Cyclophilins and Their Functions in Abiotic Stress and Plant–Microbe Interactions
Abstract
:1. Introduction
2. Cyclophilin Domain Architecture
3. Cyclophilin Function in Abiotic Stress
3.1. Water Stress
3.2. Salinity Stress
3.3. Temperature Stress
3.4. Light Stress
3.5. Oxidative Stress
3.6. Other Stress Factors
4. Cyclophilin Function in Plant–Microbe Interactions
4.1. Pathogenic Plant–Microbe Interactions
4.2. Beneficial Plant–Microbe Interactions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fanghänel, J.; Fischer, G. Insights into the Catalytic Mechanism of Peptidyl Prolyl Cis/Trans Isomerases. Front. Biosci. 2004, 9, 3453–3478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiene, C.; Fischer, G. Enzymes That Catalyse the Restructuring of Proteins. Curr. Opin. Struct. Biol. 2000, 10, 40–45. [Google Scholar] [CrossRef]
- Romano, P.G.N.; Horton, P.; Gray, J.E. The Arabidopsis Cyclophilin Gene Family. Plant. Physiol. 2004, 134, 1268–1282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, G.; Bang, H.; Mech, C. Determination of enzymatic catalysis for the cis-trans-isomerization of peptide binding in proline-containing peptides. Biomed. Biochim. Acta 1984, 43, 1101–1111. [Google Scholar] [PubMed]
- Cheng, H.N.; Bovey, F.A. Cis-Trans Equilibrium and Kinetic Studies of Acetyl-L-Proline and Glycyl-L-Proline. Biopolymers 1977, 16, 1465–1472. [Google Scholar] [CrossRef]
- Handschumacher, R.E.; Harding, M.W.; Rice, J.; Drugge, R.J.; Speicher, D.W. Cyclophilin: A Specific Cytosolic Binding Protein for Cyclosporin A. Science 1984, 226, 544–547. [Google Scholar] [CrossRef]
- Bierer, B.E.; Mattila, P.S.; Standaert, R.F.; Herzenberg, L.A.; Burakoff, S.J.; Crabtree, G.; Schreiber, S.L. Two Distinct Signal Transmission Pathways in T Lymphocytes Are Inhibited by Complexes Formed between an Immunophilin and Either FK506 or Rapamycin. Proc. Natl. Acad. Sci. USA 1990, 87, 9231–9235. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Li, L.; Luan, S. Immunophilins and Parvulins. Superfamily of Peptidyl Prolyl Isomerases in Arabidopsis. Plant. Physiol. 2004, 134, 1248–1267. [Google Scholar] [CrossRef] [Green Version]
- Hanes, S.D. The Ess1 Prolyl Isomerase: Traffic Cop of the RNA Polymerase II Transcription Cycle. Biochim. Biophys. Acta 2014, 1839, 316–333. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.P.; Hanes, S.D.; Hunter, T. A Human Peptidyl-Prolyl Isomerase Essential for Regulation of Mitosis. Nature 1996, 380, 544–547. [Google Scholar] [CrossRef]
- Joseph, J.D.; Yeh, E.S.; Swenson, K.I.; Means, A.R.; Winkler. The Peptidyl-Prolyl Isomerase Pin1. Prog. Cell Cycle Res. 2003, 5, 477–487. [Google Scholar] [PubMed]
- Arévalo-Rodríguez, M.; Heitman, J. Cyclophilin A Is Localized to the Nucleus and Controls Meiosis in Saccharomyces Cerevisiae. Eukaryot. Cell 2005, 4, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andreeva, L.; Heads, R.; Green, C.J. Cyclophilins and Their Possible Role in the Stress Response. Int. J. Exp. Pathol. 1999, 80, 305–315. [Google Scholar] [CrossRef]
- Lin, D.-T.; Lechleiter, J.D. Mitochondrial Targeted Cyclophilin D Protects Cells from Cell Death by Peptidyl Prolyl Isomerization. J. Biol. Chem. 2002, 277, 31134–31141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pushkarsky, T.; Yurchenko, V.; Vanpouille, C.; Brichacek, B.; Vaisman, I.; Hatakeyama, S.; Nakayama, K.I.; Sherry, B.; Bukrinsky, M.I. Cell Surface Expression of CD147/EMMPRIN Is Regulated by Cyclophilin 60. J. Biol. Chem. 2005, 280, 27866–27871. [Google Scholar] [CrossRef] [Green Version]
- Nuc, K.; Lesniewicz, K.; Nuc, P.; Slomski, R. Yellow Lupine Cyclophilin Interacts with Nucleic Acids. Protein Pept. Lett. 2008, 15, 719–723. [Google Scholar] [CrossRef] [PubMed]
- Trivedi, D.K.; Ansari, M.W.; Tuteja, N. Multiple Abiotic Stress Responsive Rice Cyclophilin: (OsCYP-25) Mediates a Wide Range of Cellular Responses. Commun. Integr. Biol. 2013, 6, e25260. [Google Scholar] [CrossRef] [PubMed]
- Bannikova, O.; Zywicki, M.; Marquez, Y.; Skrahina, T.; Kalyna, M.; Barta, A. Identification of RNA Targets for the Nuclear Multidomain Cyclophilin AtCyp59 and Their Effect on PPIase Activity. Nucleic Acids Res. 2013, 41, 1783–1796. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Jørgensen, J.-E.; Stougaard, J.; Marcker, K.A. Hairy Roots—A Short Cut to Transgenic Root Nodules. Plant. Cell Rep. 1989, 8, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Stiller, J.; Martirani, L.; Tuppale, S.; Chian, R.-J.; Chiurazzi, M.; Gresshoff, P.M. High Frequency Transformation and Regeneration of Transgenic Plants in the Model Legume Lotus Japonicus. J. Exp. Bot. 1997, 48, 1357–1365. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Luan, S. The Cyclophilin AtCYP71 Interacts with CAF-1 and LHP1 and Functions in Multiple Chromatin Remodeling Processes. Mol. Plant. 2011, 4, 748–758. [Google Scholar] [CrossRef]
- Li, H.; He, Z.; Lu, G.; Lee, S.C.; Alonso, J.; Ecker, J.R.; Luan, S. A WD40 Domain Cyclophilin Interacts with Histone H3 and Functions in Gene Repression and Organogenesis in Arabidopsis. Plant. Cell 2007, 19, 2403–2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, M.R.; Willmann, M.R.; Wu, G.; Berardini, T.Z.; Möller, B.; Weijers, D.; Poethig, R.S. Cyclophilin 40 Is Required for MicroRNA Activity in Arabidopsis. Proc. Natl. Acad. Sci. USA 2009, 106, 5424–5429. [Google Scholar] [CrossRef] [Green Version]
- Nuc, K.; Nuc, P.; Słomski, R. Yellow Lupine Cyclophilin Transcripts Are Highly Accumulated in the Nodule Meristem Zone. MPMI 2001, 14, 1384–1394. [Google Scholar] [CrossRef]
- Ahn, J.C.; Kim, D.-W.; You, Y.N.; Seok, M.S.; Park, J.M.; Hwang, H.; Kim, B.-G.; Luan, S.; Park, H.-S.; Cho, H.S. Classification of Rice (Oryza Satival. Japonica Nipponbare) Immunophilins (FKBPs, CYPs) and Expression Patterns under Water Stress. BMC Plant. Biol. 2010, 10, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trupkin, S.A.; Mora-García, S.; Casal, J.J. The Cyclophilin ROC1 Links Phytochrome and Cryptochrome to Brassinosteroid Sensitivity. Plant J. 2012, 71, 712–723. [Google Scholar] [CrossRef] [PubMed]
- Nuc, K.; Olejnik, P.; Samardakiewicz, M.; Nuc, P. Functional Analysis of the Lupinus Luteus Cyclophilin Gene Promoter Region in Lotus Japonicus. Agriculture 2021, 11, 435. [Google Scholar] [CrossRef]
- Aloui, A.; Recorbet, G.; Gollotte, A.; Robert, F.; Valot, B.; Gianinazzi-Pearson, V.; Aschi-Smiti, S.; Dumas-Gaudot, E. On the Mechanisms of Cadmium Stress Alleviation in Medicago Truncatula by Arbuscular Mycorrhizal Symbiosis: A Root Proteomic Study. Proteomics 2009, 9, 420–433. [Google Scholar] [CrossRef]
- Gullerova, M.; Barta, A.; Lorkovic, Z.J. AtCyp59 Is a Multidomain Cyclophilin from Arabidopsis Thaliana That Interacts with SR Proteins and the C-Terminal Domain of the RNA Polymerase II. RNA 2006, 12, 631–643. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Matunis, M.J.; Kraemer, D.; Blobel, G.; Coutavas, E. Nup358, a Cytoplasmically Exposed Nucleoporin with Peptide Repeats, Ran-GTP Binding Sites, Zinc Fingers, a Cyclophilin A Homologous Domain, and a Leucine-Rich Region. J. Biol. Chem. 1995, 270, 14209–14213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Graveley, B.R. Sorting out the Complexity of SR Protein Functions. RNA 2000, 6, 1197–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanford, J.R.; Longman, D.; Cáceres, J.F. Multiple Roles of the SR Protein Family in Splicing Regulation. Prog. Mol. Subcell. Biol. 2003, 31, 33–58. [Google Scholar] [CrossRef] [PubMed]
- Ke, H.M.; Zydowsky, L.D.; Liu, J.; Walsh, C.T. Crystal Structure of Recombinant Human T-Cell Cyclophilin A at 2.5 A Resolution. Proc. Natl. Acad. Sci. USA 1991, 88, 9483–9487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braaten, D.; Ansari, H.; Luban, J. The Hydrophobic Pocket of Cyclophilin Is the Binding Site for the Human Immunodeficiency Virus Type 1 Gag Polyprotein. J. Virol. 1997, 71, 2107–2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motohashi, K.; Kondoh, A.; Stumpp, M.T.; Hisabori, T. Comprehensive Survey of Proteins Targeted by Chloroplast Thioredoxin. Proc. Natl. Acad. Sci. USA 2001, 98, 11224–11229. [Google Scholar] [CrossRef] [Green Version]
- Motohashi, K.; Koyama, F.; Nakanishi, Y.; Ueoka-Nakanishi, H.; Hisabori, T. Chloroplast Cyclophilin Is a Target Protein of Thioredoxin. Thiol Modulation of the Peptidyl-Prolyl Cis-Trans Isomerase Activity. J. Biol. Chem. 2003, 278, 31848–31852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, H.; Kaur, K.; Singh, M.; Kaur, G.; Singh, P. Plant Cyclophilins: Multifaceted Proteins With Versatile Roles. Front. Plant. Sci. 2020, 11, 585212. [Google Scholar] [CrossRef]
- Kumari, S.; Joshi, R.; Singh, K.; Roy, S.; Tripathi, A.K.; Singh, P.; Singla-Pareek, S.L.; Pareek, A. Expression of a Cyclophilin OsCyp2-P Isolated from a Salt-Tolerant Landrace of Rice in Tobacco Alleviates Stress via Ion Homeostasis and Limiting ROS Accumulation. Funct. Integr. Genom. 2015, 15, 395–412. [Google Scholar] [CrossRef]
- Bray, E.A. Plant Responses to Water Deficit. Trends Plant. Sci. 1997, 2, 48–54. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Agarwal, P.; Reddy, M.K.; Sopory, S.K. Role of DREB Transcription Factors in Abiotic and Biotic Stress Tolerance in Plants. Plant Cell Rep. 2006, 25, 1263–1274. [Google Scholar] [CrossRef] [PubMed]
- Matters, G.L.; Scandalios, J.G. Changes in Plant Gene Expression during Stress. Dev. Genet. 1986, 7, 167–175. [Google Scholar] [CrossRef]
- Haak, D.C.; Fukao, T.; Grene, R.; Hua, Z.; Ivanov, R.; Perrella, G.; Li, S. Multilevel Regulation of Abiotic Stress Responses in Plants. Front. Plant. Sci. 2017, 8, 1564. [Google Scholar] [CrossRef] [PubMed]
- Ni, F.-T.; Chu, L.-Y.; Shao, H.-B.; Liu, Z.-H. Gene Expression and Regulation of Higher Plants Under Soil Water Stress. Curr. Genom. 2009, 10, 269–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamil, A.; Riaz, S.; Ashraf, M.; Foolad, M.R. Gene Expression Profiling of Plants under Salt Stress. Crit. Rev. Plant. Sci. 2011, 30, 435–458. [Google Scholar] [CrossRef]
- Shinozaki, K.; Yamaguchi-Shinozaki, K.; Seki, M. Regulatory Network of Gene Expression in the Drought and Cold Stress Responses. Curr. Opin. Plant. Biol. 2003, 6, 410–417. [Google Scholar] [CrossRef]
- Marivet, J.; Frendo, P.; Burkard, G. Effects of Abiotic Stresses on Cyclophilin Gene Expression in Maize and Bean and Sequence Analysis of Bean Cyclophilin CDNA. Plant Sci. 1992, 84, 171–178. [Google Scholar] [CrossRef]
- Marivet, J.; Margis-Pinheiro, M.; Frendo, P.; Burkard, G. Bean Cyclophilin Gene Expression during Plant Development and Stress Conditions. Plant Mol. Biol. 1994, 26, 1181–1189. [Google Scholar] [CrossRef]
- Luan, S.; Lane, W.S.; Schreiber, S.L. PCyP B: A Chloroplast-Localized, Heat Shock-Responsive Cyclophilin from Fava Bean. Plant Cell 1994, 6, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Meza-Zepeda, L.A.; Baudo, M.M.; Palva, E.T.; Heino, P. Isolation and Characterization of a CDNA Corresponding to a Stress-Activated Cyclophilin Gene in Solanum Commersonii. J. Exp. Bot. 1998, 49, 1451–1452. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Xie, Y.; Ma, J.; Luo, X.; Nie, P.; Zuo, Z.; Lahrmann, U.; Zhao, Q.; Zheng, Y.; Zhao, Y.; et al. IBS: An Illustrator for the Presentation and Visualization of Biological Sequences. Bioinformatics 2015, 31, 3359–3361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kai, H.; Iba, K. Temperature Stress in Plants. In eLS; John Wiley & Sons, Ltd: Chichester, UK, 2014. [Google Scholar]
- Munns, R. Comparative Physiology of Salt and Water Stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Nyathi, Y.; Baker, A. Plant Peroxisomes as a Source of Signalling Molecules. Biochim. Biophys. Acta Mol. Cell Res. 2006, 1763, 1478–1495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.-P.; Wang, G.-L.; Qu, Z.-L.; Lu, C.-X.; Liu, N.; Wang, F.; Xia, G.-X. Ectopic Expression of ThCYP1, a Stress-Responsive Cyclophilin Gene from Thellungiella Halophila, Confers Salt Tolerance in Fission Yeast and Tobacco Cells. Plant Cell Rep. 2007, 26, 237–245. [Google Scholar] [CrossRef]
- Sakuma, Y.; Maruyama, K.; Qin, F.; Osakabe, Y.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Dual Function of an Arabidopsis Transcription Factor DREB2A in Water-Stress-Responsive and Heat-Stress-Responsive Gene Expression. Proc. Natl. Acad. Sci. USA 2006, 103, 18822–18827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sirpiö, S.; Holmström, M.; Battchikova, N.; Aro, E.-M. AtCYP20-2 Is an Auxiliary Protein of the Chloroplast NAD(P)H Dehydrogenase Complex. FEBS Lett. 2009, 583, 2355–2358. [Google Scholar] [CrossRef] [Green Version]
- Lim, G.-H.; Zhang, X.; Chung, M.-S.; Lee, D.J.; Woo, Y.-M.; Cheong, H.-S.; Kim, C.S. A Putative Novel Transcription Factor, AtSKIP, Is Involved in Abscisic Acid Signalling and Confers Salt and Osmotic Tolerance in Arabidopsis. New Phytol. 2010, 185, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Xie, K.; Yao, J.; Qi, Z.; Xiong, L. A Homolog of Human Ski-Interacting Protein in Rice Positively Regulates Cell Viability and Stress Tolerance. Proc. Natl. Acad. Sci. USA 2009, 106, 6410–6415. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.-K.; Bohnert, H.J. Plant Cellular and Molecular Responses to High Salinity. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.S.; Park, H.J.; Yoon, D.H.; Kim, B.-G.; Ahn, J.C.; Luan, S.; Cho, H.S. Rice Cyclophilin OsCYP18-2 Is Translocated to the Nucleus by an Interaction with SKIP and Enhances Drought Tolerance in Rice and Arabidopsis. Plant Cell Environ. 2015, 38, 2071–2087. [Google Scholar] [CrossRef]
- Trivedi, D.K.; Yadav, S.; Vaid, N.; Tuteja, N. Genome Wide Analysis of Cyclophilin Gene Family from Rice and Arabidopsis and Its Comparison with Yeast. Plant. Signal. Behav. 2012, 7, 1653–1666. [Google Scholar] [CrossRef] [Green Version]
- Scholze, C.; Peterson, A.; Diettrich, B.; Luckner, M. Cyclophilin Isoforms from Digitalis Lanata. Sequences and Expression During Embryogenesis and Stress. J. Plant. Physiol. 1999, 155, 212–219. [Google Scholar] [CrossRef]
- Schönbrunner, E.R.; Mayer, S.; Tropschug, M.; Fischer, G.; Takahashi, N.; Schmid, F.X. Catalysis of Protein Folding by Cyclophilins from Different Species. J. Biol. Chem. 1991, 266, 3630–3635. [Google Scholar] [CrossRef]
- Parsell, D.A.; Lindquist, S. The Function of Heat-Shock Proteins in Stress Tolerance: Degradation and Reactivation of Damaged Proteins. Annu. Rev. Genet. 1993, 27, 437–496. [Google Scholar] [CrossRef]
- Leustek, T.; Martin, M.N.; Bick, J.-A.; Davies, J.P. Pathways and Regulation of Sulfur Metabolism Revealed Through Molecular and Genetic Studies. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 2000, 51, 141–165. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, K.; Priyanka, B.; Reddy, V.D.; Rao, K.V. Isolation and Characterization of a Pigeonpea Cyclophilin (CcCYP) Gene, and Its over-Expression in Arabidopsis Confers Multiple Abiotic Stress Tolerance. Plant Cell Environ. 2010, 33, 1324–1338. [Google Scholar] [CrossRef]
- Park, S.-W.; Li, W.; Viehhauser, A.; He, B.; Kim, S.; Nilsson, A.K.; Andersson, M.X.; Kittle, J.D.; Ambavaram, M.M.R.; Luan, S.; et al. Cyclophilin 20-3 Relays a 12-Oxo-Phytodienoic Acid Signal during Stress Responsive Regulation of Cellular Redox Homeostasis. Proc. Natl. Acad. Sci. USA 2013, 110, 9559–9564. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Nguyen, N.H.; Nguyen, N.T.; Hong, S.-W.; Lee, H. Loss of All Three Calreticulins, CRT1, CRT2 and CRT3, Causes Enhanced Sensitivity to Water Stress in Arabidopsis. Plant Cell Rep. 2013, 32, 1843–1853. [Google Scholar] [CrossRef]
- Agurla, S.; Gahir, S.; Munemasa, S.; Murata, Y.; Raghavendra, A.S. Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress. Adv. Exp. Med. Biol. 2018, 1081, 215–232. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, J.I.; Allen, G.J.; Hugouvieux, V.; Kwak, J.M.; Waner, D. Guard Cell Signal Transduction. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 2001, 52, 627–658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kollist, H.; Nuhkat, M.; Roelfsema, M.R.G. Closing Gaps: Linking Elements That Control Stomatal Movement. New Phytol. 2014, 203, 44–62. [Google Scholar] [CrossRef]
- Munemasa, S.; Hauser, F.; Park, J.; Waadt, R.; Brandt, B.; Schroeder, J.I. Mechanisms of Abscisic Acid-Mediated Control of Stomatal Aperture. Curr. Opin. Plant. Biol. 2015, 28, 154–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Wang, X.Q.; Watson, M.B.; Assmann, S.M. Regulation of Abscisic Acid-Induced Stomatal Closure and Anion Channels by Guard Cell AAPK Kinase. Science 2000, 287, 300–303. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-Q.; Ullah, H.; Jones, A.M.; Assmann, S.M. G Protein Regulation of Ion Channels and Abscisic Acid Signaling in Arabidopsis Guard Cells. Science 2001, 292, 2070–2072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pei, Z.M.; Murata, Y.; Benning, G.; Thomine, S.; Klüsener, B.; Allen, G.J.; Grill, E.; Schroeder, J.I. Calcium Channels Activated by Hydrogen Peroxide Mediate Abscisic Acid Signalling in Guard Cells. Nature 2000, 406, 731–734. [Google Scholar] [CrossRef] [PubMed]
- Murata, Y.; Mori, I.C.; Munemasa, S. Diverse Stomatal Signaling and the Signal Integration Mechanism. Annu. Rev. Plant. Biol. 2015, 66, 369–392. [Google Scholar] [CrossRef]
- Kwak, J.M.; Mori, I.C.; Pei, Z.-M.; Leonhardt, N.; Torres, M.A.; Dangl, J.L.; Bloom, R.E.; Bodde, S.; Jones, J.D.G.; Schroeder, J.I. NADPH Oxidase AtrbohD and AtrbohF Genes Function in ROS-Dependent ABA Signaling in Arabidopsis. EMBO J. 2003, 22, 2623–2633. [Google Scholar] [CrossRef]
- Yang, T.; Poovaiah, B.W. Hydrogen Peroxide Homeostasis: Activation of Plant Catalase by Calcium/Calmodulin. Proc. Natl. Acad. Sci. USA 2002, 99, 4097–4102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittler, R. Oxidative Stress, Antioxidants and Stress Tolerance. Trends Plant. Sci. 2002, 7, 405–410. [Google Scholar] [CrossRef]
- Palma, J.M.; Corpas, F.J.; Río, L.A. del Proteome of Plant Peroxisomes: New Perspectives on the Role of These Organelles in Cell Biology. Proteomics 2009, 9, 2301–2312. [Google Scholar] [CrossRef]
- Liu, H.; Shen, J.; Yuan, C.; Lu, D.; Acharya, B.R.; Wang, M.; Chen, D.; Zhang, W. The Cyclophilin ROC3 Regulates ABA-Induced Stomatal Closure and the Drought Stress Response of Arabidopsis Thaliana. Front. Plant Sci. 2021, 12, 668792. [Google Scholar] [CrossRef]
- Yamaguchi-Shinozaki, K.; Shinozaki, K. Transcriptional Regulatory Networks in Cellular Responses and Tolerance to Dehydration and Cold Stresses. Annu. Rev. Plant Biol. 2006, 57, 781–803. [Google Scholar] [CrossRef] [Green Version]
- Ju, Y.; Min, Z.; Yue, X.; Zhang, Y.; Zhang, J.; Zhang, Z.; Fang, Y. Overexpression of Grapevine VvNAC08 Enhances Drought Tolerance in Transgenic Arabidopsis. Plant. Physiol. Biochem. 2020, 151, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Leong, G.M.; Subramaniam, N.; Issa, L.L.; Barry, J.B.; Kino, T.; Driggers, P.H.; Hayman, M.J.; Eisman, J.A.; Gardiner, E.M. Ski-Interacting Protein, a Bifunctional Nuclear Receptor Coregulator That Interacts with N-CoR/SMRT and P300. Biochem. Biophys. Res. Commun. 2004, 315, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Folk, P.; Půta, F.; Skružný, M. Transcriptional Coregulator SNW/SKIP: The Concealed Tie of Dissimilar Pathways. Cell. Mol. Life Sci. 2004, 61, 629–640. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, J.D.; Hayman, M.J. Differential Effects of the Ski-Interacting Protein (SKIP) on Differentiation Induced by Transforming Growth Factor-Β1 and Bone Morphogenetic Protein-2 in C2C12 Cells. Exp. Cell Res. 2004, 296, 163–172. [Google Scholar] [CrossRef]
- Lee, S.S.; Park, H.J.; Jung, W.Y.; Lee, A.; Yoon, D.H.; You, Y.N.; Kim, H.-S.; Kim, B.-G.; Ahn, J.C.; Cho, H.S. OsCYP21-4, a Novel Golgi-Resident Cyclophilin, Increases Oxidative Stress Tolerance in Rice. Front. Plant. Sci. 2015. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.D.; Singh, P. Effect of Water Stress on Expression of a 20 KD Cyclophilin-like Protein in Drought Susceptible and Tolerant Cultivars of Sorghum. J. Plant Biochem. Biotechnol. 2003, 12, 77–80. [Google Scholar] [CrossRef]
- Cheng, L.; Wang, Y.; He, Q.; Li, H.; Zhang, X.; Zhang, F. Comparative Proteomics Illustrates the Complexity of Drought Resistance Mechanisms in Two Wheat (Triticum Aestivum L.) Cultivars under Dehydration and Rehydration. BMC Plant Biol. 2016, 16, 188. [Google Scholar] [CrossRef] [Green Version]
- Godoy, A.V.; Lazzaro, A.S.; Casalongué, C.A.; San Segundo, B. Expression of a Solanum Tuberosum Cyclophilin Gene Is Regulated by Fungal Infection and Abiotic Stress Conditions. Plant Sci. 2000, 152, 123–134. [Google Scholar] [CrossRef]
- Yan, H.; Zhou, B.; He, W.; Nie, Y.; Li, Y.; Yan, H.; Zhou, B.; He, W.; Nie, Y.; Li, Y. Expression Characterisation of Cyclophilin BrROC1 during Light Treatment and Abiotic Stresses Response in Brassica Rapa Subsp. Rapa ‘Tsuda’ Funct. Plant Biol. 2018, 45, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef]
- Kim, S.-K.; You, Y.N.; Park, J.C.; Joung, Y.; Kim, B.-G.; Ahn, J.C.; Cho, H.S. The Rice Thylakoid Lumenal Cyclophilin OsCYP20-2 Confers Enhanced Environmental Stress Tolerance in Tobacco and Arabidopsis. Plant Cell Rep. 2012, 31, 417–426. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, Y.; Li, Y.; Bhatti, K.H.; Tian, Y.; Wu, J. Overexpression of a Cotton Cyclophilin Gene (GhCyp1) in Transgenic Tobacco Plants Confers Dual Tolerance to Salt Stress and Pseudomonas Syringae Pv. Tabaci Infection. Plant Physiol. Biochem. 2011, 49, 1264–1271. [Google Scholar] [CrossRef]
- Goulas, E.; Schubert, M.; Kieselbach, T.; Kleczkowski, L.A.; Gardeström, P.; Schröder, W.; Hurry, V. The Chloroplast Lumen and Stromal Proteomes of Arabidopsis Thaliana Show Differential Sensitivity to Short- and Long-Term Exposure to Low Temperature. Plant J. 2006, 47, 720–734. [Google Scholar] [CrossRef] [PubMed]
- Smith, H. Phytochromes and Light Signal Perception by Plants—An Emerging Synthesis. Nature 2000, 407, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Romano, P.G.N.; Edvardsson, A.; Ruban, A.V.; Andersson, B.; Vener, A.V.; Gray, J.E.; Horton, P. Arabidopsis AtCYP20-2 Is a Light-Regulated Cyclophilin-Type Peptidyl-Prolyl Cis-Trans Isomerase Associated with the Photosynthetic Membranes. Plant Physiol. 2004, 134, 1244–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, P.; Duan, W.; Takabayashi, A.; Endo, T.; Shikanai, T.; Ye, J.-Y.; Mi, H. Chloroplastic NAD(P)H Dehydrogenase in Tobacco Leaves Functions in Alleviation of Oxidative Damage Caused by Temperature Stress. Plant Physiol. 2006, 141, 465–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dominguez-Solis, J.R.; He, Z.; Lima, A.; Ting, J.; Buchanan, B.B.; Luan, S. A Cyclophilin Links Redox and Light Signals to Cysteine Biosynthesis and Stress Responses in Chloroplasts. Proc. Natl. Acad. Sci. USA 2008, 105, 16386–16391. [Google Scholar] [CrossRef] [Green Version]
- Kong, H.Y.; Lee, S.C.; Hwang, B.K. Expression of Pepper Cyclophilin Gene Is Differentially Regulated during the Pathogen Infection and Abiotic Stress Conditions. Physiol. Mol. Plant Pathol. 2001, 59, 189–199. [Google Scholar] [CrossRef]
- Yang, H.; Xu, L.; Cui, H.; Zhong, B.; Liu, G.; Shi, H. Low Nitrogen-Induced Expression of Cyclophilin in Nicotiana Tabacum. J. Plant Res. 2013, 126, 121–129. [Google Scholar] [CrossRef]
- Baker, B.; Zambryski, P.; Staskawicz, B.; Dinesh-Kumar, S.P. Signaling in Plant-Microbe Interactions. Science 1997, 276, 726–733. [Google Scholar] [CrossRef]
- Dangl, J.L.; Jones, J.D. Plant Pathogens and Integrated Defence Responses to Infection. Nature 2001, 411, 826–833. [Google Scholar] [CrossRef]
- Collmer, A.; Lindeberg, M.; Petnicki-Ocwieja, T.; Schneider, D.J.; Alfano, J.R. Genomic Mining Type III Secretion System Effectors in Pseudomonas Syringae Yields New Picks for All TTSS Prospectors. Trends Microbiol. 2002, 10, 462–469. [Google Scholar] [CrossRef]
- Mudgett, M.B.; Staskawicz, B.J. Characterization of the Pseudomonas Syringae Pv. Tomato AvrRpt2 Protein: Demonstration of Secretion and Processing during Bacterial Pathogenesis. Mol. Microbiol. 1999, 32, 927–941. [Google Scholar] [CrossRef] [PubMed]
- Coaker, G.; Falick, A.; Staskawicz, B. Activation of a Phytopathogenic Bacterial Effector Protein by a Eukaryotic Cyclophilin. Science 2005, 308, 548–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coaker, G.; Zhu, G.; Ding, Z.; Doren, S.R.V.; Staskawicz, B. Eukaryotic Cyclophilin as a Molecular Switch for Effector Activation. Mol. Microbiol. 2006, 61, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
- Day, B.; Dahlbeck, D.; Huang, J.; Chisholm, S.T.; Li, D.; Staskawicz, B.J. Molecular Basis for the RIN4 Negative Regulation of RPS2 Disease Resistance. Plant Cell 2005, 17, 1292–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pogorelko, G.V.; Mokryakova, M.; Fursova, O.V.; Abdeeva, I.; Piruzian, E.S.; Bruskin, S.A. Characterization of Three Arabidopsis Thaliana Immunophilin Genes Involved in the Plant Defense Response against Pseudomonas Syringae. Gene 2014, 538, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Kovtun, Y.; Chiu, W.L.; Tena, G.; Sheen, J. Functional Analysis of Oxidative Stress-Activated Mitogen-Activated Protein Kinase Cascade in Plants. Proc. Natl. Acad. Sci. USA 2000, 97, 2940–2945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamel, L.-P.; Nicole, M.-C.; Duplessis, S.; Ellis, B.E. Mitogen-Activated Protein Kinase Signaling in Plant-Interacting Fungi: Distinct Messages from Conserved Messengers. Plant Cell 2012, 24, 1327–1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eulgem, T.; Rushton, P.J.; Robatzek, S.; Somssich, I.E. The WRKY Superfamily of Plant Transcription Factors. Trends Plant Sci. 2000, 5, 199–206. [Google Scholar] [CrossRef]
- Mao, G.; Meng, X.; Liu, Y.; Zheng, Z.; Chen, Z.; Zhang, S. Phosphorylation of a WRKY Transcription Factor by Two Pathogen-Responsive MAPKs Drives Phytoalexin Biosynthesis in Arabidopsis. Plant Cell 2011, 23, 1639–1653. [Google Scholar] [CrossRef] [Green Version]
- Rushton, P.J.; Somssich, I.E. Transcriptional Control of Plant Genes Responsive to Pathogens. Curr. Opin. Plant Biol. 1998, 1, 311–315. [Google Scholar] [CrossRef]
- Yang, W.-C.; Ye, D.; Xu, J.; Sundaresan, V. The SPOROCYTELESS Gene of Arabidopsis is required for Initiation of Sporogenesis and Encodes a Novel Nuclear Protein. Genes Dev. 1999, 13, 2108–2117. [Google Scholar] [CrossRef] [Green Version]
- Ye, X.Y.; Ng, T.B. Isolation of Unguilin, a Cyclophilin-like Protein with Anti-Mitogenic, Antiviral, and Antifungal Activities, from Black-Eyed Pea. J. Protein Chem. 2001, 20, 353–359. [Google Scholar] [CrossRef]
- Lee, J.R.; Park, S.-C.; Kim, J.-Y.; Lee, S.S.; Park, Y.; Cheong, G.-W.; Hahm, K.-S.; Lee, S.Y. Molecular and Functional Characterization of a Cyclophilin with Antifungal Activity from Chinese Cabbage. Biochem. Biophys. Res. Commun. 2007, 353, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Ye, X.Y.; Ng, T.B. Isolation of a New Cyclophilin-like Protein from Chickpeas with Mitogenic, Antifungal and Anti-HIV-1 Reverse Transcriptase Activities. Life Sci. 2002, 70, 1129–1138. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Li, S.; Wang, S.; Liu, M.; Wang, W.; Zhao, Y. Molecular Cloning, Expression, Purification and Functional Characterization of an Antifungal Cyclophilin Protein from Panax Ginseng. Biomed. Rep. 2017, 7, 527–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winans, S.C. Two-Way Chemical Signaling in Agrobacterium-Plant Interactions. Microbiol. Rev. 1992, 56, 12–31. [Google Scholar] [CrossRef]
- Deng, W.; Chen, L.; Wood, D.W.; Metcalfe, T.; Liang, X.; Gordon, M.P.; Comai, L.; Nester, E.W. Agrobacterium VirD2 Protein Interacts with Plant Host Cyclophilins. Proc. Natl. Acad. Sci. USA 1998, 95, 7040–7045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Kregten, M.; Lindhout, B.I.; Hooykaas, P.J.J.; van der Zaal, B.J. Agrobacterium-Mediated T-DNA Transfer and Integration by Minimal VirD2 Consisting of the Relaxase Domain and a Type IV Secretion System Translocation Signal. Mol. Plant Microbe Interact. 2009, 22, 1356–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udvardi, M.K. Legume Models Strut Their Stuff. Mol. Plant Microbe Interact. 2001, 14, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Arsenijevic-Maksimovic, I.; Broughton, W.J.; Krause, A. Rhizobia Modulate Root-Hair-Specific Expression of Extensin Genes. MPMI 1997, 10, 95–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, J.A.; Palomares, A.J.; Ratet, P. Plant Genes Induced in the Rhizobium-Legume Symbiosis. World J. Microbiol. Biotechnol. 1996, 12, 189–202. [Google Scholar] [CrossRef]
- Sherrier, D.J.; VandenBosch, K.A. Localization of Repetitive Proline-Rich Proteins in the Extracellular Matrix of Pea Root Nodules. Protoplasma 1994, 183, 148–161. [Google Scholar] [CrossRef]
- Wilson, R.C.; Long, F.; Maruoka, E.M.; Cooper, J.B. A New Proline-Rich Early Nodulin from Medicago Truncatula Is Highly Expressed in Nodule Meristematic Cells. Plant Cell 1994, 6, 1265–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferguson, B.J.; Indrasumunar, A.; Hayashi, S.; Lin, M.-H.; Lin, Y.-H.; Reid, D.E.; Gresshoff, P.M. Molecular Analysis of Legume Nodule Development and Autoregulation. J. Integr. Plant Biol. 2010, 52, 61–76. [Google Scholar] [CrossRef]
- Suzaki, T.; Yano, K.; Ito, M.; Umehara, Y.; Suganuma, N.; Kawaguchi, M. Positive and Negative Regulation of Cortical Cell Division during Root Nodule Development in Lotus Japonicus Is Accompanied by Auxin Response. Development 2013, 139, 3997–4006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Protein Name | Organism | Stress Factor | Expression Response to Stress Factor | Subcellular Localization | Domain Architecture | References |
---|---|---|---|---|---|---|
AtCyP18-1 | Arabidopsis thaliana | heat | up-regulation | cytoplasm | [51] | |
AtCyP18-3 | Arabidopsis thaliana | salinity | up-regulation | cytoplasm | [52] | |
AtCyP19-1 | Arabidopsis thaliana | drought | up-regulation | cytoplasm, nucleus | [53] | |
AtCyP19-2 | Arabidopsis thaliana | temperature | up-regulation | cytoplasm | [54] | |
AtCyP19-4 | Arabidopsis thaliana | salinity | down-regulation | ER | [52] | |
AtCyP20-2 | Arabidopsis thaliana | light temperature | up-regulation | chloroplast tylakoid lumen | [54,55] | |
AtCyP20-3 | Arabidopsis thaliana | light oxidative | Decreased stress tolerance in knock-out mutants. | chloroplast | [56] | |
AtCyP21-2 | Arabidopsis thaliana | drought | Decreased stress tolerance in knock-out mutants. | ER | [57] | |
OsCyP2-P | Oryza sativa | drought, salinity, temperature | upregulated; Ectopic expression increases stress tolerance in mutants. | cytoplasm and nucleus | [36] | |
OsCyP18-2 | Oryza sativa | drought | upregulated; Overexpression increases stress tolerance. | nucleus | [58] | |
OsCyP20-2 | Oryza sativa | salinity light oxidation | upregulated; Ectopic expression increases stress tolerance in mutants. | chloroplast/ tylakoid lumen | [25,59] | |
OsCyP21-4 | Oryza sativa | drought salinity oxidation | upregulated | Golgi apparatus | [60] | |
GhCyP1 | Gossypium Herbaceum | salinity | Ectopic expression increases stress tolerance. | cytoplasm | [61] | |
ThCyP1 | Thellungiella halophile | salinity | Ectopic expression increases stress tolerance. | nucleus | [62] | |
CcCyP | Cajanus cajan | temperature salinity osmotic drought | upregulated; Ectopic expression increases stress tolerance in mutants. | nucleus | [63] | |
ScCyP1 | Solanum commersonii | drought | upregulated | - | [47] | |
StCyP1 | Solanum tuberosum | drought salinity | upregulated | cytoplasm | [64] | |
CaCyP1 | Capsicum annuum | jasmonic acid, salicylic acid (abiotic stress elicitors) | upregulated | - | [65] | |
BrROC1-1 BrROC1-2 | Brassica rapa | drought salinity temperature | upregulated | - | [66] | |
NtCyP2 | Nicotiana tabacum | nitrogen starvation | upregulated | cytoplasm | [67] | |
SorgCyP20 | Sorghum bicolor | drought | upregulated | cytoplasm | [68] |
Protein Name | Organism | Stress Factor | Expression Response to Stress Factor | Subcellular Localization | Domain Architecture | References |
---|---|---|---|---|---|---|
AtCyP18-3 (ROC1) | Arabidopsis. thaliana | Psuedomonas syringae infection | upregulated | cytoplasm | [103] | |
AtCyP19 | Arabidopsis. thaliana | Psuedomonas syringae infection | upregulated | cytoplasm | [106,107,108] | |
AtCyP57 | Arabidopsis. thaliana | Psuedomonas syringae infection | upregulated | cytoplasm and nucleus | [106,107,108] | |
GhCyP1 | Gossypium Herbaceum | Psuedomonas syringae pv. Tabaci infection | upregulated | cytoplasm | [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olejnik, P.; Mądrzak, C.J.; Nuc, K. Cyclophilins and Their Functions in Abiotic Stress and Plant–Microbe Interactions. Biomolecules 2021, 11, 1390. https://doi.org/10.3390/biom11091390
Olejnik P, Mądrzak CJ, Nuc K. Cyclophilins and Their Functions in Abiotic Stress and Plant–Microbe Interactions. Biomolecules. 2021; 11(9):1390. https://doi.org/10.3390/biom11091390
Chicago/Turabian StyleOlejnik, Przemysław, Cezary Jerzy Mądrzak, and Katarzyna Nuc. 2021. "Cyclophilins and Their Functions in Abiotic Stress and Plant–Microbe Interactions" Biomolecules 11, no. 9: 1390. https://doi.org/10.3390/biom11091390
APA StyleOlejnik, P., Mądrzak, C. J., & Nuc, K. (2021). Cyclophilins and Their Functions in Abiotic Stress and Plant–Microbe Interactions. Biomolecules, 11(9), 1390. https://doi.org/10.3390/biom11091390