Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies
Abstract
:1. Historical Perspective of Vaccine Development
2. Key Aspects in Vaccine Design
2.1. The Immune System and the Rationale of Vaccination
2.2. Route of Administration
3. New Strategies for Vaccine Development
3.1. Pathogen-Based Vaccines
3.2. Viral-Vector-Based Vaccines
3.3. Nucleic Acid–Based Vaccines
3.4. Protein-Based Vaccines
4. Nanotechnology Applied to Subunit Vaccines
4.1. VLPs and Small Subviral Particles
4.2. Ferritin Cages
4.3. Vault Particles
4.4. Encapsulins
4.5. In Silico Designed Nanoparticles
5. Traditional Platforms for Protein Vaccine Manufacturing
5.1. Bacteria (E. coli)
5.2. Yeast
5.3. Insect Cells
5.4. Mammalian Cells
6. Alternative Platforms for Protein Vaccine Manufacturing
6.1. Non–E. coli Bacterial Systems
6.2. New Approaches in Yeast Platform
6.3. Transgenic Animals
6.4. Insects
6.5. Plant-Based Systems
6.6. Microalgae
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Needham, J. China and the origins of immunology. East. Horiz. 1980, 19, 6–12. [Google Scholar] [PubMed]
- Jenner, E. An Inquiry into the Causes and Effects of the Variole Vaccinae, a Disease Discovered in Some of the Western Counties of England, Particularly Gloucestershire and Known by the Name of the Cow-Pox; Sampson Low: London, UK, 1798. [Google Scholar]
- Bartlett, B.L.; Pellicane, A.J.; Tyring, S.K. Vaccine Immunology. Dermatol. Ther. 2009, 22, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Pasteur, L. De l’attenuation du virus du choléra des poules. CR Acad. Sci. Paris 1880, 91, 673–680. [Google Scholar]
- Pasteur, L. Méthode pour prévenir la rage après morsure. CR Acad. Sci. Paris 1885, 101, 765–772. [Google Scholar]
- D’Amelio, E.; Salemi, S.; D’Amelio, R. Anti-Infectious Human Vaccination in Historical Perspective. Int. Rev. Immunol. 2016, 35, 260–290. [Google Scholar] [CrossRef] [PubMed]
- De Gregorio, E.; Rappuoli, R. From empiricism to rational design: A personal perspective of the evolution of vaccine development. Nat. Rev. Immunol. 2014, 14, 505–514. [Google Scholar] [CrossRef]
- Karch, C.P.; Burkhard, P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem. Pharmacol. 2016, 120, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Berg, P.; Mertz, J.E. Personal reflections on the origins and emergence of recombinant DNA technology. Genetics 2010, 184, 9–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahl-Hansen, E.; Siebke, J.C.; Frøland, S.S.; Degré, M. Immunogenicity of yeast-derived hepatitis B vaccine from two different producers. Epidemiol. Infect. 1990, 104, 143–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Available online: https:/www.who.int/news-room/facts-in-pictures/detail/immunization (accessed on 15 May 2021).
- Ryan, M.P.; Walsh, G. Veterinary-based biopharmaceuticals. Trends Biotechnol. 2012, 30, 615–620. [Google Scholar] [CrossRef]
- Capps, B.; Lederman, Z. One Health, Vaccines and Ebola: The Opportunities for Shared Benefits. J. Agric. Environ. Ethics 2015, 28, 1011–1032. [Google Scholar] [CrossRef] [PubMed]
- Jiskoot, W.; Kersten, G.F.A.; Mastrobattista, E.; Slütter, B. Vaccines. In Pharmaceutical Biotechnology; Crommelin, D.J.A., Sindelar, R.D., Meibohm, B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 14, pp. 281–304. ISBN 978-3-030-00709-6. [Google Scholar]
- Siegrist, C.-A. Vaccine immunology. In Vaccines, 6th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2013; pp. 14–32. ISBN 9781455700905. [Google Scholar]
- Geeraedts, F.; Goutagny, N.; Hornung, V.; Severa, M.; De Haan, A.; Pool, J.; Wilschut, J.; Fitzgerald, K.A.; Huckriede, A. Superior immunogenicity of inactivated whole virus h5n1 influenza vaccine is primarily controlled by toll-like receptor signalling. PLoS Pathog. 2008, 4, e1000138. [Google Scholar] [CrossRef] [PubMed]
- Moser, M.; Leo, O. Key concepts in immunology. Vaccine 2010, 28, C2–C13. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Thorson, L.; Stokes, R.W.; Santosuosso, M.; Huygen, K.; Zganiacz, A.; Hitt, M.; Xing, Z. Single Mucosal, but Not Parenteral, Immunization with Recombinant Adenoviral-Based Vaccine Provides Potent Protection from Pulmonary Tuberculosis. J. Immunol. 2004, 173, 6357–6365. [Google Scholar] [CrossRef]
- Lycke, N.; Bemark, M. Mucosal adjuvants and long-term memory development with special focus on CTA1-DD and other ADP-ribosylating toxins. Mucosal Immunol. 2010, 3, 556–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallis, J.; Shenton, D.P.; Carlisle, R.C. Novel approaches for the design, delivery and administration of vaccine technologies. Clin. Exp. Immunol. 2019, 196, 189–204. [Google Scholar] [CrossRef] [Green Version]
- Azizi, A.; Kumar, A.; Diaz-Mitoma, F.; Mestecky, J. Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog. 2010, 6, e100114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newsted, D.; Fallahi, F.; Golshani, A.; Azizi, A. Advances and challenges in mucosal adjuvant technology. Vaccine 2015, 33, 2399–2405. [Google Scholar] [CrossRef]
- Mitragotri, S.; Burke, P.A.; Langer, R. Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nat. Rev. Drug Discov. 2014, 13, 655–672. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Liu, H.; Zhang, X.; Qian, F. Intranasal and oral vaccination with protein-based antigens: Advantages, challenges and formulation strategies. Protein Cell 2015, 6, 480–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czerkinsky, C.; Holmgren, J. Vaccines against enteric infections for the developing world. Philos. Trans. R. Soc. B Biol. Sci. 2015, 370, 20150142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nascimento, I.P.; Leite, L.C.C. Recombinant vaccines and the development of new vaccine strategies. Brazilian J. Med. Biol. Res. 2012, 45, 1102–1111. [Google Scholar] [CrossRef] [Green Version]
- Rosales-Mendoza, S.; Angulo, C.; Meza, B. Food-grade organisms as vaccine biofactories and oral delivery vehicles. Trends Biotechnol. 2016, 34, 124–136. [Google Scholar] [CrossRef] [PubMed]
- Velasquez, L.S.; Shira, S.; Berta, A.N.; Kilbourne, J.; Babu, M.; Tizard, I.; Ni, Y.; Arntzen, C.J.; Herbst-kralovetz, M.M. Intranasal delivery of Norwalk virus-like particles formulated in an in-situ gelling, dry powder vaccine. Vaccine 2011, 29, 5221–5231. [Google Scholar] [CrossRef] [Green Version]
- Garg, N.K.; Mangal, S.; Khambete, H.; Sharma, P.K.; Tyagi, R.K. Mucosal Delivery of Vaccines: Role of Mucoadhesive/Biodegradable Polymers. Recent Pat. Drug Deliv. Formul. 2010, 4, 114–128. [Google Scholar] [CrossRef]
- Kim, T.; Kim, S.H.; Lee, M.-G. The Origin of Skin Dendritic Cell Network and Its Role in Psoriasis. Int. J. Mol. Sci. 2018, 19, 42. [Google Scholar] [CrossRef] [Green Version]
- Mikszta, J.A.; Laurent, P.E. Cutaneous delivery of prophylactic and therapeutic vaccines: Historical perspective and future outlook. Expert Rev. Vaccines 2008, 7, 1329–1339. [Google Scholar] [CrossRef]
- Marshall, S.; Sahm, L.J.; Moore, A.C.; Marshall, S.; Sahm, L.J.; Moore, A.C. The success of microneedle-mediated vaccine delivery into skin. Hum. Vaccin. Immunother. 2016, 12, 2975–2983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenney, R.T.; Frech, S.A.; Muenz, L.R.; Villar, C.P.; Glenn, G.M. Dose Sparing with Intradermal Injection of Influenza Vaccine. N. Engl. J. Med. 2004, 351, 2295–2301. [Google Scholar] [CrossRef] [PubMed]
- Criscuolo, E.; Caputo, V.; Diotti, R.A.; Sautto, G.A.; Kirchenbaum, G.A.; Clementi, N. Alternative methods of vaccine delivery: An overview of edible and intradermal vaccines. J. Immunol. Res. 2019, 8303648. [Google Scholar] [CrossRef] [Green Version]
- Li, G.M.; Chiu, C.; Wrammert, J.; McCausland, M.; Andrews, S.F.; Zheng, N.Y.; Lee, J.H.; Huang, M.; Qu, X.; Edupuganti, S.; et al. Pandemic H1N1 influenza vaccine induces a recall response in humans that favors broadly cross-reactive memory B cells. Proc. Natl. Acad. Sci. USA 2012, 109, 9047–9052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.W.; Cheng, T.J.R.; Huang, Y.; Jan, J.T.; Ma, S.H.; Yu, A.L.; Wong, C.H.; Ho, D.D. A consensus—Hemagglutinin-based DNA vaccine that protects mice against divergent H5N1 influenza viruses. Proc. Natl. Acad. Sci. USA 2008, 105, 13538–13543. [Google Scholar] [CrossRef] [Green Version]
- Perelberg, A.; Ronen, A.; Hutoran, M.; Smith, Y.; Kotler, M. Protection of cultured Cyprinus carpio against a lethal viral disease by an attenuated virus vaccine. Vaccine 2005, 23, 3396–3403. [Google Scholar] [CrossRef] [PubMed]
- Francis, M.J. Recent Advances in Vaccine Technologies. Vet. Clin. North Am. Small Anim. Pract. 2018, 48, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Jiang, X.; Qu, M.; Aninwene, G.E.; Jucaud, V.; Moon, J.J.; Gu, Z.; Sun, W.; Khademhosseini, A. Engineering antiviral vaccines. ACS Nano 2020, 14, 12370–12389. [Google Scholar] [CrossRef]
- Ura, T.; Yamashita, A.; Mizuki, N.; Okuda, K.; Shimada, M. New vaccine production platforms used in developing SARS-CoV-2 vaccine candidates. Vaccine 2021, 39, 197–201. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, S.; Padhy, A.; Para, P.A.; Pandey, A.K.; Praveen, P.K.; Wakchaure, R.; Sahu, A.R. DIVA Vaccines: A Brief Review on its Novel Facets for the Eradication of Infections of Livestock and Poultry. World J. Clin. Pharmacol. Microbiol. Toxicol. 2015, 1, 22–23. [Google Scholar]
- Uddowla, S.; Hollister, J.; Pacheco, J.M.; Rodriguez, L.L.; Rieder, E. A Safe Foot-and-Mouth Disease Vaccine Platform with Two Negative Markers for Differentiating Infected from Vaccinated Animals. J. Virol. 2012, 86, 11675–11685. [Google Scholar] [CrossRef] [Green Version]
- Steel, J.; Lowen, A.C.; Pena, L.; Angel, M.; Solórzano, A.; Albrecht, R.; Perez, D.R.; García-Sastre, A.; Palese, P. Live Attenuated Influenza Viruses Containing NS1 Truncations as Vaccine Candidates against H5N1 Highly Pathogenic Avian Influenza. J. Virol. 2009, 83, 1742–1753. [Google Scholar] [CrossRef] [Green Version]
- Charlton Hume, H.K.; Lua, L.H.L. Platform technologies for modern vaccine manufacturing. Vaccine 2017, 35, 4480–4485. [Google Scholar] [CrossRef]
- Vela Ramirez, J.E.; Sharpe, L.A.; Peppas, N.A. Current state and challenges in developing oral vaccines. Adv. Drug Deliv. Rev. 2017, 114, 116–131. [Google Scholar] [CrossRef] [PubMed]
- Lauring, A.S.; Jones, J.O.; Andino, R. Rationalizing the development of live attenuated virus vaccines. Nat. Biotechnol. 2010, 28, 573–579. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, S.; Hjulström, M.; Holmgren, J.; Svennerholm, A.M. Protection against experimental Helicobacter pylori infection after immunization with inactivated H. pylori whole-cell vaccines. Infect. Immun. 2002, 70, 6383–6388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summerton, N.A.; Welch, R.W.; Bondoc, L.; Yang, H.H.; Pleune, B.; Ramachandran, N.; Harris, A.M.; Bland, D.; Jackson, W.J.; Park, S.; et al. Toward the development of a stable, freeze-dried formulation of Helicobacter pylori killed whole cell vaccine adjuvanted with a novel mutant of Escherichia coli heat-labile toxin. Vaccine 2010, 28, 1404–1411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rappuoli, R.; De Gregorio, E.; Costantino, P.; Smith, D.; Anderson, P.; Anderson, P.; Smith, D. On the mechanisms of conjugate vaccines. Proc. Natl. Acad. Sci. USA 2019, 116, 14–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kushnir, N.; Streatfield, S.J.; Yusibov, V. Virus-like particles as a highly efficient vaccine platform: Diversity of targets and production systems and advances in clinical development. Vaccine 2012, 31, 58–83. [Google Scholar] [CrossRef] [PubMed]
- Herzog, C.; Hartmann, K.; Künzi, V.; Kürsteiner, O.; Mischler, R.; Lazar, H.; Glück, R. Eleven years of Inflexal® V-a virosomal adjuvanted influenza vaccine. Vaccine 2009, 27, 4381–4387. [Google Scholar] [CrossRef] [PubMed]
- Bovier, P.A. Epaxal®: A virosomal vaccine to prevent hepatitis A infection. Expert Rev. Vaccines 2008, 7, 1141–1150. [Google Scholar] [CrossRef] [PubMed]
- Kaurav, M.; Madan, J.; Sudheesh, M.S.; Pandey, R.S. Combined adjuvant-delivery system for new generation vaccine antigens: Alliance has its own advantage. Artif. Cells Nanomed. Biotechnol. 2018, 46, S818–S831. [Google Scholar] [CrossRef] [PubMed]
- Micoli, F.; Maclennan, C.A. Outer membrane vesicle vaccines. Semin. Immunol. 2020, 50, 101433. [Google Scholar] [CrossRef]
- Ura, T.; Okuda, K.; Shimada, M. Developments in viral vector-based vaccines. Vaccines 2014, 2, 624–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert-Guroff, M. Replicating and non-replicating viral vectors for vaccine development. Curr. Opin. Biotechnol. 2007, 18, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Ewer, K.; Sebastian, S.; Spencer, A.J.; Gilbert, S.; Hill, A.V.S.; Lambe, T. Chimpanzee adenoviral vectors as vaccines for outbreak pathogens. Hum. Vaccines Immunother. 2017, 13, 3020–3032. [Google Scholar] [CrossRef] [PubMed]
- Geisbert, T.W.; Bailey, M.; Hensley, L.; Asiedu, C.; Geisbert, J.; Stanley, D.; Honko, A.; Johnson, J.; Mulangu, S.; Pau, M.G.; et al. Recombinant Adenovirus Serotype 26 (Ad26) and Ad35 Vaccine Vectors Bypass Immunity to Ad5 and Protect Nonhuman Primates against Ebolavirus Challenge. J. Virol. 2011, 85, 4222–4233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dicks, M.D.J.; Spencer, A.J.; Edwards, N.J.; Wadell, G.; Bojang, K.; Gilbert, S.C.; Hill, A.V.S.; Cottingham, M.G. A novel chimpanzee adenovirus vector with low human seroprevalence: Improved systems for vector derivation and comparative immunogenicity. PLoS ONE 2012, 7, e40385. [Google Scholar] [CrossRef] [Green Version]
- Weli, S.C.; Tryland, M. Avipoxviruses: Infection biology and their use as vaccine vectors. Virol. J. 2011, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Poulet, H.; Minke, J.; Pardo, M.C.; Juillard, V.; Nordgren, B.; Audonnet, J.C. Development and registration of recombinant veterinary vaccines. The example of the canarypox vector platform. Vaccine 2007, 25, 5606–5612. [Google Scholar] [CrossRef]
- Sánchez-Sampedro, L.; Perdiguero, B.; Mejías-Pérez, E.; Garcías-Arriaza, J.; Di Pilato, M.; Esteban, M. The Evolution of Poxvirus Vaccines. Viruses 2015, 7, 1726–1803. [Google Scholar] [CrossRef] [Green Version]
- Gary, E.N.; Weiner, D.B. DNA vaccines: Prime time is now. Curr. Opin. Immunol. 2020, 65, 21–27. [Google Scholar] [CrossRef]
- Amanat, F.; Krammer, F. SARS-CoV-2 Vaccines: Status Report. Immunity 2020, 52, 583–589. [Google Scholar] [CrossRef]
- Pierini, S.; Perales-linares, R.; Uribe-herranz, M.; Pol, J.G.; Zitvogel, L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology 2017, 6, e1398878. [Google Scholar] [CrossRef] [PubMed]
- Lu, S. Immunogenicity of DNA vaccines in humans: It takes two to tango. Hum. Vaccines 2008, 4, 449–452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suschak, J.J.; Williams, J.A.; Schmaljohn, C.S. Advancements in DNA vaccine vectors, non-mechanical delivery methods, and molecular adjuvants to increase immunogenicity. Hum. Vaccines Immunother. 2017, 13, 2837–2848. [Google Scholar] [CrossRef] [Green Version]
- Bai, H.; Lester, G.M.S.; Petishnok, L.C.; Dean, D.A. Cytoplasmic transport and nuclear import of plasmid DNA. Biosci. Rep. 2017, 37, BSR20160616. [Google Scholar] [CrossRef] [PubMed]
- Ada, G. Vaccines and vaccination. N. Engl. J. Med. Rev. 2001, 345, 1042–1053. [Google Scholar] [CrossRef] [PubMed]
- Faurez, F.; Dory, D.; Le Moigne, V.; Gravier, R.; Jestin, A. Biosafety of DNA vaccines: New generation of DNA vectors and current knowledge on the fate of plasmids after injection. Vaccine 2010, 28, 3888–3895. [Google Scholar] [CrossRef] [Green Version]
- Tombácz, I.; Weissman, D.; Pardi, N. Vaccination with Messenger RNA: A Promising Alternativeto DNA Vaccination. Methods Mol. Biol. 2021, 2197, 13–31. [Google Scholar] [CrossRef]
- Let’s talk about lipid nanoparticles. Nat. Rev. Mater. 2021, 6. [CrossRef]
- Schoenmaker, L.; Witzigmann, D.; Kulkarni, J.A.; Verbeke, R.; Kersten, G.; Jiskoot, W.; Crommelin, D.J.A. mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability. Int. J. Pharm. 2021, 601, 120586. [Google Scholar] [CrossRef]
- Evers, M.J.W.; Kulkarni, J.A.; van der Meel, R.; Cullis, P.R.; Vader, P.; Schiffelers, R.M. State-of-the-Art Design and Rapid-Mixing Production Techniques of Lipid Nanoparticles for Nucleic Acid Delivery. Small Methods 2018, 2, 1700375. [Google Scholar] [CrossRef]
- Reichmuth, A.M.; Oberli, M.A.; Jeklenec, A.; Langer, R.; Blankschtein, D. mRNA vaccine delivery using lipid nanoparticles. Ther. Deliv. 2016, 7, 319–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brader, M.L.; Williams, S.J.; Banks, J.M.; Hui, W.H.; Zhou, Z.H.; Jin, L. Encapsulation state of messenger RNA inside lipid nanoparticles. Biophys. J. 2021, 1–5. [Google Scholar] [CrossRef]
- Kulkarni, J.A.; Darjuan, M.M.; Mercer, J.E.; Chen, S.; Van Der Meel, R.; Thewalt, J.L.; Tam, Y.Y.C.; Cullis, P.R. On the Formation and Morphology of Lipid Nanoparticles Containing Ionizable Cationic Lipids and siRNA. ACS Nano 2018, 12, 4787–4795. [Google Scholar] [CrossRef] [Green Version]
- Arteta, M.Y.; Kjellman, T.; Bartesaghi, S.; Wallin, S.; Wu, X.; Kvist, A.J.; Dabkowska, A.; Székely, N.; Radulescu, A.; Bergenholtz, J.; et al. Successful reprogramming of cellular protein production through mRNA delivered by functionalized lipid nanoparticles. Proc. Natl. Acad. Sci. USA 2018, 115, E3351–E3360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aldosari, B.N.; Alfagih, I.M.; Almurshedi, A.S. Lipid Nanoparticles as Delivery Systems for RNA-Based Vaccines. Pharmaceutics 2021, 13, 206. [Google Scholar] [CrossRef]
- Presnyak, V.; Alhusaini, N.; Chen, Y.H.; Martin, S.; Morris, N.; Kline, N.; Olson, S.; Weinberg, D.; Baker, K.E.; Graveley, B.R.; et al. Codon optimality is a major determinant of mRNA stability. Cell 2015, 160, 1111–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thess, A.; Grund, S.; Mui, B.L.; Hope, M.J.; Baumhof, P.; Fotin-Mleczek, M.; Schlake, T. Sequence-engineered mRNA Without Chemical Nucleoside Modifications Enables an Effective Protein Therapy in Large Animals. Mol. Ther. 2015, 23, 1456–1464. [Google Scholar] [CrossRef] [Green Version]
- Mauger, D.M.; Joseph Cabral, B.; Presnyak, V.; Su, S.V.; Reid, D.W.; Goodman, B.; Link, K.; Khatwani, N.; Reynders, J.; Moore, M.J.; et al. mRNA structure regulates protein expression through changes in functional half-life. Proc. Natl. Acad. Sci. USA 2019, 116, 24075–24083. [Google Scholar] [CrossRef] [Green Version]
- Tan, M.; Jiang, X. Recent advancements in combination subunit vaccine development. Hum. Vaccines Immunother. 2017, 13, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Bobbala, S.; Hook, S. Is There an Optimal Formulation and Delivery Strategy for Subunit Vaccines? Pharm. Res. 2016, 33, 2078–2097. [Google Scholar] [CrossRef] [PubMed]
- Kapsenberg, M.L. Dendritic-cell control of pathogen-driven T-cell polarization. Nat. Rev. Immunol. 2003, 3, 984–993. [Google Scholar] [CrossRef]
- Hos, B.J.; Tondini, E.; van Kasteren, S.I.; Ossendorp, F. Approaches to improve chemically defined synthetic peptide vaccines. Front. Immunol. 2018, 9, 884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, H.G.; Kent, S.J.; Wheatley, A.K. Immunological basis for enhanced immunity of nanoparticle vaccines. Expert Rev. Vaccines 2019, 18, 269–280. [Google Scholar] [CrossRef] [PubMed]
- García, A.; De Sanctis, J.B. An overview of adjuvant formulations and delivery systems. Apmis 2014, 122, 257–267. [Google Scholar] [CrossRef] [PubMed]
- Li, S.W.; Zhang, J.; Li, Y.M.; Ou, S.H.; Huang, G.Y.; He, Z.Q.; Ge, S.X.; Xian, Y.L.; Pang, S.Q.; Ng, M.H.; et al. A bacterially expressed particulate hepatitis E vaccine: Antigenicity, immunogenicity and protectivity on primates. Vaccine 2005, 23, 2893–2901. [Google Scholar] [CrossRef] [PubMed]
- Zhu, F.C.; Zhang, J.; Zhang, X.F.; Zhou, C.; Wang, Z.Z.; Huang, S.J.; Wang, H.; Yang, C.L.; Jiang, H.M.; Cai, J.P.; et al. Efficacy and safety of a recombinant hepatitis e vaccine in healthy adults: A large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet 2010, 376, 895–902. [Google Scholar] [CrossRef]
- Venters, C.L.; Graham, W.J.; Cassidy, W.M.; Denham, S. Recombinant-HB: Perspectives past, present and future. Expert Rev. Vaccines 2004, 3, 119–129. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/recombivax-hb (accessed on 15 May 2021).
- André FE, S.A. Summary of clinical findings on Engerix-B, a genetically engineered yeast derived hepatitis B vaccine. Postgr. Med. J. 1987, 63 (Suppl. S2), 169–177. [Google Scholar]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/engerix-b (accessed on 15 May 2021).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/hbvaxpro (accessed on 15 May 2021).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/fendrix (accessed on 15 May 2021).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/heplisav-b (accessed on 15 May 2021).
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/heplisav-b (accessed on 15 May 2021).
- Buckland, B.C. The process development challenge for a new vaccine. Nat. Med. 2005, 11, S16–S19. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/gardasil (accessed on 1 June 2021).
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/gardasil (accessed on 1 June 2021).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/gardasil-9 (accessed on 1 June 2021).
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/gardasil-9 (accessed on 1 June 2021).
- Rutgers, T.; Gordon, D.; Gathoye, A.M.; Hollingdale, M.; Hockmeyer, W.; Rosenberg, M.; Wilde, M. De Hepatitis B Surface Antigen as Carrier Matrix for the Repetitive Epitope of the Circumsporozoite Protein of Plasmodium Falciparum. Nat. Biotechnol. 1988, 6, 1065–1070. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/mosquirix-h-w-2300 (accessed on 1 June 2021).
- Cohen, J.; Nussenzweig, V.; Nussenzweig, R.; Vekemans, J.; Leach, A. From the circumsporozoite protein to the RTS, S/AS candidate vaccine. Hum. Vaccin. 2010, 6, 90–96. [Google Scholar] [CrossRef] [Green Version]
- Kirnbauer, R.; Booy, F.; Cheng, N.; Lowy, D.R.; Schiller, J.T. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic. Proc. Natl. Acad. Sci. USA 1992, 89, 12180–12184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/cervarix (accessed on 1 June 2021).
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/cervarix (accessed on 1 June 2021).
- Cox, M.M.J.; Hollister, J.R. FluBlok, a next generation influenza vaccine manufactured in insect cells. Biologicals 2009, 37, 182–189. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/flublok (accessed on 1 June 2021).
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/flublok-quadrivalent (accessed on 1 June 2021).
- James, S.F.; Chahine, E.B.; Sucher, A.J.; Hanna, C. Shingrix: The New Adjuvanted Recombinant Herpes Zoster Vaccine. Ann. Pharmacother. 2018, 52, 673–680. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/vaccines-blood-biologics/vaccines/shingrix (accessed on 1 June 2021).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/shingrix (accessed on 1 June 2021).
- Marciani, D.J.; Kensil, C.R.; Beltz, G.A.; Hung, C.H.; Cronier, J.; Aubert, A. Genetically-engineered subunit vaccine against feline leukaemia virus: Protective immune response in cats. Vaccine 1991, 9, 89–96. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/leucogen (accessed on 1 June 2021).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/letifend (accessed on 1 June 2021).
- Dong, X.N.; Chen, Y.H. Marker vaccine strategies and candidate CSFV marker vaccines. Vaccine 2007, 25, 205–230. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/porcilis-pesti (accessed on 1 June 2021).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/advasure (accessed on 1 June 2021).
- Fachinger, V.; Bischoff, R.; Jedidia, S.B.; Saalmüller, A.; Elbers, K. The effect of vaccination against porcine circovirus type 2 in pigs suffering from porcine respiratory disease complex. Vaccine 2008, 26, 1488–1499. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/ingelvac-circoflex (accessed on 1 June 2021).
- Animal and Plant Health Inspection Service, U.S. Department of Agriculture. Available online: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/veterinary-biologics/product-summaries/vet-label-data/daf5519a-cf42-4c20-bae7-b49284ee281a (accessed on 1 June 2021).
- Animal and Plant Health Inspection Service, U.S. Department of Agriculture. Available online: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/veterinary-biologics/product-summaries/vet-label-data/2cfb09f0-0685-4e84-8b43-edded472c5e2 (accessed on 1 June 2021).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/porcilis-pcv (accessed on 1 June 2021).
- Animal and Plant Health Inspection Service, U.S. Department of Agriculture. Available online: https://www.aphis.usda.gov/aphis/ourfocus/animalhealth/veterinary-biologics/product-summaries/vet-label-data/2f787143-d90d-4054-be26-b5565e31d2b3 (accessed on 1 June 2021).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/veterinary/EPAR/reprocyc-parvoflex (accessed on 1 June 2021).
- Kanekiyo, M.; Wei, C.J.; Yassine, H.M.; McTamney, P.M.; Boyington, J.C.; Whittle, J.R.R.; Rao, S.S.; Kong, W.P.; Wang, L.; Nabel, G.J. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature 2013, 499, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.; Wilson, J.T.; Patilea, G.I.; Kern, H.B.; Convertine, A.J.; Stayton, P.S. Neutral Polymer Micelle Carriers with pH-Responsive, Endosome-Releasing Activity Modulate Antigen Trafficking to Enhance CD8 T-Cell Responses. J. Control. Release 2014, 191, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Kang, S.; Ahn, S.; Lee, J.; Kim, J.Y.; Choi, M.; Gujrati, V.; Kim, H.; Kim, J.; Shin, E.C.; Jon, S. Effects of gold nanoparticle-based vaccine size on lymph node delivery and cytotoxic T-lymphocyte responses. J. Control. Release 2017, 256, 56–67. [Google Scholar] [CrossRef]
- Rahimian, S.; Kleinovink, J.W.; Fransen, M.F.; Mezzanotte, L.; Gold, H.; Wisse, P.; Overkleeft, H.; Amidi, M.; Jiskoot, W.; Löwik, C.W.; et al. Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as model vaccine: Invivo tracking and evaluation of antigen-specific CD8+ T cell immune response. Biomaterials 2015, 37, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Baschong, W.; Hasler, L.; Häner, M.; Kistler, J.; Aebi, U. Repetitive versus monomeric antigen presentation: Direct visualization of antibody affinity and specificity. J. Struct. Biol. 2003, 143, 258–262. [Google Scholar] [CrossRef] [PubMed]
- Chackerian, B. Virus-like particles: Flexible platforms for vaccine development. Expert Rev. Vaccines 2007, 6, 381–390. [Google Scholar] [CrossRef]
- Grgacic, E.V.L.; Anderson, D.A. Virus-like particles: Passport to immune recognition. Methods 2006, 40, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Keller, S.A.; Bauer, M.; Manolova, V.; Muntwiler, S.; Saudan, P.; Bachmann, M.F. Cutting Edge: Limited Specialization of Dendritic Cell Subsets for MHC Class II-Associated Presentation of Viral Particles. J. Immunol. 2010, 184, 26–29. [Google Scholar] [CrossRef] [PubMed]
- Manolova, V.; Flace, A.; Bauer, M.; Schwarz, K.; Saudan, P.; Bachmann, M.F. Nanoparticles target distinct dendritic cell populations according to their size. Eur. J. Immunol. 2008, 38, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Lightfoote, P.M.; Rose, R.C.; Walsh, E.E. Antigenic presentation of heterologous epitopes engineered into the outer surface-exposed helix 4 loop region of human papillomavirus L1 capsomeres. Virol. J. 2009, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Sällberg, M.; Hughes, J.; Jones, J.; Phillips, T.R.; Milich, D.R. A malaria vaccine candidate based on a hepatitis B virus core platform. Intervirology 2002, 45, 350–361. [Google Scholar] [CrossRef]
- Shchelkunov, S.N.; Salyaev, R.K.; Pozdnyakov, S.G.; Rekoslavskaya, N.I.; Nesterov, A.E.; Ryzhova, T.S.; Sumtsova, V.M.; Pakova, N.V.; Mishutina, U.O.; Kopytina, T.V.; et al. Immunogenicity of a novel, bivalent, plant-based oral vaccine against hepatitis B and human immunodeficiency viruses. Biotechnol. Lett. 2006, 28, 959–967. [Google Scholar] [CrossRef]
- Ballou, W.R. The development of the RTS,S malaria vaccine candidate: Challenges and lessons. Parasite Immunol. 2009, 31, 492–500. [Google Scholar] [CrossRef]
- Roldão, A.; Silva, A.C.; Mellado, M.C.M.; Alves, P.; Carrondo, M. Viruses and Virus-Like Particles in Biotechnology: Fundamentals and Applications. Compr. Biotechnol. 2017, 633–656. [Google Scholar] [CrossRef]
- Lua, L.H.L.; Fan, Y.; Chang, C.; Connors, N.K.; Middelberg, A.P.J. Synthetic biology design to display an 18kDa rotavirus large antigen on a modular virus-like particle. Vaccine 2015, 33, 5937–5944. [Google Scholar] [CrossRef] [Green Version]
- Tekewe, A.; Fan, Y.; Tan, E.; Middelberg, A.P.J.; Lua, L.H.L. Integrated molecular and bioprocess engineering for bacterially produced immunogenic modular virus-like particle vaccine displaying 18 kDa rotavirus antigen. Biotechnol. Bioeng. 2017, 114, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Brune, K.D.; Leneghan, D.B.; Brian, I.J.; Ishizuka, A.S.; Bachmann, M.F.; Draper, S.J.; Biswas, S.; Howarth, M. Plug-and-Display: Decoration of Virus-Like Particles via isopeptide bonds for modular immunization. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thrane, S.; Janitzek, C.M.; Matondo, S.; Resende, M.; Gustavsson, T.; Jongh, W.A.; Clemmensen, S.; Roeffen, W.; Vegte-Bolmer, M.; Gemert, G.J.; et al. Bacterial superglue enables easy development of efficient virus-like particle based vaccines. J. Nanobiotechnology 2016, 14, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janitzek, C.M.; Matondo, S.; Thrane, S.; Nielsen, M.A.; Kavishe, R.; Mwakalinga, S.B.; Theander, T.G.; Salanti, A.; Sander, A.F. Bacterial superglue generates a full-length circumsporozoite protein virus-like particle vaccine capable of inducing high and durable antibody responses. Malar. J. 2016, 15, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyret, H.; Gehin, A.; Thuenemann, E.C.; Blond, D.; El Turabi, A.; Beales, L.; Clarke, D.; Gilbert, R.J.C.; Fry, E.E.; Stuart, D.I.; et al. Tandem fusion of hepatitis B core antigen allows assembly of virus-like particles in bacteria and plants with enhanced capacity to accommodate foreign proteins. PLoS ONE 2015, 10, e0120751. [Google Scholar] [CrossRef]
- He, D.; Marles-Wright, J. Ferritin family proteins and their use in bionanotechnology. New Biotechnol. 2015, 32, 651–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, D.M.; Artymiuk, P.J.; Yewdall, S.J.; Smith, J.M.; Livingstone, J.C.; Treffry, A.; Luzzago, A.; Levi, S.; Arosio, P.; Cesareni, G.; et al. Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature 1991, 349, 541–544. [Google Scholar] [CrossRef] [PubMed]
- Rome, L.H.; Kickhoefer, V.A. Development of the Vault Particle as a Platform Technology. ACS Nano 2013, 7, 889–902. [Google Scholar] [CrossRef]
- Kedersha, N.L.; Rome, L.H. Isolation and characterization of a novel ribonucleoprotein particle: Large structures contain a single species of small RNA. J. Cell Biol. 1986, 103, 699–709. [Google Scholar] [CrossRef] [Green Version]
- Gabashvili, A.N.; Chmelyuk, N.S.; Efremova, M.V.; Malinovskaya, J.A.; Semkina, A.S.; Abakumov, M.A. Encapsulins—Bacterial protein nanocompartments: Structure, properties, and application. Biomolecules 2020, 10, 966. [Google Scholar] [CrossRef] [PubMed]
- Kanekiyo, M.; Bu, W.; Gordon, M.; Graham, B.S.; Jeffrey, I.; Nabel, G.J.; Kanekiyo, M.; Bu, W.; Joyce, M.G.; Meng, G.; et al. Rational Design of an Epstein-Barr Virus Vaccine Targeting the Receptor-Binding Site. Cell 2015, 162, 1090–1100. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, P.J.M.; Antanasijevic, A.; Berndsen, Z.; Yasmeen, A.; Fiala, B.; Bijl, T.P.L.; Bontjer, I.; Bale, J.B.; Sheffler, W.; Allen, J.D.; et al. Enhancing and shaping the immunogenicity of native-like HIV-1 envelope trimers with a two-component protein nanoparticle. Nat. Commun. 2019, 10, 4272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcandalli, J.; Fiala, B.; Ols, S.; Perotti, M.; de van der Schueren, W.; Snijder, J.; Hodge, E.; Benhaim, M.; Ravichandran, R.; Carter, L.; et al. Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus. Cell 2019, 176, 1420–1431.e17. [Google Scholar] [CrossRef] [Green Version]
- Ueda, G.; Antanasijevic, A.; Fallas, J.A.; Sheffler, W.; Copps, J.; Ellis, D.; Hutchinson, G.B.; Moyer, A.; Yasmeen, A.; Tsybovsky, Y.; et al. Tailored design of protein nanoparticle scaffolds for multivalent presentation of viral glycoprotein antigens. eLife 2020, 9, e57659. [Google Scholar] [CrossRef]
- Castiñeiras, T.S.; Williams, S.G.; Hitchcock, A.G.; Smith, D.C.E. coli strain engineering for the production of advanced biopharmaceutical products. FEMS Microbiol. Lett. 2018, 365, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legastelois, I.; Buffin, S.; Peubez, I.; Mignon, C.; Sodoyer, R.; Werle, B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum. Vaccines Immunother. 2017, 13, 947–961. [Google Scholar] [CrossRef] [Green Version]
- Mahalik, S.; Sharma, A.K.; Mukherjee, K.J. Genome engineering for improved recombinant protein expression in Escherichia coli. Microb. Cell Fact. 2014, 13, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Mignon, C.; Sodoyer, R.; Werle, B. Antibiotic-free selection in biotherapeutics: Now and forever. Pathogens 2015, 4, 157–181. [Google Scholar] [CrossRef]
- Habibi, N.; Mohd Hashim, S.Z.; Norouzi, A.; Samian, M.R. A review of machine learning methods to predict the solubility of overexpressed recombinant proteins in Escherichia coli. BMC Bioinform. 2014, 15, 134. [Google Scholar] [CrossRef]
- Shabani, S.H.; Zakeri, S.; Mortazavi, Y.; Mehrizi, A.A. Immunological evaluation of two novel engineered Plasmodium vivax circumsporozoite proteins formulated with different human-compatible vaccine adjuvants in C57BL/6 mice. Med. Microbiol. Immunol. 2019, 208, 731–745. [Google Scholar] [CrossRef] [PubMed]
- Cino, J. High-yield protein production from Pichia pastoris yeast: A protocol for benchtop fermentation. Am. Biotechnol. Lab. 1999, 17, 10–13. [Google Scholar]
- Tomimoto, K.; Fujita, Y.; Iwaki, T.; Chiba, Y.; Jigami, Y.; Nakayama, K.I.; Nakajima, Y.; Abe, H. Protease-deficient saccharomyces cerevisiae strains for the synthesis of human-compatible glycoproteins. Biosci. Biotechnol. Biochem. 2013, 77, 2461–2466. [Google Scholar] [CrossRef] [Green Version]
- Han, M.; Yu, X. Enhanced expression of heterologous proteins in yeast cells via the modification of N-glycosylation sites. Bioengineered 2015, 6, 115–118. [Google Scholar] [CrossRef] [Green Version]
- Wildt, S.; Gerngross, T.U. The humanization of N-glycosylation pathways in yeast. Nat. Rev. Microbiol. 2005, 3, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Laurent, J.M.; Young, J.H.; Kachroo, A.H.; Marcotte, E.M. Efforts to make and apply humanized yeast. Brief. Funct. Genom. 2016, 15, 155–163. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Kuang, Y.; Li, H.; Liu, Y.; Hui, X.; Li, P.; Jiang, Z.; Zhou, Y.; Wang, Y.; Xu, A.; et al. Enhanced Production of Recombinant Secretory Proteins in Pichia pastoris by Optimizing Kex2 P1′ site. PLoS ONE 2013, 8, e75347. [Google Scholar] [CrossRef] [Green Version]
- Love, K.R.; Politano, T.J.; Panagiotou, V.; Jiang, B.; Stadheim, T.A.; Love, J.C. Systematic single-cell analysis of pichia pastoris reveals secretory capacity limits productivity. PLoS ONE 2012, 7, e37915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larsen, S.; Weaver, J.; de Sa Campos, K.; Bulahan, R.; Nguyen, J.; Grove, H.; Huang, A.; Low, L.; Tran, N.; Gomez, S.; et al. Mutant strains of Pichia pastoris with enhanced secretion of recombinant proteins. Biotechnol. Lett. 2013, 35, 1925–1935. [Google Scholar] [CrossRef] [Green Version]
- MacKay, P.; Pasek, M.; Magazin, M.; Kovacic, R.T.; Allet, B.; Stahl, S.; Gilbert, W.; Schaller, H.; Bruce, S.A.; Murray, K. Production of immunologically active surface antigens of hepatitis B virus by Escherichia coli. Proc. Natl. Acad. Sci. USA 1981, 78, 4510–4514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edman, J.C.; Hallewell, R.A.; Valenzuela, P.; Goodman, H.M.; Rutter, W.J. Synthesis of hepatitis B surface and core antigens in E. coli. Nature 1981, 291, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Burrell, C.J.; Mackay, P.; Greenaway, P.J.; Hofschneider, P.H.; Murray, K. Expression in Escherichia coli of hepatitis B virus DNA sequences cloned in plasmid pBR322. Nature 1979, 279, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Cregg, J.M.; Tschopp, J.F.; Stillman, C.; Siegel, R.; Akong, M.; Craig, W.S.; Buckholz, R.G.; Madden, K.R.; Kellaris, P.A.; Davis, G.R.; et al. High-level expression and efficient assembly of hepatitis-B surface-antigen in the methylotrophic yeast, Pichia-Pastoris. Nat. Biotechnol. 1987, 5, 479–485. [Google Scholar] [CrossRef]
- Miller, L. A virus vector for genetic engineering in invertebrates. In Genetic Engineering in the Plant Sciences; Panopaulus, N., Ed.; The University of Chicago Press: Chicago, IL, USA, 1981; pp. 203–222. [Google Scholar]
- Cox, M.M. Recombinant protein vaccines produced in insect cells. Vaccine 2012, 30, 1759–1766. [Google Scholar] [CrossRef]
- Roelvink, P.W.; Van Meer, M.M.M.; De Kort, C.A.D.; Possee, R.D.; Hammock, B.D.; Vlak, J.M. Dissimilar expression of Autographa californica multiple nucleocapsid nuclear polyhedrosis virus polyhedrin and p10 genes. J. Gen. Virol. 1992, 73, 1481–1489. [Google Scholar] [CrossRef]
- Tomiya, N.; Narang, S.; Lee, Y.C.; Betenbaugh, M.J. Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconj. J. 2004, 21, 343–360. [Google Scholar] [CrossRef]
- Aumiller, J.J.; Mabashi-Asazuma, H.; Hillar, A.; Shi, X.; Jarvis, D.L. A new glycoengineered insect cell line with an inducibly mammalianized protein N-glycosylation pathway. Glycobiology 2012, 22, 417–428. [Google Scholar] [CrossRef] [Green Version]
- Okada, T.; Ihara, H.; Ito, R.; Nakano, M.; Matsumoto, K.; Yamaguchi, Y.; Taniguchi, N.; Ikeda, Y. N-Glycosylation engineering of lepidopteran insect cells by the introduction of the β1,4-N-acetylglucosaminyltransferase III gene. Glycobiology 2010, 20, 1147–1159. [Google Scholar] [CrossRef] [Green Version]
- Palmberger, D.; Wilson, I.B.; Berger, I.; Grabherr, R.; Rendic, D. Sweetbac: A new approach for the production of mammalianised glycoproteins in insect cells. PLoS ONE 2012, 7, e34226. [Google Scholar] [CrossRef]
- Mabashi-Asazuma, H.; Shi, X.; Geisler, C.; Kuo, C.W.; Khoo, K.H.; Jarvis, D.L. Impact of a human CMP-sialic acid transporter on recombinant glycoprotein sialylation in glycoengineered insect cells. Glycobiology 2013, 23, 199–210. [Google Scholar] [CrossRef] [PubMed]
- Yun, E.Y.; Goo, T.W.; Kim, S.W.; Choi, K.H.; Hwang, J.S.; Kang, S.W.; Kwon, O.Y. Galatosylation and sialylation of mammalian glycoproteins produced by baculovirus-madiated gene expression in insect cells. Biotechnol. Lett. 2005, 27, 1035–1039. [Google Scholar] [CrossRef] [PubMed]
- Mena, J.A.; Kamen, A.A. Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev. Vaccines 2011, 10, 1063–1081. [Google Scholar] [CrossRef] [PubMed]
- Anassi, E.; Ndefo, U.A. Sipuleucel-T (Provenge) injection the first immunotherapy agent (Vaccine) for hormone-refractory prostate cancer. Pharm. Ther. 2011, 36, 197–202. [Google Scholar]
- U.S. Food and Drug Administration. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/provenge-sipuleucel-t (accessed on 1 June 2021).
- Govindarajan, D.; Meschino, S.; Guan, L.; Clements, D.E.; ter Meulen, J.H.; Casimiro, D.R.; Coller, B.A.G.; Bett, A.J. Preclinical development of a dengue tetravalent recombinant subunit vaccine: Immunogenicity and protective efficacy in nonhuman primates. Vaccine 2015, 33, 4105–4116. [Google Scholar] [CrossRef]
- Jenkins, N.; Meleady, P.; Tyther, R.; Murphy, L. Strategies for analysing and improving the expression and quality of recombinant proteins made in mammalian cells. Biotechnol. Appl. Biochem. 2009, 53, 73–83. [Google Scholar] [CrossRef]
- Barone, P.W.; Wiebe, M.E.; Leung, J.C.; Hussein, I.T.M.; Keumurian, F.J.; Bouressa, J.; Brussel, A.; Chen, D.; Chong, M.; Dehghani, H. Viral contamination in biologic manufacture and implications for emerging therapies. Nat. Biotechnol. 2020, 38, 563–572. [Google Scholar] [CrossRef]
- Barrett, P.N.; Mundt, W.; Kistner, O.; Howard, M.K. Vero cell platform in vaccine production: Moving towards cell culture-based viral vaccines. Expert Rev. Vaccines 2009, 8, 607–618. [Google Scholar] [CrossRef]
- Wippermann, A.; Rupp, O.; Brinkrolf, K.; Hoffrogge, R.; Noll, T. The DNA methylation landscape of Chinese hamster ovary (CHO) DP-12 cells. J. Biotechnol. 2015, 199, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Dorai, H.; Corisdeo, S.; Ellis, D.; Kinney, C.; Chomo, M.; Hawley-Nelson, P.; Moore, G.; Betenbaugh, M.J.; Ganguly, S. Early prediction of instability of chinese hamster ovary cell lines expressing recombinant antibodies and antibody-fusion proteins. Biotechnol. Bioeng. 2012, 109, 1016–1030. [Google Scholar] [CrossRef]
- Gaillet, B.; Gilbert, R.; Broussau, S.; Pilotte, A.; Malenfant, F.; Mullick, A.; Garnier, A.; Massie, B. High-level recombinant protein production in CHO cells using lentiviral vectors and the cumate gene-switch. Biotechnol. Bioeng. 2010, 106, 203–215. [Google Scholar] [CrossRef]
- Baranyi, L.; Doering, C.B.; Denning, G.; Gautney, R.E.; Harris, K.T.; Trent Spencer, H.; Roy, A.; Zayed, H.; Dropulic, B. Rapid generation of stable cell lines expressing high levels of erythropoietin, factor VIII, and an antihuman CD20 antibody using lentiviral vectors. Hum. Gene Ther. Methods 2013, 24, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Casales, E.; Aranda, A.; Quetglas, J.I.; Ruiz-Guillen, M.; Rodriguez-Madoz, J.R.; Prieto, J.; Smerdou, C. A novel system for the production of high levels of functional human therapeutic proteins in stable cells with a Semliki Forest virus noncytopathic vector. New Biotechnol. 2010, 27, 138–148. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Grav, L.M.; Lewis, N.E.; Kildegaard, H.F. CRISPR/Cas9-mediated genome engineering of CHO cell factories: Application and perspectives. Biotechnol. J. 2015, 10, 979–994. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kallehauge, T.B.; Pedersen, L.E.; Kildegaard, H.F. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci. Rep. 2015, 5, 8572. [Google Scholar] [CrossRef] [Green Version]
- Worton, R.G.; Ho, C.C.; Duff, C. Chromosome stability in CHO cells. Somatic Cell Genet. 1977, 3, 27–45. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.M.; Hu, W.W.; Rustandi, E.; Chang, K.; Yusuf-Makagiansar, H.; Ryll, T. Maximizing productivity of CHO cell-based fed-batch culture using chemically defined media conditions and typical manufacturing equipment. Biotechnol. Prog. 2010, 26, 1400–1410. [Google Scholar] [CrossRef] [PubMed]
- Sinacore, M.S.; Drapeau, D.; Adamson, S.R. Adaptation of mammalian cells to growth in serum-free media. Mol. Biotechnol. 2000, 15, 249–257. [Google Scholar] [CrossRef]
- Luo, H.; Tie, L.; Cao, M.; Hunter, A.K.; Pabst, T.M.; Du, J.; Field, R.; Li, Y.; Wang, W.K. Cathepsin L Causes Proteolytic Cleavage of Chinese-Hamster-Ovary Cell Expressed Proteins During Processing and Storage: Identification, Characterization, and Mitigation. Biotechnol. Prog. 2019, 35, e2732. [Google Scholar] [CrossRef] [Green Version]
- Laux, H.; Romand, S.; Nuciforo, S.; Farady, C.J.; Tapparel, J.; Buechmann-Moeller, S.; Sommer, B.; Oakeley, E.J.; Bodendorf, U. Degradation of recombinant proteins by Chinese hamster ovary host cell proteases is prevented by matriptase-1 knockout. Biotechnol. Bioeng. 2018, 115, 2530–2540. [Google Scholar] [CrossRef]
- Lim, A.; Doyle, B.L.; Kelly, G.M.; Reed-Bogan, A.M.; Breen, L.H.; Shamlou, P.A.; Lambooy, P.K. Characterization of a cathepsin D protease from CHO cell-free medium and mitigation of its impact on the stability of a recombinant therapeutic protein. Biotechnol. Prog. 2018, 34, 120–129. [Google Scholar] [CrossRef]
- Dorai, H.; Santiago, A.; Campbell, M.; Tang, Q.M.; Lewis, M.J.; Wang, Y.; Lu, Q.Z.; Wu, S.L.; Hancock, W. Characterization of the proteases involved in the N-terminal clipping of glucagon-like-peptide-1-antibody fusion proteins. Biotechnol. Prog. 2011, 27, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Clincke, M.; Guedon, E.; Yen, F.T.; Ogier, V.; Goergen, J.-L. Characterization of metalloprotease and serine protease activities in batch CHO cell cultures: Control of human recombinant IFN-γ proteolysis by addition of iron citrate. BMC Proc. 2011, 5, P115. [Google Scholar] [CrossRef] [Green Version]
- Robert, F.; Bierau, H.; Rossi, M.; Agugiaro, D.; Soranzo, T.; Broly, H.; Mitchell-Logean, C. Degradation of an Fc-fusion recombinant protein by host cell proteases: Identification of a CHO cathepsin D protease. Biotechnol. Bioeng. 2009, 104, 1132–1141. [Google Scholar] [CrossRef] [PubMed]
- Li, S.W.; Wright, M.; Healey, J.F.; Hutchinson, J.M.; O’Rourke, S.; Mesa, K.A.; Lollar, P.; Berman, P.W. Gene editing in CHO cells to prevent proteolysis and enhance glycosylation: Production of HIV envelope proteins as vaccine immunogens. PLoS ONE 2020, 15, e0233866. [Google Scholar] [CrossRef]
- Fontana, D.; Kratje, R.; Etcheverrigaray, M.; Prieto, C. Rabies virus-like particles expressed in HEK293 cells. Vaccine 2014, 32, 2799–2804. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Chaudhary, A.; Lin, X.; Sou, C.; Alkutkar, T.; Kumar, S.; Ngo, T.; Kosviner, E.; Ozorowski, G.; Stanfield, R.L.; et al. Single-component multilayered self-assembling nanoparticles presenting rationally designed glycoprotein trimers as Ebola virus vaccines. Nat. Commun. 2021, 12, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Autheman, D.; Crosnier, C.; Clare, S.; Goulding, D.A.; Brandt, C.; Harcourt, K.; Tolley, C.; Galaway, F.; Khushu, M.; Ong, H.; et al. An invariant Trypanosoma vivax vaccine antigen induces protective immunity. Nature 2021, 595, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Slon-Campos, J.L.; Dejnirattisai, W.; Jagger, B.W.; López-Camacho, C.; Wongwiwat, W.; Durnell, L.A.; Winkler, E.S.; Chen, R.E.; Reyes-Sandoval, A.; Rey, F.A.; et al. A protective Zika virus E-dimer-based subunit vaccine engineered to abrogate antibody-dependent enhancement of dengue infection. Nat. Immunol. 2019, 20, 1291–1298. [Google Scholar] [CrossRef]
- Kis, Z.; Shattock, R.; Shah, N.; Kontoravdi, C. Emerging Technologies for Low-Cost, Rapid Vaccine Manufacture. Biotechnol. J. 2019, 14, 1–36. [Google Scholar] [CrossRef] [Green Version]
- Waye, A.; Jacobs, P.; Schryvers, A.B. Vaccine development costs: A review. Expert Rev. Vaccines 2013, 12, 1495–1501. [Google Scholar] [CrossRef] [PubMed]
- Plotkin, S.; Robinson, J.M.; Cunningham, G.; Iqbal, R.; Larsen, S. The complexity and cost of vaccine manufacturing—An overview. Vaccine 2017, 35, 4064–4071. [Google Scholar] [CrossRef] [PubMed]
- Wilson, P. Giving Developing Countries the Best Shot: An Overview of Vaccine Access and R&D; Campaign for Access to Essential Medicines: Geneva, Switzerland, 2010. [Google Scholar]
- Pronker, E.S.; Weenen, T.C.; Commandeur, H.; Claassen, E.H.J.H.M.; Osterhaus, A.D.M.E. Risk in Vaccine Research and Development Quantified. PLoS ONE 2013, 8, e57755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qadri, F. Understanding vaccine development. In Proceedings of the GAVI Alliance Partner’s Forum, Dar Es Salaam, Tanzania, 7 December 2012. [Google Scholar]
- Wen, E.P.; Ellis, R.; Pujar, N.S. Vaccine Development and Manufacturing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Datla, M. Understanding Vaccine Manufacturing. In Proceedings of the GAVI Alliance Partner’s Forum, Dar Es Salaam, Tanzania, 7 December 2012. [Google Scholar]
- Vidor, E.; Soubeyrand, B. Manufacturing DTaP-based combination vaccines: Industrial challenges around essential public health tools. Expert Rev. Vaccines 2016, 15, 1575–1582. [Google Scholar] [CrossRef] [PubMed]
- Shane, S. Impact of E. coli on profitable egg production. Egg Ind. 2009, 114, 8–12. [Google Scholar]
- Retallack, D.M.; Jin, H.; Chew, L. Reliable protein production in a Pseudomonas fluorescens expression system. Protein Expr. Purif. 2012, 81, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Gruber, S.; Schwab, H.; Koefinger, P. Versatile plasmid-based expression systems for Gram-negative bacteria-General essentials exemplified with the bacterium Ralstonia eutropha H16. New Biotechnol. 2015, 32, 552–558. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez-Humarán, L.G.; Aubry, C.; Motta, J.P.; Deraison, C.; Steidler, L.; Vergnolle, N.; Chatel, J.M.; Langella, P. Engineering lactococci and lactobacilli for human health. Curr. Opin. Microbiol. 2013, 16, 278–283. [Google Scholar] [CrossRef]
- Van Baarlen, P.; Wells, J.M.; Kleerebezem, M. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli. Trends Immunol. 2013, 34, 208–215. [Google Scholar] [CrossRef]
- Ribelles, P.; Benbouziane, B.; Langella, P.; Suárez, J.E.; Bermúdez-Humarán, L.G.; Riazi, A. Protection against human papillomavirus type 16-induced tumors in mice using non-genetically modified lactic acid bacteria displaying E7 antigen at its surface. Appl. Microbiol. Biotechnol. 2013, 97, 1231–1239. [Google Scholar] [CrossRef]
- De Lúcia Hernani, M.; Ferreira, P.C.D.; Ferreira, D.M.; Miyaji, E.N.; Ho, P.L.; Oliveira, M.L.S. Nasal immunization of mice with Lactobacillus casei expressing the pneumococcal surface protein C primes the immune system and decreases pneumococcal nasopharyngeal colonization in mice. FEMS Immunol. Med. Microbiol. 2011, 62, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Mohamadzadeh, M.; Durmaz, E.; Zadeh, M.; Pakanati, K.C.; Gramarossa, M.; Cohran, V.; Klaenhammer, T.R. Targeted expression of anthrax protective antigen by Lactobacillus gasseri as an anthrax vaccine. Future Microbiol. 2010, 5, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.H.; Yang, W.T.; Yang, G.L.; Cong, Y.L.; Huang, H.B.; Wang, Q.; Cai, R.P.; Ye, L.P.; Hu, J.T.; Zhou, J.Y.; et al. Immunoprotection against influenza virus H9N2 by the oral administration of recombinant Lactobacillus plantarum NC8 expressing hemagglutinin in BALB/c mice. Virology 2014, 464–465, 166–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trombert, A. Recombinant lactic acid bacteria as delivery vectors of heterologous antigens: The future of vaccination? Benef. Microbes 2015, 6, 313–324. [Google Scholar] [CrossRef] [PubMed]
- Wells, J. Mucosal vaccination and therapy with genetically modified lactic acid bacteria. Annu. Rev. Food Sci. Technol. 2011, 2, 423–445. [Google Scholar] [CrossRef]
- Roland, K.L.; Tinge, S.A.; Killeen, K.P.; Kochi, S.K. Recent advances in the development of live, attenuated bacterial vectors. Curr. Opin. Mol. Ther. 2005, 7, 62–72. [Google Scholar] [PubMed]
- Toomey, N.; Bolton, D.; Fanning, S. Characterisation and transferability of antibiotic resistance genes from lactic acid bacteria isolated from Irish pork and beef abattoirs. Res. Microbiol. 2010, 161, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Bosma, T.; Kanninga, R.; Neef, J.; Audouy, S.A.L.; Van Roosmalen, M.L.; Steen, A.; Buist, G.; Kok, J.; Kuipers, O.P.; Robillard, G.; et al. Novel surface display system for proteins on non-genetically modified gram-positive bacteria. Appl. Environ. Microbiol. 2006, 72, 880–889. [Google Scholar] [CrossRef] [Green Version]
- Shin, M.K.; Yoo, H.S. Animal vaccines based on orally presented yeast recombinants. Vaccine 2013, 31, 4287–4292. [Google Scholar] [CrossRef] [PubMed]
- Vieira Gomes, A.; Souza Carmo, T.; Silva Carvalho, L.; Mendonça Bahia, F.; Parachin, N. Comparison of Yeasts as Hosts for Recombinant Protein Production. Microorganisms 2018, 6, 38. [Google Scholar] [CrossRef] [Green Version]
- Bill, R.M. Recombinant protein subunit vaccine synthesis in microbes: A role for yeast? J. Pharm. Pharmacol. 2015, 67, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curti, E.; Kwityn, C.; Zhan, B.; Gillespie, P.; Brelsford, J.; Deumic, V.; Plieskatt, J.; Rezende, W.C.; Tsao, E.; Kalampanayil, B.; et al. Expression at a 20L scale and purification of the extracellular domain of the Schistosoma mansoni TSP-2 recombinant protein. Hum. Vaccin. Immunother. 2013, 9, 2342–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, G.J.; Liu, T.Y.; Tseng, Y.Y.; Chen, Z.W.; You, C.C.; Hsuan, S.L.; Chien, M.S.; Huang, C. Yeast-expressed classical swine fever virus glycoprotein E2 induces a protective immune response. Vet. Microbiol. 2009, 139, 369–374. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, P. Yeast-based vaccines: New perspective in vaccine development and application. FEMS Yeast Res. 2019, 19, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piraine, R.E.A.; Gonçalves, V.S.; dos Santos Junior, A.G.; Cunha, R.C.; de Albuquerque, P.M.M.; Conrad, N.L.; Leite, F.P.L. Expression cassette and plasmid construction for Yeast Surface Display in Saccharomyces cerevisiae. Biotechnol. Lett. 2021, 43, 1649–1657. [Google Scholar] [CrossRef]
- Habersetzer, F.; Baumert, T.F.; Stoll-Keller, F. GI-5005, a yeast vector vaccine expressing an NS3-core fusion protein for chronic HCV infection. Curr. Opin. Mol. Ther. 2009, 11, 456–462. [Google Scholar] [PubMed]
- Jacob, D.; Ruffie, C.; Dubois, M.; Combredet, C.; Amino, R.; Formaglio, P.; Gorgette, O.; Pehau-Arnaudet, G.; Guery, C.; Puijalon, O.; et al. Whole Pichia pastoris yeast expressing measles virus nucleoprotein as a production and delivery system to multimerize Plasmodium antigens. PLoS ONE 2014, 9, e86658. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Ostroff, G.R.; Lee, C.K.; Specht, C.A.; Levitz, S.M. Characterization and optimization of the glucan particle-based vaccine platform. Clin. Vaccine Immunol. 2013, 20, 1585–1591. [Google Scholar] [CrossRef]
- Gao, T.; Ren, Y.; Li, S.; Lu, X.; Lei, H. Immune response induced by oral administration with a Saccharomyces cerevisiae-based SARS-CoV-2 vaccine in mice. Microb. Cell Fact. 2021, 20, 1–10. [Google Scholar] [CrossRef]
- Cao, D.; Wu, H.; Li, Q.; Sun, Y.; Liu, T.; Fei, J.; Zhao, Y.; Wu, S.; Hu, X.; Li, N. Expression of recombinant human lysozyme in egg whites of transgenic hens. PLoS ONE 2015, 10, e0118626. [Google Scholar] [CrossRef]
- Herron, L.R.; Pridans, C.; Turnbull, M.L.; Smith, N.; Lillico, S.; Sherman, A.; Gilhooley, H.J.; Wear, M.; Kurian, D.; Papadakos, G.; et al. A chicken bioreactor for efficient production of functional cytokines. BMC Biotechnol. 2018, 18, 82. [Google Scholar] [CrossRef]
- Adachi, K.; Takama, K.; Tsukamoto, M.; Inai, M.; Handharyani, E.; Hiroi, S.; Tsukamoto, Y. Ostrich produce cross-reactive neutralization antibodies against pandemic influenza virus A/H1N1 following immunization with a seasonal influenza vaccine. Exp. Ther. Med. 2011, 2, 41–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhao, S.; Bai, L.; Fan, J.; Liu, E. Expression Systems and Species Used for Transgenic Animal Bioreactors. Transgenic Res. 2013, 580463. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA). Guidance on the environmental risk assessment of genetically modified animals. EFSA Panel on Genetically Modified Organisms (GMOs). EFSA J. 2013, 11, 3200. [Google Scholar] [CrossRef] [Green Version]
- Vàzquez-Salat, N.; Houdebine, L.M. Will GM animals follow the GM plant fate? Transgenic Res. 2013, 22, 5–13. [Google Scholar] [CrossRef] [PubMed]
- Vàzquez-Salat, N.; Salter, B.; Smets, G.; Houdebine, L.M. The current state of GMO governance: Are we ready for GM animals? Biotechnol. Adv. 2012, 30, 1336–1343. [Google Scholar] [CrossRef]
- Houdebine, L.M. Production of pharmaceutical proteins by transgenic animals. Rev. Sci. Tech. 2018, 37, 131–139. [Google Scholar] [CrossRef]
- Konkle, B.A.; Bauer, K.A.; Weinstein, R.; Greist, A.; Holmes, H.E.; Bonfiglio, J. Use of recombinant human antithrombin in patients with congenital antithrombin deficiency undergoing surgical procedures. Transfusion 2003, 43, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Hunter, P. The prospects for recombinant proteins from transgenic animals. EMBO Rep. 2019, 20, 1–3. [Google Scholar] [CrossRef]
- Behboodi, E.; Ayres, S.L.; Memili, E.; O’Coin, M.; Chen, L.H.; Reggio, B.C.; Landry, A.M.; Gavin, W.G.; Meade, H.M.; Godke, R.A.; et al. Health and reproductive profiles of malaria antigen-producing transgenic goats derived by somatic cell nuclear transfer. Cloning Stem Cells 2005, 7, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Maeda, S.; Kawai, T.; Obinata, M.; Fujiwara, H.; Horiuchi, T.; Saeki, Y.; Sato, Y.; Furusawa, M. Production of human α-interferon in silkworm using a baculovirus vecto. Nature 1985, 315, 592–594. [Google Scholar] [CrossRef]
- He, Q.; Cao, Z.; Wang, P.; Lu, Q.; Zheng, H.; Sun, J. Efficient application of a baculovirus-silkworm larvae expression system for obtaining porcine circovirus type 2 virus-like particles for a vaccine. Arch. Virol. 2020, 165, 2301–2309. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Martín, E.; Gómez-Sebastián, S.; Argilaguet, J.M.; Sibila, M.; Fort, M.; Nofrarías, M.; Kurtz, S.; Escribano, J.M.; Segalés, J.; Rodríguez, F. Immunity conferred by an experimental vaccine based on the recombinant PCV2 Cap protein expressed in Trichoplusia ni-larvae. Vaccine 2010, 28, 2340–2349. [Google Scholar] [CrossRef] [PubMed]
- Escribano-Romero, E.; Gamino, V.; Merino-Ramos, T.; Blázquez, A.B.; Martín-Acebes, M.A.; de Oya, N.J.; Gutiérrez-Guzmán, A.V.; Escribano, J.M.; Höfle, U.; Saiz, J.C. Protection of red-legged partridges (Alectoris rufa) against West Nile virus (WNV) infection after immunization with WNV recombinant envelope protein E (rE). Vaccine 2013, 31, 4523–4527. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Filgueira, D.M.; Resino-Talaván, P.; Cubillos, C.; Angulo, I.; Barderas, M.G.; Barcena, J.; Escribano, J.M. Development of a low-cost, insect larvae-derived recombinant subunit vaccine against RHDV. Virology 2007, 364, 422–430. [Google Scholar] [CrossRef]
- Gomez-Casado, E.; Gomez-Sebastian, S.; Núñez, M.C.; Lasa-Covarrubias, R.; Martínez-Pulgarín, S.; Escribano, J.M. Insect larvae biofactories as a platform for influenza vaccine production. Protein Expr. Purif. 2011, 79, 35–43. [Google Scholar] [CrossRef]
- Millán, A.F.S.; Gómez-Sebastián, S.; Nuñez, M.C.; Veramendi, J.; Escribano, J.M. Human papillomavirus-like particles vaccine efficiently produced in a non-fermentative system based on insect larva. Protein Expr. Purif. 2010, 74, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Escribano, J.M.; Cid, M.; Reytor, E.; Alvarado, C.; Nuñez, M.C.; Martínez-Pulgarín, S.; Dalton, R.M. Chrysalises as natural production units for recombinant subunit vaccines. J. Biotechnol. X 2020, 6, 100019. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, W.; Lu, Y.; Zheng, X.; Xue, R.; Cao, G.; Pan, Z.; Gong, C. Expression of UreB and HspA of helicobacter pylori in silkworm pupae and identification of its immunogenicity. Mol. Biol. Rep. 2011, 38, 3173–3180. [Google Scholar] [CrossRef]
- Gong, Z.; Jin, Y.; Zhang, Y. Oral administration of a cholera toxin B subunit-insulin fusion protein produced in silkworm protects against autoimmune diabetes. J. Biotechnol. 2005, 119, 93–105. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Towler, M.; Weathers, P.J. Platforms for Plant-Based Protein Production. In Bioprocessing of Plant In Vitro System; Springer: Berlin/Heidelberg, Germany, 2018; pp. 509–548. ISBN 9783319546001. [Google Scholar]
- Bosch, D.; Schots, A. Plant glycans: Friend or foe in vaccine development? Expert Rev. Vaccines 2010, 9, 835–842. [Google Scholar] [CrossRef] [PubMed]
- Loos, A.; Steinkellner, H. Plant glyco-biotechnology on the way to synthetic biology. Front. Plant Sci. 2014, 5, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruhlman, T.; Verma, D.; Samson, N.; Daniell, H. The role of heterologous chloroplast sequence elements in transgene integration and expression. Plant Physiol. 2010, 152, 2088–2104. [Google Scholar] [CrossRef] [PubMed]
- Oey, M.; Lohse, M.; Kreikemeyer, B.; Bock, R. Exhaustion of the chloroplast protein synthesis capacity by massive expression of a highly stable protein antibiotic. Plant J. 2009, 57, 436–445. [Google Scholar] [CrossRef]
- Waheed, M.T.; Sameeullah, M.; Khan, F.A.; Syed, T.; Ilahi, M.; Gottschamel, J.; Lössl, A.G. Need of cost-effective vaccines in developing countries: What plant biotechnology can offer? SpringerPlus 2016, 5, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Lössl, A.G.; Waheed, M.T. Chloroplast-derived vaccines against human diseases: Achievements, challenges and scopes. Plant Biotechnol. J. 2011, 9, 527–539. [Google Scholar] [CrossRef]
- Komarova, T.V.; Baschieri, S.; Donini, M.; Marusic, C.; Benvenuto, E.; Dorokhov, Y.L. Transient expression systems for plant-derived biopharmaceuticals. Expert Rev. Vaccines 2010, 9, 859–876. [Google Scholar] [CrossRef] [PubMed]
- Rybicki, E.P. Plant-produced vaccines: Promise and reality. Drug Discov. Today 2009, 14, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Shim, B.S.; Hong, K.J.; Maharjan, P.M.; Choe, S. Plant factory: New resource for the productivity and diversity of human and veterinary vaccines. Clin. Exp. Vaccine Res. 2019, 8, 136–139. [Google Scholar] [CrossRef] [PubMed]
- Qiu, X.; Wong, G.; Audet, J.; Bello, A.; Fernando, L.; Alimonti, J.B.; Fausther-Bovendo, H.; Wei, H.; Aviles, J.; Hiatt, E.; et al. Reversion of advanced Ebola virus disease in nonhuman primates with ZMapp. Nature 2014, 514, 47–53. [Google Scholar] [CrossRef] [Green Version]
- Rosales-Mendoza, S.; Nieto-Gómez, R.; Angulo, C. A perspective on the development of plant-made vaccines in the fight against ebola virus. Front. Immunol. 2017, 8, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tusé, D.; Tu, T.; McDonald, K.A. Manufacturing economics of plant-made biologics: Case studies in therapeutic and industrial enzymes. Biomed Res. Int. 2014, 256135. [Google Scholar] [CrossRef] [Green Version]
- Tusé, D.; Ku, N.; Bendandi, M.; Becerra, C.; Collins, R.; Langford, N.; Sancho, S.I.; López-Díaz De Cerio, A.; Pastor, F.; Kandzia, R.; et al. Clinical safety and Immunogenicity of tumor-targeted, plant-made id-klh conjugate vaccines for follicular lymphoma. Biomed Res. Int. 2015, 648143. [Google Scholar] [CrossRef]
- Alam, A.; Jiang, L.; Kittleson, G.A.; Steadman, K.D.; Nandi, S.; Fuqua, J.L.; Palmer, K.E.; Tusé, D.; McDonald, K.A. Technoeconomic Modeling of Plant-Based Griffithsin Manufacturing. Front. Bioeng. Biotechnol. 2018, 6, 102. [Google Scholar] [CrossRef] [Green Version]
- Twyman, R.M.; Stoger, E.; Schillberg, S.; Christou, P.; Fischer, R. Molecular farming in plants: Host systems and expression technology. Trends Biotechnol. 2003, 21, 570–578. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhang, N. On the way to commercializing plant cell culture platform for biopharmaceuticals: Present status and prospect. Pharm. Bioprocess. 2014, 2, 499–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, R.; Schillberg, S.; Hellwig, S.; Twyman, R.M.; Drossard, J. GMP issues for recombinant plant-derived pharmaceutical proteins. Biotechnol. Adv. 2012, 30, 434–439. [Google Scholar] [CrossRef]
- Ratner, M. Pfizer stakes a claim in plant cell-made biopharmaceuticals. Nat. Biotechnol. 2010, 28, 107–108. [Google Scholar] [CrossRef]
- Shaaltiel, Y.; Bartfeld, D.; Hashmueli, S.; Baum, G.; Brill-Almon, E.; Galili, G.; Dym, O.; Boldin-Adamsky, S.A.; Silman, I.; Sussman, J.L.; et al. Production of glucocerebrosidase with terminal mannose glycans for enzyme replacement therapy of Gaucher’s disease using a plant cell system. Plant Biotechnol. J. 2007, 5, 579–590. [Google Scholar] [CrossRef]
- Walsh, G. Biopharmaceutical benchmarks 2014. Nat. Biotechnol. 2014, 32, 992–1000. [Google Scholar] [CrossRef]
- Ward, B.J.; Makarkov, A.; Séguin, A.; Pillet, S.; Trépanier, S.; Dhaliwall, J.; Libman, M.D.; Vesikari, T.; Landry, N. Efficacy, immunogenicity, and safety of a plant-derived, quadrivalent, virus-like particle influenza vaccine in adults (18–64 years) and older adults (≥65 years): Two multicentre, randomised phase 3 trials. Lancet 2020, 396, 1491–1503. [Google Scholar] [CrossRef]
- Kolotilin, I.; Topp, E.; Cox, E.; Devriendt, B.; Conrad, U.; Joensuu, J.; Stöger, E.; Warzecha, H.; McAllister, T.; Potter, A.; et al. Plant-based solutions for veterinary immunotherapeutics and prophylactics. Vet. Res. 2014, 45, 117. [Google Scholar] [CrossRef] [Green Version]
- Takeyama, N.; Kiyono, H.; Yuki, Y. Plant-based vaccines for animals and humans: Recent advances in technology and clinical trials. Ther. Adv. Vaccines 2015, 3, 139–154. [Google Scholar] [CrossRef] [PubMed]
- Margolin, E.; Chapman, R.; Williamson, A.L.; Rybicki, E.P.; Meyers, A.E. Production of complex viral glycoproteins in plants as vaccine immunogens. Plant Biotechnol. J. 2018, 16, 1531–1545. [Google Scholar] [CrossRef]
- Rosales-Mendoza, S.; Solís-Andrade, K.I.; Márquez-Escobar, V.A.; González-Ortega, O.; Bañuelos-Hernandez, B. Current advances in the algae-made biopharmaceuticals field. Expert Opin. Biol. Ther. 2020, 20, 751–766. [Google Scholar] [CrossRef] [PubMed]
- Lindh, I.; Bråve, A.; Hallengärd, D.; Hadad, R.; Kalbina, I.; Strid, Å.; Andersson, S. Oral delivery of plant-derived HIV-1 p24 antigen in low doses shows a superior priming effect in mice compared to high doses. Vaccine 2014, 32, 2288–2293. [Google Scholar] [CrossRef]
- Specht, E.A.; Mayfield, S.P. Algae-based oral recombinant vaccines. Front. Microbiol. 2014, 5, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Dreesen, I.A.J.; Charpin-El Hamri, G.; Fussenegger, M. Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J. Biotechnol. 2010, 145, 273–280. [Google Scholar] [CrossRef] [PubMed]
- Hempel, F.; Maier, U.G. An engineered diatom acting like a plasma cell secreting human IgG antibodies with high efficiency. Microb. Cell Fact. 2012, 11, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Bayne, A.C.V.; Boltz, D.; Owen, C.; Betz, Y.; Maia, G.; Azadi, P.; Archer-Hartmann, S.; Zirkle, R.; Lippmeier, J.C. Vaccination against Influenza with Recombinant Hemagglutinin Expressed by Schizochytrium sp. Confers Protective Immunity. PLoS ONE 2013, 8, e61790. [Google Scholar] [CrossRef] [Green Version]
- Márquez-Escobar, V.A.; Bañuelos-Hernández, B.; Rosales-Mendoza, S. Expression of a Zika virus antigen in microalgae: Towards mucosal vaccine development. J. Biotechnol. 2018, 282, 86–91. [Google Scholar] [CrossRef]
- Feng, S.; Feng, W.; Zhao, L.; Gu, H.; Li, Q.; Shi, K.; Guo, S.; Zhang, N. Preparation of transgenic Dunaliella salina for immunization against white spot syndrome virus in crayfish. Arch. Virol. 2014, 159, 519–525. [Google Scholar] [CrossRef]
Production System | Host | Disease | Vaccine Name (Manufacturer) | Regulatory Approval | Antigen | Vaccine Type | Reference |
---|---|---|---|---|---|---|---|
Bacteria | E. coli | HEV | Hecolin® (Innovax) | 2012 * | ORF2 HEV | VLP | [89,90] |
Yeast | S. cerevisiae | HBV | Recombivax HB® (Merck & Co.) | 1986 FDA | HBsAg | VLP | [91,92] |
S. cerevisiae | HBV | Engerix®-B (GSK) | 1989 FDA | HBsAg | VLP | [93,94] | |
S. cerevisiae | HBV | HBvaxPRO® (Merck & Co.) | 2001 EMA | HBsAg | VLP | [95] | |
S. cerevisiae | HBV | Fendrix® (GSK) | 2005 EMA | HBsAg | VLP | [96] | |
H. polymorpha | HBV | Heplisav-B® (Dynavax) | 2017 FDA 2021 EMA | HBsAg | VLP | [97,98] | |
S. cerevisiae | HPV | Gardasil® (Merck & Co.) | 2006 FDA 2006 EMA | L1 HPV 6, 11, 16, 18 | VLP | [99,100,101] | |
S. cerevisiae | HPV | Gardasil-9® (Merck & Co.) | 2014 FDA 2015 EMA | L1 HPV 6, 11, 16, 18, 31, 33, 45, 52, 58 | VLP | [102,103] | |
S. cerevisiae | Malaria | Mosquirix® (GSK) | 2015 EMA (outside EU) | RTS,S | VLP | [104,105,106] | |
Insect cells | High Five™ | HPV | Cervarix® (GSK) | 2007 EMA 2009 FDA | L1 HPV 16, 18 | VLP | [107,108,109] |
ExpresSF+® | Influenza | FluBlok® (Sanofi Pasteur) | 2013 FDA | HA trivalent | Subunit | [110,111] | |
ExpresSF+® | Influenza | Flublok Quadrivalent®/Supemtek® (Sanofi Pasteur) | 2016 FDA 2020 EMA | HA quadrivalent | Subunit | [112] | |
Mammalian cells | CHO | Herpes zoster | Shingrix® (GSK) | 2017 FDA 2018 EMA | gE | Subunit | [113,114,115] |
Production System | Host | Disease | Vaccine Name (Manufacturer) | Regulatory Approval | Antigen | Vaccine Type | Reference |
---|---|---|---|---|---|---|---|
Bacteria | E. coli | FeLV | Leucogen® (Virbac) | 2009 EMA | p45 FeLV-envelope antigen | Subunit | [116,117] |
E. coli | Canine leishmaniasis | Letifend® (LETI Pharma) | 2016 EMA | L. infantum MON-1 Q protein | Subunit | [118] | |
Insect cells | Sf21 | CSF | Porcilis Pesti® (Merck & Co.) | 2000 EMA | E2 glycoprotein | Subunit | [119,120] |
Sf21 | CSF | Bayovac® CSF E2 * (Bayer) | 2001 EMA | E2 glycoprotein | Subunit | [119,121] | |
Sf+ | PCV2 | Ingelvac CircoFLEX® (B. Ingelheim) | 2006 USDA 2008 EMA | ORF2 protein PCV2a | VLP | [122,123,124] | |
Sf9 | PCV2 | Circumvent® PCV (Merck & Co.) | 2007 USDA | ORF2 protein PCV2a | VLP | [125] | |
Sf21 | PCV2 | Porcilis® PCV (Merck & Co.) | 2009 EMA | ORF2 protein PCV2a | VLP | [126] | |
n.s. | PCV2 | CircoGard® (Pharmgate) | 2017 USDA | ORF2 protein PCV2b | VLP | [127] | |
n.s. | PPV | ReproCyc® ParvoFLEX (B. Ingelheim) | 2019 EMA | PPV 27a VP2 | VLP | [128] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cid, R.; Bolívar, J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021, 11, 1072. https://doi.org/10.3390/biom11081072
Cid R, Bolívar J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules. 2021; 11(8):1072. https://doi.org/10.3390/biom11081072
Chicago/Turabian StyleCid, Raquel, and Jorge Bolívar. 2021. "Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies" Biomolecules 11, no. 8: 1072. https://doi.org/10.3390/biom11081072
APA StyleCid, R., & Bolívar, J. (2021). Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules, 11(8), 1072. https://doi.org/10.3390/biom11081072