DNA-Directed Assembly of Carbon Nanotube–Protein Hybrids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Purification of SWCNTs by Chirality
2.2. Functionalization of GFP with DNA
2.3. Functionalization of DNA-Wrapped SWCNTs with Azide-Modified DNA
2.4. Assembly of SWCNT–GFP Hybrids
2.5. Atomic Force Microscopy
2.6. Fluorescence and UV–Vis Spectroscopy
3. Results
3.1. Purification of SWCNTs by Chirality
3.2. Production of Azide–GFP and Functionalization of GFP with DNA
3.3. Formation of SWCNT–GFP Hybrids
3.4. Optical Characterization of SWCNT–GFP Hybrids in Solution
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chio, L.; Pinals, R.L.; Murali, A.; Goh, N.S.; Landry, M.P. Covalent surface modification effects on single-walled carbon nanotubes for targeted sensing and optical imaging. Adv. Funct. Mater. 2020, 30, 1910556. [Google Scholar] [CrossRef]
- Xu, X.; Clément, P.; Eklöf-Österberg, J.; Kelley-Loughnane, N.; Moth-Poulsen, K.; Chávez, J.L.; Palma, M. Reconfigurable carbon nanotube multiplexed sensing devices. Nano Lett. 2018, 18, 4130–4135. [Google Scholar] [CrossRef] [PubMed]
- Budhathoki-Uprety, J.; Langenbacher, R.E.; Jena, P.V.; Roxbury, D.; Heller, D.A. A carbon nanotube optical sensor reports nuclear entry via a noncanonical pathway. ACS Nano 2017, 11, 3875–3882. [Google Scholar] [CrossRef] [PubMed]
- Williams, R.M.; Lee, C.; Heller, D.A. A fluorescent carbon nanotube sensor detects the metastatic prostate cancer biomarker uPA. ACS Sensors 2018, 3, 1838–1845. [Google Scholar] [CrossRef] [PubMed]
- Guo, X. Single-molecule electrical biosensors based on single-walled carbon nanotubes. Adv. Mater. 2013, 25, 3397–3408. [Google Scholar] [CrossRef] [PubMed]
- Dunakey, S.J.G.; Coyle, B.L.; Thomas, A.; Xu, M.; Swift, B.J.F.; Baneyx, F. Selective labeling and decoration of the ends and sidewalls of single-walled carbon nanotubes using mono- and bispecific solid-binding fluorescent proteins. Bioconjug. Chem. 2019. [Google Scholar] [CrossRef]
- Freeley, M.; Worthy, H.L.; Ahmed, R.; Bowen, B.; Watkins, D.; Macdonald, J.E.; Zheng, M.; Jones, D.D.; Palma, M. Site-Specific one-to-one click coupling of single proteins to individual carbon nanotubes: A single-molecule approach. J. Am. Chem. Soc. 2017, 139, 17834–17840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freeley, M.; Attanzio, A.; Cecconello, A.; Amoroso, G.; Clement, P.; Fernandez, G.; Gesuele, F.; Palma, M. Tuning the coupling in single-molecule heterostructures: DNA-programmed and reconfigurable carbon nanotube-based nanohybrids. Adv. Sci. 2018, 5. [Google Scholar] [CrossRef] [Green Version]
- Amoroso, G.; Ye, Q.; Cervantes-Salguero, K.; Fernández, G.; Cecconello, A.; Palma, M. DNA-powered stimuli-responsive single-walled carbon nanotube junctions. Chem. Mater. 2019, 31, 1537–1542. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, X.; Luo, W.; Wang, Z.; Guo, X.; Steigerwald, M.L.; Fang, X. Single-molecule detection of proteins using aptamer-functionalized molecular electronic devices. Angew. Chemie. Int. Ed. 2011, 50, 2496–2502. [Google Scholar] [CrossRef]
- Thomas, S.K.; Jamieson, W.D.; Gwyther, R.E.A.; Bowen, B.J.; Beachey, A.; Worthy, H.L.; MacDonald, J.E.; Elliott, M.; Castell, O.K.; Jones, D.D. Site-Specific protein photochemical covalent attachment to carbon nanotube side walls and its electronic impact on single molecule function. Bioconjug. Chem. 2020. [Google Scholar] [CrossRef]
- Marchesan, S.; Prato, M. Under the lens: Carbon nanotube and protein interaction at the nanoscale. Chem. Commun. 2015, 51, 4347–4359. [Google Scholar] [CrossRef] [PubMed]
- Prato, M.; Kostarelos, K.; Bianco, A. functionalized carbon nanotubes in drug design and discovery. Acc. Chem. Res. 2008, 41, 60–68. [Google Scholar] [CrossRef]
- Tagmatarchis, N.; Prato, M. Functionalization of carbon nanotubes via 1,3-dipolar cycloadditions. J. Mater. Chem. 2004, 14, 437–439. [Google Scholar] [CrossRef]
- Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chemistry of carbon nanotubes. Chem. Rev. 2006, 106, 1105–1136. [Google Scholar] [CrossRef] [PubMed]
- Mallakpour, S.; Soltanian, S. Surface functionalization of carbon nanotubes: Fabrication and applications. RSC Adv. 2016, 6, 109916–109935. [Google Scholar] [CrossRef]
- Klumpp, C.; Kostarelos, K.; Prato, M.; Bianco, A. functionalized carbon nanotubes as emerging nanovectors for the delivery of therapeutics. Biochim. Biophys. Acta Biomembr. 2006, 1758, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, S.; Kahn, M.G.C.; Wong, S.S. Rational chemical strategies for carbon nanotube functionalization. Chem. Eur. J. 2003, 9, 1898–1908. [Google Scholar] [CrossRef]
- Setaro, A.; Adeli, M.; Glaeske, M.; Przyrembel, D.; Bisswanger, T.; Gordeev, G.; Maschietto, F.; Faghani, A.; Paulus, B.; Weinelt, M.; et al. Preserving π-conjugation in covalently functionalized carbon nanotubes for optoelectronic applications. Nat. Commun. 2017, 8, 14281. [Google Scholar] [CrossRef] [PubMed]
- Mandal, A.K.; Wu, X.; Ferreira, J.S.; Kim, M.; Powell, L.R.; Kwon, H.; Groc, L.; Wang, Y.H.; Cognet, L. Fluorescent sp3 defect-tailored carbon nanotubes enable NIR-II single particle imaging in live brain slices at ultra-low excitation doses. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zubkovs, V.; Wu, S.-J.; Rahnamaee, S.Y.; Schuergers, N.; Boghossian, A.A. Site-specific protein conjugation onto fluorescent single-walled carbon nanotubes. Chem. Mater. 2020, 32, 8798–8807. [Google Scholar] [CrossRef]
- Danné, N.; Kim, M.; Godin, A.G.; Kwon, H.; Gao, Z.; Wu, X.; Hartmann, N.F.; Doorn, S.K.; Lounis, B.; Wang, Y.; et al. Ultrashort carbon nanotubes that Fluoresce brightly in the near-infrared. ACS Nano 2018, 12, 6059–6065. [Google Scholar] [CrossRef]
- Godin, A.G.; Setaro, A.; Gandil, M.; Haag, R.; Adeli, M.; Reich, S.; Cognet, L. Photoswitchable single-walled carbon nanotubes for super-resolution microscopy in the near-infrared. Sci. Adv. 2019, 5, eaax1166. [Google Scholar] [CrossRef] [Green Version]
- Danné, N.; Godin, A.G.; Gao, Z.; Varela, J.A.; Groc, L.; Lounis, B.; Cognet, L. Comparative analysis of photoluminescence and upconversion emission from individual carbon nanotubes for bioimaging applications. ACS Photonics 2018, 5, 359–364. [Google Scholar] [CrossRef]
- Lyu, M.; Meany, B.; Yang, J.; Li, Y.; Zheng, M. Toward complete resolution of DNA/carbon nanotube hybrids by aqueous two-phase systems. J. Am. Chem. Soc. 2019, 141, 20177–20186. [Google Scholar] [CrossRef]
- Li, H.; Gordeev, G.; Garrity, O.; Reich, S.; Flavel, B.S. Separation of small-diameter single-walled carbon nanotubes in one to three steps with aqueous two-phase extraction. ACS Nano 2019, 13, 2567–2578. [Google Scholar] [CrossRef]
- Wei, L.; Flavel, B.S.; Li, W.; Krupke, R.; Chen, Y. Exploring the upper limit of single-walled carbon nanotube purity by multiple-cycle aqueous two-phase separation. Nanoscale 2017, 9, 11640–11646. [Google Scholar] [CrossRef] [PubMed]
- Ao, G.; Khripin, C.Y.; Zheng, M. DNA-Controlled partition of carbon nanotubes in polymer aqueous two-phase systems. J. Am. Chem. Soc. 2014, 136, 10383–10392. [Google Scholar] [CrossRef]
- Fagan, J.A.; Hároz, E.H.; Ihly, R.; Gui, H.; Blackburn, J.L.; Simpson, J.R.; Lam, S.; Hight Walker, A.R.; Doorn, S.K.; Zheng, M. Isolation of >1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction. ACS Nano 2015, 9, 5377–5390. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Mukadam, Z.; Amoroso, G.; Freeley, M.; Palma, M. Directed assembly of multiplexed single chirality carbon nanotube devices. J. Appl. Phys. 2021, 129, 24305. [Google Scholar] [CrossRef]
- Tu, X.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250–253. [Google Scholar] [CrossRef] [PubMed]
- Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 1998, 67, 509–544. [Google Scholar] [CrossRef]
- Craggs, T.D. Green fluorescent protein: Structure, folding and chromophore maturation. Chem. Soc. Rev. 2009, 38, 2865–2875. [Google Scholar] [CrossRef] [PubMed]
- Pédelacq, J.-D.; Cabantous, S.; Tran, T.; Terwilliger, T.C.; Waldo, G.S. Engineering and characterization of a superfolder green fluorescent protein. Nat. Biotechnol. 2006, 24, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Sletten, E.M.; Bertozzi, C.R. From Mechanism to Mouse: A Tale of Two Bioorthogonal Reactions. Acc. Chem. Res. 2011, 44, 666–676. [Google Scholar] [CrossRef] [PubMed]
- Reddington, S.C.; Tippmann, E.M.; Jones, D.D. Residue choice defines efficiency and influence of bioorthogonal protein modification via genetically encoded strain promoted click chemistry. Chem. Commun. 2012, 48, 8419–8421. [Google Scholar] [CrossRef] [PubMed]
- Worthy, H.L.; Auhim, H.S.; Jamieson, W.D.; Pope, J.R.; Wall, A.; Batchelor, R.; Johnson, R.L.; Watkins, D.W.; Rizkallah, P.; Castell, O.K.; et al. Positive functional synergy of structurally integrated artificial protein dimers assembled by click chemistry. Commun. Chem. 2019, 2, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Marth, G.; Hartley, A.M.; Reddington, S.C.; Sargisson, L.L.; Parcollet, M.; Dunn, K.E.; Jones, D.D.; Stulz, E. Precision templated bottom-up multiprotein nanoassembly through defined click chemistry linkage to DNA. ACS Nano 2017, 11, 5003–5010. [Google Scholar] [CrossRef] [PubMed]
- Attanzio, A.; Sapelkin, A.; Gesuele, F.; van der Zande, A.; Gillin, W.P.; Zheng, M.; Palma, M. Carbon nanotube-quantum dot nanohybrids: Coupling with single-particle control in aqueous solution. Small 2017, 13, 1603042. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zu, Y.; Fu, Y.; Zhang, Z.; Meng, R. Assembling and imaging of his-tag green fluorescent protein on mica surfaces studied by atomic force microscopy and fluorescence microscopy. Microsc. Res. Tech. 2008, 71, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Pinals, R.L.; Yang, D.; Rosenberg, D.J.; Chaudhary, T.; Crothers, A.R.; Iavarone, A.T.; Hammel, M.; Landry, M.P. Quantitative protein corona composition and dynamics on carbon nanotubes in biological environments. Angew. Chemie Int. Ed. 2020, 59, 23668–23677. [Google Scholar] [CrossRef] [PubMed]
- Pinals, R.L.; Yang, D.; Lui, A.; Cao, W.; Landry, M.P. Corona Exchange dynamics on carbon nanotubes by multiplexed fluorescence monitoring. J. Am. Chem. Soc. 2020, 142, 1254–1264. [Google Scholar] [CrossRef]
- Shannahan, J.H.; Brown, J.M.; Chen, R.; Ke, P.C.; Lai, X.; Mitra, S.; Witzmann, F.A. Comparison of nanotube–protein corona composition in cell culture media. Small 2013, 9, 2171–2181. [Google Scholar] [CrossRef]
- Pinals, R.L.; Ledesma, F.; Yang, D.; Navarro, N.; Jeong, S.; Pak, J.E.; Kuo, L.; Chuang, Y.-C.; Cheng, Y.-W.; Sun, H.-Y.; et al. Rapid SARS-CoV-2 Spike protein detection by carbon nanotube-based near-infrared nanosensors. Nano Lett. 2021, 21, 2272–2280. [Google Scholar] [CrossRef] [PubMed]
- Landry, M.P.; Ando, H.; Chen, A.Y.; Cao, J.; Kottadiel, V.I.; Chio, L.; Yang, D.; Dong, J.; Lu, T.K.; Strano, M.S. Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. Nat. Nanotechnol. 2017, 12, 368–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Oligo Name | Sequence |
---|---|
(1) | 5′-Amine-CCTGAGCCTGTAGTTGACCG-3′ |
(2) | 5′-Azide-CGGTCAACTACAGGCTCAGG-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Freeley, M.; Gwyther, R.E.A.; Jones, D.D.; Palma, M. DNA-Directed Assembly of Carbon Nanotube–Protein Hybrids. Biomolecules 2021, 11, 955. https://doi.org/10.3390/biom11070955
Freeley M, Gwyther REA, Jones DD, Palma M. DNA-Directed Assembly of Carbon Nanotube–Protein Hybrids. Biomolecules. 2021; 11(7):955. https://doi.org/10.3390/biom11070955
Chicago/Turabian StyleFreeley, Mark, Rebecca E. A. Gwyther, D. Dafydd Jones, and Matteo Palma. 2021. "DNA-Directed Assembly of Carbon Nanotube–Protein Hybrids" Biomolecules 11, no. 7: 955. https://doi.org/10.3390/biom11070955
APA StyleFreeley, M., Gwyther, R. E. A., Jones, D. D., & Palma, M. (2021). DNA-Directed Assembly of Carbon Nanotube–Protein Hybrids. Biomolecules, 11(7), 955. https://doi.org/10.3390/biom11070955