Effects of the Blending Ratio on the Design of Keratin/Poly(butylene succinate) Nanofibers for Drug Delivery Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Keratin Films Regenerated from 1,1,1,3,3,3-Hexafluoro-Isopropanol (HFIP)
2.3. Electrospinning of Keratin-PBS Solutions Loaded with RhB
2.4. Characterization
2.5. Drug Release Test
3. Results and Discussion
3.1. Keratin Regenerated from HFIP
3.2. Rheological Behavior of Keratin/PBS Blend Solutions
3.3. Morphology of Keratin/PBS Blend Nanofibers Loaded with RhB
3.4. Mechanical Properties and Skin Adhesion
3.5. Thermal Behavior
3.6. Drug Release
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akhmetova, A.; Heinz, A. Electrospinning Proteins for Wound Healing Purposes: Opportunities and Challenges. Pharmaceutics 2020, 13, 4. [Google Scholar] [CrossRef]
- Cardamone, J.M.; Nuñez, A.; Garcia, R.A.; Aldema-Ramos, M. Characterizing Wool Keratin. Res. Lett. Mater. Sci. 2009, 2009, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Tachibana, A.; Furuta, Y.; Takeshima, H.; Tanabe, T.; Yamauchi, K. Fabrication of wool keratin sponge scaffolds for long-term cell cultivation. J. Biotechnol. 2002, 93, 165–170. [Google Scholar] [CrossRef]
- Sierpinski, P.; Garrett, J.; Ma, J.; Apel, P.; Klorig, D.; Smith, T.; Koman, L.A.; Atala, A.; Van Dyke, M. The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials 2008, 29, 118–128. [Google Scholar] [CrossRef]
- Rajabi, M.; Ali, A.; McConnell, M.; Cabral, J. Keratinous materials: Structures and functions in biomedical applications. Mater. Sci. Eng. C 2020, 110, 110612. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; Posati, T.; Sotgiu, G.; Tiboni, M.; Barbalinardo, M.; Valle, F.; Casettari, L.; Zamboni, R.; Lotti, N.; et al. Regenerated wool keratin-polybutylene succinate nanofibrous mats for drug delivery and cells culture. Polym. Degrad. Stab. 2020, 179, 109272. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Li, L.; Zhang, Y.; Ren, X. Preparation of antibacterial biocompatible polycaprolactone/keratin nanofibrous mats by electrospinning. J. Appl. Polym. Sci. 2021, 138, 49862. [Google Scholar] [CrossRef]
- Giuri, D.; Barbalinardo, M.; Sotgiu, G.; Zamboni, R.; Nocchetti, M.; Donnadio, A.; Corticelli, F.; Valle, F.; Gennari, C.G.M.; Selmin, F.; et al. Nano-hybrid electrospun non-woven mats made of wool keratin and hydrotalcites as potential bio-active wound dressings. Nanoscale 2019, 11, 6422–6430. [Google Scholar] [CrossRef]
- Wang, J.; Hao, S.; Luo, T.; Zhou, T.; Yang, X.; Wang, B. Keratose/poly (vinyl alcohol) blended nanofibers: Fabrication and biocompatibility assessment. Mater. Sci. Eng. C 2017, 72, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Edwards, A.; Jarvis, D.; Hopkins, T.; Pixley, S.; Bhattarai, N. Poly(ε-caprolactone)/keratin-based composite nanofibers for biomedical applications. J. Biomed. Mater. Res. Part B Appl. Biomater. 2015, 103, 21–30. [Google Scholar] [CrossRef]
- Li, D.; Wang, M.; Song, W.-L.; Yu, D.-G.; Bligh, S.W.A. Electrospun Janus Beads-On-A-String Structures for Different Types of Controlled Release Profiles of Double Drugs. Biomolecules 2021, 11, 635. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Li, Y.; Wu, J.; Wang, W.; Dong, A.; Zhang, J. A novel transdermal drug delivery system based on self-adhesive Janus nanofibrous film with high breathability and monodirectional water-penetration. J. Biomater. Sci. Polym. Ed. 2014, 25, 713–728. [Google Scholar] [CrossRef]
- Kataria, K.; Gupta, A.; Rath, G.; Mathur, R.B.; Dhakate, S.R. In vivo wound healing performance of drug loaded electrospun composite nanofibers transdermal patch. Int. J. Pharm. 2014, 469, 102–110. [Google Scholar] [CrossRef]
- Gigli, M.; Fabbri, M.; Lotti, N.; Gamberini, R.; Rimini, B.; Munari, A. Poly(butylene succinate)-based polyesters for biomedical applications: A review. Eur. Polym. J. 2016, 75, 431–460. [Google Scholar] [CrossRef]
- Fabbri, M.; Guidotti, G.; Soccio, M.; Lotti, N.; Govoni, M.; Giordano, E.; Gazzano, M.; Gamberini, R.; Rimini, B.; Munari, A. Novel biocompatible PBS-based random copolymers containing PEG-like sequences for biomedical applications: From drug delivery to tissue engineering. Polym. Degrad. Stab. 2018, 153, 53–62. [Google Scholar] [CrossRef]
- Guidotti, G.; Soccio, M.; Gazzano, M.; Bloise, N.; Bruni, G.; Aluigi, A.; Visai, L.; Munari, A.; Lotti, N. Biocompatible PBS-based copolymer for soft tissue engineering: Introduction of disulfide bonds as winning tool to tune the final properties. Polym. Degrad. Stab. 2020, 182, 109403. [Google Scholar] [CrossRef]
- Fabbri, M.; Gigli, M.; Gamberini, R.; Lotti, N.; Gazzano, M.; Rimini, B.; Munari, A. Hydrolysable PBS-based poly(ester urethane)s thermoplastic elastomers. Polym. Degrad. Stab. 2014, 108, 223–231. [Google Scholar] [CrossRef]
- Aluigi, A.; Zoccola, M.; Vineis, C.; Tonin, C.; Ferrero, F.; Canetti, M. Study on the structure and properties of wool keratin regenerated from formic acid. Int. J. Biol. Macromol. 2007, 41, 266–273. [Google Scholar] [CrossRef]
- Chin, N.L.; Chan, S.M.; Yusof, Y.A.; Chuah, T.G.; Talib, R.A. Modelling of rheological behaviour of pummelo juice concentrates using master-curve. J. Food Eng. 2009, 93, 134–140. [Google Scholar] [CrossRef]
- Larson, R.G. The Structure and Rheology of Complex Fluids (Topics in Chemical Engineering), 1st ed.; Gubbins, K.E., Ed.; Oxford University Press Inc.: Oxford, UK, 1999; ISBN 019512197X. [Google Scholar]
- Li, S.; Yang, X.-H. Fabrication and Characterization of Electrospun Wool Keratin/Poly(vinyl alcohol) Blend Nanofibers. Adv. Mater. Sci. Eng. 2014, 2014, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Mudassir, J.; Sherwani, A.K.; Hussain, A.; Abbas, N.; Arshad, M.S. Formulation, Optimization and Characterization of Chitosan Monodisperse Microparticles for Sustained Delivery of Hydrochlorothiazide HCl. Pharm. Sci. 2020, 26, 306–313. [Google Scholar] [CrossRef]
Keratin/PBS | η0 (Pa s) | (Pa s) | (s) | n | R2 |
---|---|---|---|---|---|
100/0 | 11 ± 3 | 0.44 ± 0.05 | 0.3 ± 0.1 | 0.42 ± 0.003 | 0.991 |
70/30 | 15 ± 1 | 0.61 ± 0.01 | 1.7 ± 0.2 | 0.44 ± 0.01 | 0.998 |
50/50 | 17 ± 1 | 0.23 ± 0.02 | 0.48 ± 0.05 | 0.444 ± 0.007 | 0.999 |
30/70 | 5.97 ± 0.07 | 0.55 ± 0.05 | 2.0 ± 0.2 | 0.29 ± 0.02 | 0.986 |
0/100 | 1.498 ± 0.08 | 0.51 ± 0.05 | 0.022 ± 0.003 | 0.40 ± 0.08 | 0.989 |
Keratin/PBS | E (MPa) | σB (MPa) | εB (%) | σS (MPa) | σS * (MPa) |
---|---|---|---|---|---|
0/100 | 20 ± 3 | 6.2 ± 0.7 | 151 ± 7 | 0.7 ± 0.2 | n.d. |
30/70 | 16 ± 2 | 5 ± 1 | 90 ± 7 | n.d. | n.d. |
50/50 | 16 ± 5 | 3.3 ± 0.3 | 56 ± 9 | 1.5 ± 0.3 | 0.9 ± 0.3 |
Keratin/PBS | Tid °C | Tmax °C | I Scan | |||||
---|---|---|---|---|---|---|---|---|
Tg °C | ∆Cp J/g °C | Td °C | Tm °C | ∆Hd J/g | ∆Hm J/g | |||
100/0 | 71 188 271 | 320 | - | - | 88 226 282 | - | 229 48 16 | - |
70–30 | 64 214 295 | 364 | - | - | 62 220 | 112 | 40 7 | 44 |
50–50 | 64 212 309 | 379 | - | - | 68 226 | 111 | 71 19 | 27 |
70–30 | 205 353 | 394 | 72 227 | 110 | 90 26 | 21 | ||
PBS | 363 | 398 | −32 | 0.193 | - | 114 | - | 64 |
Keratin/PBS | k Min−n | R2 | |
---|---|---|---|
50/50 | 60 ± 3 | 0.20 ± 0.03 | 0.924 |
70/30 | 86 ± 3 | 0.10 ± 0.02 | 0.889 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guidotti, G.; Soccio, M.; Bondi, E.; Posati, T.; Sotgiu, G.; Zamboni, R.; Torreggiani, A.; Corticelli, F.; Lotti, N.; Aluigi, A. Effects of the Blending Ratio on the Design of Keratin/Poly(butylene succinate) Nanofibers for Drug Delivery Applications. Biomolecules 2021, 11, 1194. https://doi.org/10.3390/biom11081194
Guidotti G, Soccio M, Bondi E, Posati T, Sotgiu G, Zamboni R, Torreggiani A, Corticelli F, Lotti N, Aluigi A. Effects of the Blending Ratio on the Design of Keratin/Poly(butylene succinate) Nanofibers for Drug Delivery Applications. Biomolecules. 2021; 11(8):1194. https://doi.org/10.3390/biom11081194
Chicago/Turabian StyleGuidotti, Giulia, Michelina Soccio, Edoardo Bondi, Tamara Posati, Giovanna Sotgiu, Roberto Zamboni, Armida Torreggiani, Franco Corticelli, Nadia Lotti, and Annalisa Aluigi. 2021. "Effects of the Blending Ratio on the Design of Keratin/Poly(butylene succinate) Nanofibers for Drug Delivery Applications" Biomolecules 11, no. 8: 1194. https://doi.org/10.3390/biom11081194