidocaine-Loaded Alginate/CMC/PEO Electrospun Nanofiber Film and Application as an Anti-Adhesion Barrier. Polymers 2020, 12, 618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz, O.A. Evaluation of Mitomycin to Limit Postoperative Adhesions in Strabismus Surgery. J. Pediatr. Ophthalmol. Strabismus 1996, 33, 89–92. [Google Scholar] [CrossRef] [PubMed]
- Sultana, T.; Van Hai, H.; Park, M.; Lee, S.-Y.; Lee, B.-T. Controlled release of Mitomycin C from modified cellulose based thermo-gel prevents post-operative de novo peritoneal adhesion. Carbohydr. Polym. 2020, 229, 115552. [Google Scholar] [CrossRef]
- Orhan, A.; Görmüş, N.; Toy, H.; Görmüş, I.S.; Çağlayan, O.; Tanyeli, Ö. Prevention of retrosternal pericardial adhesions after cardiac surgery with mitomycin C. Heart Lung Circ. 2014, 23, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Abuzar, S.M.; Seo, Y.; Han, H.; Jeon, Y.; Park, E.J.; Baik, S.H.; Hwang, S.-J. Oxaliplatin-loaded chemically cross-linked hydrogels for prevention of postoperative abdominal adhesion and colorectal cancer therapy. Int. J. Pharm. 2019, 565, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Abuzar, S.M.; Ahn, J.-H.; Park, K.S.; Park, E.J.; Baik, S.H.; Hwang, S.-J. Pharmacokinetic Profile and Anti-Adhesive Effect of Oxaliplatin-PLGA Microparticle-Loaded Hydrogels in Rats for Colorectal Cancer Treatment. Pharmaceutics 2019, 11, 392. [Google Scholar] [CrossRef] [Green Version]
- Lim, R.; Stucchi, A.F.; Morrill, J.M.; Reed, K.L.; Lynch, R.; Becker, J.M. The efficacy of a hyaluronate-carboxymethylcellulose bioresorbable membrane that reduces postoperative adhesions is increased by the intra-operative co-administration of a neurokinin 1 receptor antagonist in a rat model. Surgery 2010, 148, 991–999. [Google Scholar] [CrossRef]
- Lee, J.H.; Go, A.K.; Oh, S.H.; Lee, K.E.; Yuk, S.H. Tissue anti-adhesion potential of ibuprofen-loaded PLLA–PEG diblock copolymer films. Biomaterials 2005, 26, 671–678. [Google Scholar] [CrossRef]
- Liu, S.; Hu, C.; Li, F.; Li, X.-J.; Cui, W.; Fan, C. Prevention of Peritendinous Adhesions with Electrospun Ibuprofen-Loaded Poly(l-Lactic Acid)-Polyethylene Glycol Fibrous Membranes. Tissue Eng. Part A 2013, 19, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Li, S.; Chen, E.; Garlick, B.; Kim, K.-S.; Fang, D.; Chiu, J.; Zimmerman, T.; Brathwaite, C.; Hsiao, B.S.; et al. Prevention of Postsurgery-Induced Abdominal Adhesions by Electrospun Bioabsorbable Nanofibrous Poly(lactide-co-glycolide)-Based Membranes. Ann. Surg. 2004, 240, 910–915. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Zhao, X.; Chen, S.; Pan, G.; Song, J.; He, N.; Li, F.; Cui, W.; Fan, C. Down-regulating ERK1/2 and SMAD2/3 phosphorylation by physical barrier of celecoxib-loaded electrospun fibrous membranes prevents tendon adhesions. Biomaterials 2014, 35, 9920–9929. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, M.; Hu, J.; Wang, C.; Xu, S.; Han, C.C. Multiple Targeted Drugs Carrying Biodegradable Membrane Barrier: Anti-Adhesion, Hemostasis, and Anti-Infection. Biomacromolecules 2013, 14, 954–961. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Shin, Y.C.; Yang, W.J.; Park, J.-C.; Hyon, S.-H.; Han, D.-W. Epigallocatechin-3-O-Gallate-Loaded Poly(lactic-co-glycolic acid) Fibrous Sheets as Anti-Adhesion Barriers. J. Biomed. Nanotechnol. 2015, 11, 1461–1471. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Jiang, S.; Liu, S.; Chen, S.; Lin, Z.Y.; Pan, G.; He, F.; Li, F.; Fan, C.; Cui, W. Optimization of intrinsic and extrinsic tendon healing through controllable water-soluble mitomycin-C release from electrospun fibers by mediating adhesion-related gene expression. Biomaterials 2015, 61, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pang, X.; Luo, J.; Wen, Q.; Wu, Z.; Ding, Q.; Zhao, L.; Yang, L.; Wang, B.; Fu, S. Naproxen Nanoparticle-Loaded Thermosensitive Chitosan Hydrogel for Prevention of Postoperative Adhesions. ACS Biomater. Sci. Eng. 2019, 5, 1580–1588. [Google Scholar] [CrossRef]
- Wilczewska, A.Z.; Niemirowicz, K.; Markiewicz, K.H.; Car, H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012, 64, 1020–1037. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, J.; Ruan, H.; Wang, W.; Wu, T.; Cui, W.; Fan, C. Antibacterial and anti-adhesion effects of the silver nanoparticles-loaded poly(l-lactide) fibrous membrane. Mater. Sci. Eng. C 2013, 33, 1176–1182. [Google Scholar] [CrossRef]
- Hu, C.; Liu, S.; Zhang, Y.; Li, B.; Yang, H.; Fan, C.; Cui, W. Long-term drug release from electrospun fibers for in vivo inflammation prevention in the prevention of peritendinous adhesions. Acta Biomater. 2013, 9, 7381–7388. [Google Scholar] [CrossRef]
- Liu, S.; Qin, M.; Hu, C.; Wu, F.; Cui, W.; Jin, T.; Fan, C. Tendon healing and anti-adhesion properties of electrospun fibrous membranes containing bFGF loaded nanoparticles. Biomaterials 2013, 34, 4690–4701. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhu, C.; Wu, Y.F.; Zhang, L.; Tang, J.B. Effective modulation of transforming growth factor-β1 expression through engineered microRNA-based plasmid-loaded nanospheres. Cytotherapy 2015, 17, 320–329. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, L.; Zhao, W.; Wu, Y.; Zhu, C.; Yang, Y. Nanoparticle-mediated delivery of TGF-β1 miRNA plasmid for preventing flexor tendon adhesion formation. Biomaterials 2013, 34, 8269–8278. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Shao, Y.X.; Zhang, L.Z.; Zhou, Y.L. Therapeutic strategies for flexor tendon healing by nanoparticle-mediated co-delivery of bFGF and VEGFA genes. Colloids Surf. B Biointerfaces 2018, 164, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, A.A.; Lomme, R.; Hendriks, T.; van Goor, H. Prevention of postsurgical adhesions using an ultrapure alginate-based gel. BJS 2013, 100, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Na, S.Y.; Oh, S.H.; Song, K.S.; Lee, J.H. Hyaluronic acid/mildly crosslinked alginate hydrogel as an injectable tissue adhesion barrier. J. Mater. Sci. Mater. Electron. 2012, 23, 2303–2313. [Google Scholar] [CrossRef]
- Ito, T.; Yeo, Y.; Highley, C.; Bellas, E.; Kohane, D. Dextran-based in situ cross-linked injectable hydrogels to prevent peritoneal adhesions. Biomaterials 2007, 28, 3418–3426. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.H.; Kim, J.K.; Song, K.S.; Noh, S.M.; Ghil, S.H.; Yuk, S.H.; Lee, J.H. Prevention of postsurgical tissue adhesion by anti-inflammatory drug-loaded pluronic mixtures with sol-gel transition behavior. J. Biomed. Mater. Res. Part A 2005, 72, 306–316. [Google Scholar] [CrossRef]
- Hong, J.H.; Choe, J.W.; Kwon, G.Y.; Cho, D.Y.; Sohn, D.S.; Kim, S.W.; Woo, Y.C.; Lee, C.J.; Kang, H. The Effects of Barrier Materials on Reduction of Pericardial Adhesion Formation in Rabbits: A Comparative Study of a Hyaluronan-Based Solution and a Temperature Sensitive Poloxamer Solution/Gel Material. J. Surg. Res. 2011, 166, 206–213. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kang, H.; Kim, M.-K.; Han, S.-S. The Effects of Barrier Agents in Postoperative Pelvic Adhesion Formation: A Comparative Study of a Temperature-Sensitive Poloxamer-Based Solution/Gel and a Hyaluronic Acid-Based Solution in a Rat Uterine Horn Model. J. Laparoendosc. Adv. Surg. Tech. 2018, 28, 134–139. [Google Scholar] [CrossRef]
- Kim, S.G.; Song, K.Y.; Lee, H.H.; Kim, E.Y.; Lee, J.H.; Jeon, H.M.; Jeon, K.H.; Jin, H.M.; Kim, D.J.; Kim, W.; et al. Efficacy of an antiadhesive agent for the prevention of intra-abdominal adhesions after radical gastrectomy: A prospective randomized, multicenter trial. Medicine 2019, 98, e15141. [Google Scholar] [CrossRef]
- Oh, S.H.; Na, S.Y.; Song, K.S.; Lee, J.H. Sprayable powder of hyaluronate embedded in mildly cross-linked alginate as a post-surgical tissue adhesion barrier. Macromol. Res. 2013, 21, 1263–1269. [Google Scholar] [CrossRef]
- Schrøder, M.; Willumsen, H.; Hansen, J.P.; Hansen, O.H. Peritoneal adhesion formation after the use of oxidized cellulose (Surgicel) and gelatin sponge (Spongostan) in rats. Acta Chir. Scand. 1982, 148, 595–596. [Google Scholar]
- Horii, T.; Tsujimoto, H.; Miyamoto, H.; Yamanaka, K.; Tanaka, S.; Torii, H.; Ozamoto, Y.; Takamori, H.; Nakamachi, E.; Ikada, Y.; et al. Physical and biological properties of a novel anti-adhesion material made of thermally cross-linked gelatin film: Investigation of the usefulness as anti-adhesion material. J. Biomed. Mater. Res. Part B Appl. Biomater. 2018, 106, 689–696. [Google Scholar] [CrossRef]
- Tsujimoto, H.; Tanzawa, A.; Matoba, M.; Hashimoto, A.; Suzuki, S.; Morita, S.; Ikada, Y.; Hagiwara, A. The anti-adhesive effect of thermally cross-linked gelatin film and its influence on the intestinal anastomosis in canine models. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 101, 99–109. [Google Scholar] [CrossRef]
- Torii, H.; Takagi, T.; Urabe, M.; Tsujimoto, H.; Ozamoto, Y.; Miyamoto, H.; Ikada, Y.; Hagiwara, A. Anti-adhesive effects of a newly developed two-layered gelatin sheet in dogs. J. Obstet. Gynaecol. Res. 2017, 43, 1317–1325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahram, E.; Sadraie, S.H.; Kaka, G.; Khoshmohabat, H.; Hosseinalipour, M.; Panahi, F.; Naimi-Jamal, M.R. Evaluation of chitosan–gelatin films for use as postoperative adhesion barrier in rat cecum model. Int. J. Surg. 2013, 11, 1097–1102. [Google Scholar] [CrossRef] [Green Version]
- De Clercq, K.; Schelfhout, C.; Bracke, M.; de Wever, O.; van Bockstal, M.; Ceelen, W.; Remon, J.P.; Vervaet, C. Genipin-crosslinked gelatin microspheres as a strategy to prevent postsurgical peritoneal adhesions: In vitro and in vivo characterization. Biomaterials 2016, 96, 33–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.-W.; Tsai, H.-F.; Wen, S.-M.; Huang, C.-H. Photocrosslinkable gellan gum film as an anti-adhesion barrier. Carbohydr. Polym. 2012, 90, 1132–1138. [Google Scholar] [CrossRef]
- Izumi, Y.; Yamamoto, M.; Kawamura, M.; Adachi, T.; Kobayashi, K. Cross-linked poly (gamma-glutamic acid) attenuates peritoneal adhesion in a rat model. Surgery 2007, 141, 678–681. [Google Scholar] [CrossRef]
- Evrard, V.; De Bellis, A.; Boeckx, W.; Brosens, I. Surgery: Peritoneal healing after fibrin glue application: A comparative study in a rat model. Hum. Reprod. 1996, 11, 1877–1880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeuchi, H.; Toyonari, Y.; Mitsuhashi, N.; Kuwabara, Y. Effects of fibrin glue on postsurgical adhesions after uterine or ovarian surgery in rabbits. J. Obstet. Gynaecol. Res. 1997, 23, 479–484. [Google Scholar] [CrossRef]
- Takeuchi, H.; Awaji, M.; Hashimoto, M.; Nakano, Y.; Mitsuhashi, N.; Kuwabara, Y. Reduction of adhesions with fibrin glue after laparoscopic excision of large ovarian endometriomas. J. Am. Assoc. Gynecol. Laparosc. 1996, 3, 575–579. [Google Scholar] [CrossRef]
- Takeuchi, H.; Kitade, M.; Kikuchi, I.; Shimanuki, H.; Kumakiri, J.; Kinoshita, K. Adhesion-prevention effects of fibrin sealants after laparoscopic myomectomy as determined by second-look laparoscopy: A prospective, randomized, controlled study. J. Reprod. Med. 2005, 50, 571–577. [Google Scholar]
- Moro, H.; Hayashi, J.-I.; Ohzeki, H.; Nakayama, T.; Namura, O.; Hanzawa, K.; Yagi, N. The effect of fibrin glue on inhibition of pericardial adhesions. Gen. Thorac. Cardiovasc. Surg. 1999, 47, 79–84. [Google Scholar] [CrossRef]
- Koçak, I.; Unlü, C.; Akçan, Y.; Yakin, K. Reduction of adhesion formation with cross-linked hyaluronic acid after peritoneal surgery in rats. Fertil. Steril. 1999, 72, 873–878. [Google Scholar] [CrossRef]
- Sikkink, C.J.; de Man, B.; Bleichrodt, R.P.; van Goor, H. Auto-cross-linked hyaluronic acid gel does not reduce intra-abdominal adhesions or abscess formation in a rat model of peritonitis. J. Surg. Res. 2006, 136, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Belluco, C.; Meggiolaro, F.; Pressato, D.; Pavesio, A.; Bigon, E.; Donà, M.; Forlin, M.; Nitti, D.; Lise, M. Prevention of Postsurgical Adhesions with an Autocrosslinked Hyaluronan Derivative Gel. J. Surg. Res. 2001, 100, 217–221. [Google Scholar] [CrossRef]
- Mais, V.; Bracco, G.; Litta, P.; Gargiulo, T.; Melis, G. Reduction of postoperative adhesions with an auto-crosslinked hyaluronan gel in gynaecological laparoscopic surgery: A blinded, controlled, randomized, multicentre study. Hum. Reprod. 2006, 21, 1248–1254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mayes, S.M.; Davis, J.; Scott, J.; Aguilar, V.; Zawko, S.A.; Swinnea, S.; Peterson, D.L.; Hardy, J.G.; Schmidt, C.E. Polysaccharide-based films for the prevention of unwanted postoperative adhesions at biological interfaces. Acta Biomater. 2020, 106, 92–101. [Google Scholar] [CrossRef]
- Sakai, S.; Ueda, K.; Taya, M. Peritoneal adhesion prevention by a biodegradable hyaluronic acid-based hydrogel formed in situ through a cascade enzyme reaction initiated by contact with body fluid on tissue surfaces. Acta Biomater. 2015, 24, 152–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, Y.; Highley, C.B.; Bellas, E.; Ito, T.; Marini, R.; Langer, R.; Kohane, D.S. In situ cross-linkable hyaluronic acid hydrogels prevent post-operative abdominal adhesions in a rabbit model. Biomaterials 2006, 27, 4698–4705. [Google Scholar] [CrossRef]
- Ito, T.; Yeo, Y.; Highley, C.B.; Bellas, E.; Benitez, C.A.; Kohane, D.S. The prevention of peritoneal adhesions by in situ cross-linking hydrogels of hyaluronic acid and cellulose derivatives. Biomaterials 2007, 28, 975–983. [Google Scholar] [CrossRef] [Green Version]
- Bang, S.; Lee, E.; Ko, Y.-G.; Kim, W.I.; Kwon, O.H. Injectable pullulan hydrogel for the prevention of postoperative tissue adhesion. Int. J. Biol. Macromol. 2016, 87, 155–162. [Google Scholar] [CrossRef]
- O’Sullivan, D.; O’Riordain, M.; O’Connell, R.P.; Dineen, M.; Brady, M.P. Peritoneal adhesion formation after lysis: Inhibition by polyethylene glycol 4000. BJS 2005, 78, 427–429. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Chen, Y.; Wang, J.; Peng, X.; Yu, L.; Ding, J. Non-invasive monitoring of in vivo degradation of a radiopaque thermoreversible hydrogel and its efficacy in preventing post-operative adhesions. Acta Biomater. 2017, 55, 396–409. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Hu, H.; Chen, L.; Bao, X.; Li, Y.; Chen, L.; Xu, G.; Ye, X.; Ding, J. Comparative studies of thermogels in preventing post-operative adhesions and corresponding mechanisms. Biomater. Sci. 2014, 2, 1100–1109. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.H.; Han, S.S.; Son, J.H.; Kim, S.C. Poly(ethylene glycol) dicarboxylate/poly(ethylene oxide) hydrogel film co-crosslinked by electron beam irradiation as an anti-adhesion barrier. Mater. Sci. Eng. C 2015, 46, 195–201. [Google Scholar]
- Yang, D.-J.; Chen, F.; Xiong, Z.-C.; Xiong, C.-D.; Wang, Y.-Z. Tissue anti-adhesion potential of biodegradable PELA electrospun membranes. Acta Biomater. 2009, 5, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Bakkum, E.; Trimbos, J.; Dalmeijer, R.; Blitterswijk, C. Preventing postoperative intraperitoneal adhesion formation with Polyactive™, a degradable copolymer acting as a barrier. J. Mater. Sci. Mater. Med. 1995, 6, 41–45. [Google Scholar] [CrossRef]
- Leach, R.E.; Henry, R.L. Reduction of postoperative adhesions in the rat uterine horn model with poloxamer 407. Am. J. Obstet. Gynecol. 1990, 162, 1317–1319. [Google Scholar] [CrossRef]
- Rice, V.M.; Shanti, A.; Moghissi, K.S.; Leach, R. A comparative evaluation of Poloxamer 407 and oxidized regenerated cellulose (Interceed [TC7]) to reduce postoperative adhesion formation in the rat uterine horn model. Fertil. Steril. 1993, 59, 901–906. [Google Scholar] [PubMed]
- Steinleitner, A.; Lambert, H.; Kazensky, C.; Cantor, B. Poloxamer 407 as an intraperitoneal barrier material for the prevention of postsurgical adhesion formation and reformation in rodent models for reproductive surgery. Obstet. Gynecol. 1991, 77, 48–52. [Google Scholar] [PubMed]
- Sawhney, A.S.; Pathak, C.P.; Van Rensburg, J.J.; Dunn, R.C.; Hubbell, J.A. Optimization of photopolymerized bioerodible hydrogel properties for adhesion prevention. J. Biomed. Mater. Res. 1994, 28, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ren, G.; Zhang, W. Reduction of Abdominal Adhesions with Elecrospun Fiber Membranes in Rat Models. J. Investig. Surg. 2017, 31, 1–8. [Google Scholar] [CrossRef]
- Yang, B.; Gong, C.; Qian, Z.; Zhao, X.; Li, Z.; Qi, X.; Zhou, S.; Zhong, Q.; Luo, F.; Wei, Y. Prevention of post-surgical abdominal adhesions by a novel biodegradable thermosensitive PECE hydrogel. BMC Biotechnol. 2010, 10, 65. [Google Scholar] [CrossRef] [Green Version]
- Cook, G.B. The silicone serosal interface I. Abatement of talc adhesions in Dogs. Surgery 1964, 55, 268–273. [Google Scholar] [PubMed]
- Weis, C.; Odermatt, E.K.; Funke, Z.; Wehner, T.; Freytag, D. Poly(vinyl alcohol) membranes for adhesion prevention. J. Biomed. Mater. Res. 2004, 70, 191–202. [Google Scholar] [CrossRef]
- De Oliveira, P.P.M.; Bavaresco, V.P.; Silveira-Filho, L.M.; Schenka, A.A.; Vilarinho, K.A.D.S.; Severino, E.S.B.D.O.; Petrucci, O. Use of a novel polyvinyl alcohol membrane as a pericardial substitute reduces adhesion formation and inflammatory response after cardiac reoperation. J. Thorac. Cardiovasc. Surg. 2014, 147, 1405–1410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bae, S.H.; Son, S.R.; Kumar Sakar, S.; Nguyen, T.H.; Kim, S.W.; Min, Y.K.; Lee, B.-T. Evaluation of the potential anti-adhesion effect of the PVA/Gelatin membrane. J. Biomed. Mater. Res. B Appl. Biomater. 2014, 102, 840–849. [Google Scholar] [CrossRef]
- Renz, B.W.; Leitner, K.; Odermatt, E.; Worthley, D.L.; Angele, M.K.; Jauch, K.W.; Lang, R.A. PVA gel as a potential adhesion barrier: A safety study in a large animal model of intestinal surgery. Langenbeck’s Arch. Surg. 2014, 399, 349–357. [Google Scholar] [CrossRef]
- Deerenberg, E.; Mulder, I.M.; Ditzel, M.; Slieker, J.C.; Bemelman, W.A.; Jeekel, J.; Lange, J.F. Polyvinyl Alcohol Hydrogel Decreases Formation of Adhesions in a Rat Model of Peritonitis. Surg. Infect. 2012, 13, 321–325. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.; Baumann, P.; Schmoor, C.; Odermatt, E.K.; Wente, M.N.; Jauch, K.-W. A-Part Gel, an adhesion prophylaxis for abdominal surgery: A randomized controlled phase I–II safety study [NCT00646412]. Ann. Surg. Innov. Res. 2015, 9, 5. [Google Scholar] [CrossRef] [PubMed]
- Lang, R.A.; Weisgerber, C.; Grüntzig, P.M.; Weis, C.; Odermatt, E.K.; Kirschner, M.H. Polyvinyl Alcohol Gel Prevents Adhesion Re-Formation After Adhesiolysis in a Rabbit Model. J. Surg. Res. 2009, 153, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Townsend, K.L.; Race, A.; Keane, M.; Miller, W.; Dishaw, L.; Fisher, E.R.; Russell, D.S.; Allen, M.J. A Novel Hydrogel-Coated Polyester Mesh Prevents Postsurgical Adhesions in a Rat Model. J. Surg. Res. 2011, 167, e117–e124. [Google Scholar] [CrossRef] [PubMed]
- Freytag, C.; Odermatt, E.K. Standard Biocompatibility Studies Do Not Predict All Effects of PVA/CMC Anti-Adhesive Gel in vivo. Eur. Surg. Res. 2016, 56, 109–122. [Google Scholar] [CrossRef]
- Hu, C.; Tang, F.; Wu, Q.; Guo, B.; Long, W.A.; Ruan, Y.; Li, L. Novel Trilaminar Polymeric Antiadhesion Membrane Prevents Postoperative Pericardial Adhesion. Ann. Thorac. Surg. 2021, 111, 184–189. [Google Scholar] [CrossRef] [PubMed]
- Ersoy, E.; Ozturk, V.; Yazgan, A.; Ozdogan, M.; Gundogdu, H. Effect of Polylactic Acid Film Barrier on Intra-Abdominal Adhesion Formation. J. Surg. Res. 2008, 147, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Iliopoulos, J.; Cornwall, G.B.; Evans, R.; Manganas, C.; Thomas, K.; Newman, D.; Walsh, W.; Iliopoulos, J.; Cornwall, G.B.; Evans, R.; et al. Evaluation of a bioabsorable polylactide film in a large animal model for the reduction of retrosternal adhesions. J. Surg. Res. 2004, 118, 144–153. [Google Scholar] [CrossRef]
- Hinoki, A.; Saito, A.; Kinoshita, M.; Yamamoto, J.; Saitoh, D.; Takeoka, S. Polylactic acid nanosheets in prevention of postoperative intestinal adhesion and their effects on bacterial propagation in an experimental model. BJS 2016, 103, 692–700. [Google Scholar] [CrossRef]
- Chen, G.; Liu, T. Therapeutic evaluation of the polylactic acid gel (PLA-G) used for preventing skin flap adhesion in modified radical mastectomy. J. Biomed. Eng. 2013, 30, 1276–1278. [Google Scholar]
- Yamaoka, T.; Njatawidjaja, E.; Kasai, A.; Agudelo, C.A.; Ehashi, T.; Kakinoki, S.; Kato, S.; Mahara, A. Elastic/adhesive double-layered PLA-PEG multiblock copolymer membranes for postoperative adhesion prevention. Polym. Degrad. Stab. 2013, 98, 2168–2176. [Google Scholar] [CrossRef]
- Okuyama, N.; Wang, C.Y.; Rose, E.; Rodgers, K.; Pines, E.; Dizerega, G.S.; Oz, M.C. Reduction of retrosternal and pericardial adhesions with rapidly resorbable polymer films. Ann. Thorac. Surg. 1999, 68, 913–918. [Google Scholar] [CrossRef]
- Kaushal, S.; Patel, S.K.; Goh, S.-K.; Sood, A.; Walker, B.L.; Backer, C.L. A novel combination of bioresorbable polymeric film and expanded polytetrafluoroethylene provides a protective barrier and reduces adhesions. J. Thorac. Cardiovasc. Surg. 2011, 141, 789–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lo, H.-Y.; Kuo, H.-T.; Huang, Y.-Y. Application of Polycaprolactone as an Anti-Adhesion Biomaterial Film. Artif. Organs 2010, 34, 648–653. [Google Scholar] [CrossRef]
- Bölgen, N.; Vargel, I.; Korkusuz, P.; Menceloğlu, Y.Z.; Pişkin, E. In vivo performance of antibiotic embedded electrospun PCL membranes for prevention of abdominal adhesions. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 81, 530–543. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Wang, W.; Yan, H.; Fan, C. Prevention of Intra-Abdominal Adhesion by Bi-Layer Electrospun Membrane. Int. J. Mol. Sci. 2013, 14, 11861–11870. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Ni, J.; Chen, L.; Yu, L.; Xu, J.; Ding, J. Biodegradable and thermoreversible PCLA–PEG–PCLA hydrogel as a barrier for prevention of post-operative adhesion. Biomaterials 2011, 32, 4725–4736. [Google Scholar] [CrossRef]
- Qian, Z.; Yang, B.; Gong, C.-Y.; Zhao, X.; Zhou, S.; Li, Z.; Qi, X.; Zhong, Q.; Luo, F. Preventing postoperative abdominal adhesions in a rat model with PEG-PCL-PEG hydrogel. Int. J. Nanomed. 2012, 7, 547–557. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Wu, Q.; Li, L.; Wang, N.; Gao, X.; Wang, B.; Liu, X.; Qian, Z.; Wei, Y. Biodegradable and thermosensitive micelles inhibit ischemia-induced postoperative peritoneal adhesion. Int. J. Nanomed. 2014, 9, 727–734. [Google Scholar] [CrossRef] [Green Version]
- Nkere, U.; Whawell, S.; Sarraf, C.; Schofield, J.; O’Keefe, P. Pericardial Substitution After Cardiopulmonary Bypass Surgery: A Trial of an Absorbable Patch. Thorac. Cardiovasc. Surg. 1998, 46, 77–83. [Google Scholar] [CrossRef]
- Malm, T.; Bowald, S.; Bylock, A.; Busch, C. Prevention of postoperative pericardial adhesions by closure of the pericardium with absorbable polymer patches. An experimental study. J. Thorac. Cardiovasc. Surg. 1992, 104, 600–607. [Google Scholar] [CrossRef]
- Frishman, G. Clinical evaluation of a viscoelastic gel for reduction of adhesions following gynaecological surgery by laparoscopy in Europe. Hum. Reprod. 2005, 20, 514520. [Google Scholar] [CrossRef]
- Young, P.; Johns, A.; Templeman, C.; Witz, C.; Webster, B.; Ferland, R.; Diamond, M.P.; Block, K.; diZerega, G. Reduction of postoperative adhesions after laparoscopic gynecological surgery with Oxiplex/AP Gel: A pilot study. Fertil. Steril. 2005, 84, 1450–1456. [Google Scholar] [CrossRef]
- Fuchs, N.; Smorgick, N.; Ben Ami, I.; Vaknin, Z.; Tovbin, Y.; Halperin, R.; Pansky, M. Intercoat (Oxiplex/AP Gel) for Preventing Intrauterine Adhesions After Operative Hysteroscopy for Suspected Retained Products of Conception: Double-Blind, Prospective, Randomized Pilot Study. J. Minim. Invasive Gynecol. 2014, 21, 126–130. [Google Scholar] [CrossRef]
- Sardo, A.D.S.; Spinelli, M.; Bramante, S.; Scognamiglio, M.; Greco, E.; Guida, M.; Cela, V.; Nappi, C. Efficacy of a Polyethylene OxideSodium Carboxymethylcellulose Gel in Prevention of Intrauterine Adhesions After Hysteroscopic Surgery. J. Minim. Invasive Gynecol. 2011, 18, 462–469. [Google Scholar] [CrossRef]
- Rajab, T.K.; Wallwiener, M.; Planck, C.; Brochhausen, C.; Kraemer, B.; Wallwiener, C.W. A Direct Comparison of Seprafilm, Adept, Intercoat, and Spraygel for Adhesion Prophylaxis. J. Surg. Res. 2010, 161, 246–249. [Google Scholar] [CrossRef]
- Kajihara, N.; Eto, M.; Oishi, Y.; Boku, N.; Kuwahara, K.; Nishiguchi, N.; Kotani, C.; Morita, S. Three-layered synthetic pericardial substitutes reduce postoperative pericardial adhesions. J. Thorac. Cardiovasc. Surg. 2005, 129, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Shu, X.Z.; Prestwich, G.D. Reduced postoperative intra-abdominal adhesions using Carbylan-SX, a semisynthetic glycosaminoglycan hydrogel. Fertil. Steril. 2007, 87, 940–948. [Google Scholar] [CrossRef]
- Connors, R.C.; Muir, J.J.; Liu, Y.; Reiss, G.R.; Kouretas, P.C.; Whitten, M.G.; Sorenson, T.K.; Prestwich, G.D.; Bull, D.A. Postoperative Pericardial Adhesion Prevention Using Carbylan-SX in a Rabbit Model. J. Surg. Res. 2007, 140, 237–242. [Google Scholar] [CrossRef]
- Kang, H.; Chung, Y.S.; Kim, S.W.; Choi, G.J.; Kim, B.G.; Park, S.W.; Seok, J.W.; Hong, J. Effect of Temperature-Sensitive Poloxamer Solution/Gel Material on Pericardial Adhesion Prevention: Supine Rabbit Model Study Mimicking Cardiac Surgery. PLoS ONE 2015, 10, e0143359. [Google Scholar] [CrossRef]
- Fu, S.Z.; Li, Z.; Fan, J.M.; Meng, X.H.; Shi, K.; Qu, Y.; Yang, L.L.; Wu, J.B.; Fan, J.; Luot, F.; et al. Biodegradable and thermosensitive monomethoxy poly(ethylene glycol)-poly(lactic acid) hydrogel as a barrier for prevention of post-operative abdominal adhesion. J. Biomed. Nanotechnol. 2014, 10, 427–435. [Google Scholar] [CrossRef]
- Niu, L.; Feng, C.; Shen, C.; Wang, B.; Zhang, X. PLGA/PLCA casting and PLGA/PDPA electrospinning bilayer film for prevention of postoperative adhesion. J. Biomed. Mater. Res. Part B Appl. Biomater. 2019, 107, 2030–2039. [Google Scholar] [CrossRef]
- Sezer, U.A.; Sanko, V.; Gulmez, M.; Aru, B.; Sayman, E.; Aktekin, A.; Aker, F.V.; Demirel, G.Y.; Sezer, S. Polypropylene composite hernia mesh with anti-adhesion layer composed of polycaprolactone and oxidized regenerated cellulose. Mater. Sci. Eng. C 2019, 99, 1141–1152. [Google Scholar] [CrossRef]
- Boudouris, O.; Autret, M.; Paris, F.X.; Karaïtianos, I.; Loisance, D.; Henry-Suchet, J. Synergic effect of Dextran 70 at 32% and an antibiotic in the prevention of peritoneal adhesions. Experimental study in rats. J. Chir. 1992, 129, 160–164. [Google Scholar]
- Reid, R.L.; Hahn, P.M.; Spence, J.E.; Tulandi, T.; Yuzpe, A.A.; Wiseman, D. A randomized clinical trial of oxidized regenerated cellulose adhesion barrier (Interceed, TC7) alone or in combination with heparint. Fertil. Steril. 1997, 67, 23–29. [Google Scholar] [CrossRef]
- Kaptanoğlu, L.; Kucuk, H.; Yegenoglu, A.; Uzun, H.; Eßer, M.; Mentes, C.; Kurt, N. Effects of Seprafilm and Heparin in Combination on Intra-Abdominal Adhesions. Eur. Surg. Res. 2008, 41, 203–207. [Google Scholar] [CrossRef]
- Miyata, T.; Fususe, M.; Yamane, Y.; Noishiki, Y. A biodegradable antiadhesion collagen membrane with slow release heparin. ASAIO Trans. 1988, 34, 687–691. [Google Scholar]
- Jamshidi-Adegani, F.; Seyedjafari, E.; Gheibi, N.; Soleimani, M.; Sahmani, M. Prevention of adhesion bands by ibuprofen-loaded PLGA nanofibers. Biotechnol. Prog. 2016, 32, 990–997. [Google Scholar] [CrossRef]
- El-Salamouni, N.S.; Gowayed, M.A.; Labib, G.S. Controlled release Ibu-cryobarriers for the prevention of post-operative adhesions: In-vitro/in-vivo comparative study. Int. J. Pharm. 2019, 565, 70–82. [Google Scholar] [CrossRef]
- Höckel, M.; Ott, S.; Siemann, U.; Kissel, T. Prevention of peritoneal adhesions in the rat with sustained intraperitoneal dexamethasone delivered by a novel therapeutic system. Ann. Chir. Gynaecol. 1987, 76, 306–313. [Google Scholar]
- Chorny, M.; Mishaly, D.; Leibowitz, A.; Domb, A.J.; Golomb, G. Site-specific delivery of dexamethasone from biodegradable implants reduces formation of pericardial adhesions in rabbits. J. Biomed. Mater. Res. A 2006, 78, 276–282. [Google Scholar] [CrossRef]
- Yeo, Y.; Adil, M.; Bellas, E.; Astashkina, A.; Chaudhary, N.; Kohane, D.S. Prevention of peritoneal adhesions with an in situ cross-linkable hyaluronan hydrogel delivering budesonide. J. Control. Release 2007, 120, 178–185. [Google Scholar] [CrossRef]
- Lalountas, M.; Ballas, K.D.; Michalakis, A.; Psarras, K.; Asteriou, C.; Giakoustidis, D.E.; Nikolaidou, C.; Venizelos, I.; Pavlidis, T.E.; Sakantamis, A.K. Postoperative adhesion prevention using a statin-containing cellulose film in an experimental model. BJS 2012, 99, 423–429. [Google Scholar] [CrossRef]
- Corrales, F.; Corrales, M.; Schirmer, C.C. Preventing intraperitoneal adhesions with vitamin E and sodium hyaluronate/carboxymethylcellulose: A comparative study in rats. Acta Cir. Bras. 2008, 23, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Bothin, C. Counteracting postsurgical adhesions--the effect of combining oxidized regenerated cellulose and tissue plasminogen activator. Int. J. Fertil. Menopaus. Stud. 1995, 40, 102–105. [Google Scholar]
- Yeo, Y.; Bellas, E.; Highley, C.B.; Langer, R.; Kohane, D.S. Peritoneal adhesion prevention with an in situ cross-linkable hyaluronan gel containing tissue-type plasminogen activator in a rabbit repeated-injury model. Biomaterials 2007, 28, 3704–3713. [Google Scholar] [CrossRef]
- Cooper, K.; Young, J.; Wadsworth, S.; Cui, H.; Dizerega, G.S.; Rodgers, K.E. Reduction of Post-Surgical Adhesion Formation with Tranilast. J. Surg. Res. 2007, 141, 153–161. [Google Scholar] [CrossRef]
- Jackson, J.K.; Skinner, K.C.; Burgess, L.; Sun, T.; Hunter, W.L.; Burt, H.M. Paclitaxel-loaded crosslinked hyaluronic acid films for the prevention of postsurgical adhesions. Pharm. Res. 2002, 19, 411–417. [Google Scholar] [CrossRef]
- Gong, C.; Yang, B.; Qian, Z.; Zhao, X.; Wu, Q.; Qi, X.; Wang, Y.; Guo, G.; Kan, B.; Luo, F.; et al. Improving intraperitoneal chemotherapeutic effect and preventing postsurgical adhesions simultaneously with biodegradable micelles. Nanomedicine 2012, 8, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Qazi, S.; Kjaergaard, B.; Yang, F.; Shen, H.; Wang, S.; Zhang, N.; Vyberg, M.; Wøyen, A.; Andreasen, J.J. No Effect of Rapamycin on Cardiac Adhesion Formation: A Drug-Loaded Bioresorbable Polylactone Patch in a Porcine Cardiac Surgical Model. Eur. Surg. Res. 2016, 56, 76–85. [Google Scholar] [CrossRef]
- Wei, G.; Zhou, C.; Wang, G.; Fan, L.; Wang, K.; Li, X. Keratinocyte Growth Factor Combined with a Sodium Hyaluronate Gel Inhibits Postoperative Intra-Abdominal Adhesions. Int. J. Mol. Sci. 2016, 17, 1611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, J.B.; Dallan, L.A.O.; Moreira, L.F.P.; Campana-Filho, S.P.; Gutierrez, P.S.; Lisboa, L.A.F.; De Oliveira, S.A.; Stolf, N.A.G. Synergism Between Keratinocyte Growth Factor and Carboxymethyl Chitosan Reduces Pericardial Adhesions. Ann. Thorac. Surg. 2010, 90, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Gensini, M.; Kataria, R.; Twaddle, T.; Zhang, J.; Wadsworth, S.; Petrilli, J.; Rodgers, K.; Dizerega, G.; Cooper, K. Reducing post-surgical adhesions utilizing a drug-enhanced device: Sodium carboxymethylcellulose aqueous gel/poly(p-dioxanone) and Tranilast. Biomed. Mater. 2008, 4, 015001. [Google Scholar] [CrossRef]
- Chang, Y.; Lai, P.-H.; Wang, C.-C.; Chen, S.-C.; Chang, W.-C.; Sung, H.-W. Mesothelium regeneration on acellular bovine pericardia loaded with an angiogenic agent (ginsenoside Rg1) successfully reduces postsurgical pericardial adhesions. J. Thorac. Cardiovasc. Surg. 2006, 132, 867–874.e3. [Google Scholar] [CrossRef] [PubMed]
- Campos-Cuerva, R.; Fernández-Muñoz, B.; López, F.F.; Arenas, S.P.; Santos-Gonzalez, M.; Lopez-Navas, L.; Alaminos, M.; Campos, A.; Muntané, J.; Cepeda-Franco, C.; et al. Nanostructured fibrin agarose hydrogel as a novel haemostatic agent. J. Tissue Eng. Regen. Med. 2019, 13, 664–673. [Google Scholar] [CrossRef] [Green Version]
- Mais, V.; Peiretti, M.; Minerba, L. The Improvement of Laparoscopic Surgical Skills Obtained by Gynecologists after Ten Years of Clinical Training Can Reduce Peritoneal Adhesion Formation during Laparoscopic Myomectomy: A Retrospective Cohort Study. BioMed Res. Int. 2017, 2017, 9068647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corona, R.; Binda, M.M.; Adamyan, L.; Gomel, V.; Koninckx, P.R. N2O strongly prevents adhesion formation and postoperative pain in open surgery through a drug-like effect. Gynecol. Surg. 2017, 14, 21. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Cheng, R.; das Neves, J.; Tang, J.; Xiao, J.; Ni, Q.; Liu, X.; Pan, G.; Li, D.; Cui, W.; et al. Advances in biomaterials for preventing tissue adhesion. J. Control. Release 2017, 261, 318–336. [Google Scholar] [CrossRef] [PubMed]
Factor | Component | Role in Adhesion Formation | Reference |
---|---|---|---|
Surgical Trauma | Increase of fibrin Increase levels of plasminogen activator inhibitor Induction of local inflammatory response Hypoxia and reactive oxygen species (ROS) release leading to inflammation and activation of coagulation cascade Surgical hypoxia may decrease fibrinolysis | [16,23,26,27,28,30,31,32,33,34] | |
Extracellular Matrix Components | Fibronectin, hyaluronic acid, glycosaminoglycans, proteoglycans | Matrix for proliferation of cellular components Secreted by fibroblasts | [35,36] |
Cellular Mediators | [37,38] | ||
Fibroblasts and Myofibroblasts | Subperitoneal fibroblast deposition required for adhesion development Transition to myofibroblast phenotype associated with long-lasting adhesions Maturation of adhesions through collagen and extracellular matrix (ECM) production | [39,40,41,42,43,44,45,46,47,48] | |
Mesothelial Cells | Potential protective role Insult induces pro-fibrotic phenotype and secretion of inflammatory mediators, cells, and ECM components that contribute to immune cell recruitment and coagulation Mesothelial to mesenchymal transition (MMT) drives adhesion formation | [49,50,51,52,53] | |
Macrophages | Identified in long-lasting adhesions Fundamental in adhesion formation Secrete fibrinolytic mediators and interleukins Recruit and influence mesothelial cells | [54,55,56,57,58,59] | |
Neutrophils | Recruited by activated mesothelial cells Release ROS, inhibiting fibrinolysis and exerting a direct cytotoxic effect on mesothelial cells Debated in the literature to have both a pro- and anti-adhesive effect | [50,60,61,62,63,64] | |
T Lymphocytes | Persist in quality and quantity in long-lasting adhesions Th1, Th2, and Treg CD4+ phenotypes implicated in adhesion formation Produce pro-inflammatory cytokines | [54,65,66,67] | |
Mast Cells | High concentrations in post-surgical adhesions Release histamines, serotonin, cytokines, serine proteases, vascular endothelial growth factor (VEGF), and chymase Deficiencies in mast cells reduce adhesion formation | [68,69,70] | |
Signalling Factors | |||
Coagulation Cascade | Production of thrombin, key activator of fibrin | [23] | |
Fibrin-Fibrinolysis Balance | Disruption of balance between fibrin production and fibrinolysis leads to adhesion formation Dysregulation between plasminogen-plasmin, and plasminogen activator inhibitors (PAIs) Fibrin matrix allows fibroblast adhesion and ECM maturation | [71,72] | |
Matrix Metalloproteinases | Post-surgical shifts in ratios of matrix metalloproteineases (MMPs) to tissue inhibitors of MMPs (TIMPs) MMP-2/9 proposed as markers for adhesion formation Chronic suppression of MMP/TIMP ratios lead to adhesions | [73,74,75,76,77] | |
Interleukins | High concentrations in adhesion sites and some direct correlations to extend of adhesion formation Pro-inflammatory effects Increased recruitment of immune cells | [38,78,79,80,81,82,83,84,85,86] | |
TNF-α | Abundant in peritoneal fluid post-surgery Increases interleukin production | [87,88] | |
TGF-β | Key fibrotic mediator Elevated in adhesions Stimulates myofibroblast migration and activation Chemotactic for neutrophils, T-cells, monocytes, and fibroblasts Induces ECM production Inhibits matrix degradation by altering ratio of protease to protease inhibitors | [82,89,90,91,92,93,94] | |
VEGF | Promotes angiogenesis, involved in coagulation and fibrinolysis Increases vascular permeability and promotes fibrin matrix deposition | [95,96,97] |
Material | Reasoning for Efficacy |
---|---|
Polytetrafluoroethylene (PTFE) | Physiologically inert Low adhesiveness with cells/tissues Separates damaged surfaces during wound healing without degradation Biocompatible |
Polylactic acid (PLA) | No specific binding site with cells/tissues on polymer matrix Low adhesiveness with cells/tissues Separates damaged surfaces during wound healing without degradation Biocompatible (FDA approval for human use in orthopedic and neurosurgical operations) Biodegradable |
Polyethylene glycol (PEG) | High mobility and steric stabilization effects in aqueous solution Low adhesiveness with cells/tissues Biocompatible |
PLA-PEG | Low adhesiveness with cells/tissues Flexible and hydrophilic Biocompatible Biodegradable |
Hyaluronic Acid (HA) | Wound healing properties High viscosity when dissolving by water or body fluid Muco-adhesive property in solid state Biocompatible Bioresorbable |
Alginate (ALG) | Wound healing properties Muco-adhesive property in solid state Partially crosslinking by multi-valence positive charged ions in body fluid Biocompatible Bioresorbable |
Cellulose (oxidized regenerated) (ORC) | Wound healing properties, in terms of re-epithelialization Muco-adhesive property in solid state Biocompatible Bioresorbable |
Carboxymethyl cellulose (CMC) | Remained on the injury surfaces during wound healing Muco-adhesive property in solid state Delayed bioresorption Biocompatible |
Icodextrin | Metabolized into oligosaccharides by the α-amylase in the body Delayed bioresorption in peritoneal cavity Remained on the injury surfaces during wound healing Biocompatible |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fatehi Hassanabad, A.; Zarzycki, A.N.; Jeon, K.; Dundas, J.A.; Vasanthan, V.; Deniset, J.F.; Fedak, P.W.M. Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies. Biomolecules 2021, 11, 1027. https://doi.org/10.3390/biom11071027
Fatehi Hassanabad A, Zarzycki AN, Jeon K, Dundas JA, Vasanthan V, Deniset JF, Fedak PWM. Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies. Biomolecules. 2021; 11(7):1027. https://doi.org/10.3390/biom11071027
Chicago/Turabian StyleFatehi Hassanabad, Ali, Anna N. Zarzycki, Kristina Jeon, Jameson A. Dundas, Vishnu Vasanthan, Justin F. Deniset, and Paul W. M. Fedak. 2021. "Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies" Biomolecules 11, no. 7: 1027. https://doi.org/10.3390/biom11071027
APA StyleFatehi Hassanabad, A., Zarzycki, A. N., Jeon, K., Dundas, J. A., Vasanthan, V., Deniset, J. F., & Fedak, P. W. M. (2021). Prevention of Post-Operative Adhesions: A Comprehensive Review of Present and Emerging Strategies. Biomolecules, 11(7), 1027. https://doi.org/10.3390/biom11071027