Metabolomics Coupled with Pathway Analysis Provides Insights into Sarco-Osteoporosis Metabolic Alterations and Estrogen Therapeutic Effects in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Animals and Treatment
2.3. Sample Preparation
2.4. Micro-Computed Tomography and Histological Assessment
2.5. UHPLC-Q-TOF/MS Metabolomics Analysis
2.6. Data Processing &
2.7. Statistical Analysis
2.8. Pathway Analysis
3. Results
3.1. Body, Tissue Weight and Clinical Observation
3.2. Micro-Computed Tomography Assessment
3.3. Skeletal Muscle Histopathology
3.4. Metabolomics Profiling Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Curtis, E.; Litwic, A.; Cooper, C.; Dennison, E. Determinants of Muscle and Bone Aging. J. Cell. Physiol. 2015, 230, 2618–2625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Staa, T.P.V.; Dennison, E.M.; Leufkens, H.G.M.; Cooper, C. Epidemiology of fractures in England and Wales. Bone 2001, 29, 517–522. [Google Scholar] [CrossRef] [Green Version]
- Patel, H.P.; Syddall, H.E.; Jameson, K.; Robinson, S.; Denison, H.; Roberts, H.C.; Edwards, M.; Dennison, E.; Cooper, C.; Sayer, A.A. Prevalence of sarcopenia in community-dwelling older people in the UK using the European Working Group on Sarcopenia in Older People (EWGSOP) definition: Findings from the Hertfordshire Cohort Study (HCS). Age Ageing 2013, 42, 378–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, I.; Shepard, D.S.; Katzmarzyk, P.T.; Roubenoff, R. The Healthcare Costs of Sarcopenia in the United States. J. Am. Geriatr. Soc. 2004, 52, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jönsson, B.K.; Kanis, J.A. Osteoporosis in the European Union: Medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos. 2013, 8, 1–115. [Google Scholar] [CrossRef] [Green Version]
- Cosman, F.; Beur, S.J.; LeBoff, M.S.; Lewiecki, E.M.; Tanner, B.; Randall, S.; Lindsay, R. Clinician’s Guide to Prevention and Treatment of Osteoporosis. Osteoporos. Int. 2014, 25, 2359–2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, P.; Li, Z.; Hu, Y. Prevalence of osteoporosis in China: A meta-analysis and systematic review. BMC Public Health 2016, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radojka, B.; Snjezana, M.; Jagoda, B. Risk Factors for Osteoporosis in Postmenopausal Women. Med Arch. Sarajevo Bosnia Herzeg. 2017, 71, 25–28. [Google Scholar]
- Crandall, C.J.; Larson, J.C.; LaCroix, A.Z.; Robbins, J.A.; Wactawski-Wende, J.; Johnson, K.C.; Sattari, M.; Stone, K.L.; Weitlauf, J.C.; Gure, T.R.; et al. Risk of Subsequent Fractures in Postmenopausal Women After Nontraumatic vs. Traumatic Fractures. JAMA Intern. Med. 2021, 181, 1055–1063. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.F.; Huang, C.F.; Hwang, J.S.; Kuo, J.F.; Lin, K.M.; Huang, H.C.; Bagga, S.; Kumar, A.; Chen, F.P.; Wu, C.H. Fracture liaison services for osteoporosis in the Asia-Pacific region: Current unmet needs and systematic literature review. Osteoporos. Int. 2018, 29, 779–792. [Google Scholar] [CrossRef] [PubMed]
- Kristina, N.; Lindsey, O. Financial impact of sarcopenia or low muscle mass—A short review. Clin. Nutr. 2019, 38, 1489–1495. [Google Scholar]
- Hairi, N.H.; Cumming, R.G.; Naganathan, V.; Handelsman, D.J.; Le Couteur, D.G.; Creasey, H.; Waite, L.M.; Seibel, M.J.; Sambrook, P.N. Loss of Muscle Strength, Mass (Sarcopenia), and Quality (Specific Force) and Its Relationship with Functional Limitation and Physical Disability: The Concord Health and Ageing in Men Project. J. Am. Geriatr. Soc. 2010, 58, 2055–2062. [Google Scholar] [CrossRef]
- Ian, J.; Heymsfield, S.B.; Robert, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Cooper, R.; Kuh, D.; Hardy, R.; Group, M.R. Objectively measured physical capability levels and mortality: Systematic review and meta-analysis. BMJ 2010, 341, c4467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikeda, K.; Horie-Inoue, K.; Inoue, S. Functions of estrogen and estrogen receptor signaling on skeletal muscle. J. Steroid Biochem. Mol. Biol. 2019, 191, 105375. [Google Scholar] [CrossRef] [PubMed]
- Messier, V.; Rabasa-Lhoret, R.; Barbat-Artigas, S.; Elisha, B.; Karelis, A.D.; Aubertin-Leheudre, M. Menopause and sarcopenia: A potential role for sex hormones. Maturitas 2011, 68, 331–336. [Google Scholar] [CrossRef] [PubMed]
- Bettis, T.; Kim, B.-J.; Hamrick, M.W. Impact of muscle atrophy on bone metabolism and bone strength: Implications for muscle-bone crosstalk with aging and disuse. Osteoporos. Int. 2018, 29, 1713–1720. [Google Scholar] [CrossRef]
- Lee, P.; Linderman, J.D.; Smith, S.; Brychta, R.J.; Wang, J.; Idelson, C.; Perron, R.M.; Werner, C.D.; Phan, G.Q.; Kammula, U.S.; et al. Irisin and FGF21 Are Cold-Induced Endocrine Activators of Brown Fat Function in Humans. Cell Metab. 2014, 19, 302–309. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Zhang, Z.-K.; Liang, C.; Li, J.; Liu, J.; Lu, A.; Zhang, B.-T.; Zhang, G. Molecular Communication from Skeletal Muscle to Bone: A Review for Muscle-Derived Myokines Regulating Bone Metabolism. Calcif. Tissue Int. 2017, 100, 184–192. [Google Scholar] [CrossRef] [PubMed]
- Graziana, C.; Concetta, C.; Teresa, M.; Paolo, P.; Cinzia, B.; Peng, L.; Ping, L.; Loris, S.; Mariasevera, D.C.; Giorgio, M.; et al. The myokine irisin increases cortical bone mass. Proc. Natl. Acad. Sci. USA 2015, 112, 12157–12162. [Google Scholar]
- Tagliaferri, C.; Wittrant, Y.; Davicco, M.-J.; Walrand, S.; Coxam, V. Muscle and bone, two interconnected tissues. Ageing Res. Rev. 2015, 21, 55–70. [Google Scholar] [CrossRef] [PubMed]
- Girgis, C.M.; Mokbel, N.; DiGirolamo, D.J. Therapies for musculoskeletal disease: Can we treat two birds with one stone? Curr. Osteoporos. Rep. 2014, 12, 142–153. [Google Scholar] [CrossRef] [Green Version]
- Marta, G.; Giuseppe, B.; Giovanni, L. Myokines: The endocrine coupling of skeletal muscle and bone. Adv. Clin. Chem. 2020, 94, 155–218. [Google Scholar]
- Neta, F.; Elazar, Z. Mechanical regulation of musculoskeletal system development. Development 2017, 144, dev165381. [Google Scholar]
- Lombardi, G.; Sanchis-Gomar, F.; Perego, S.; Sansoni, V.; Banfi, G. Implications of exercise-induced adipo-myokines in bone metabolism. Endocrine 2016, 54, 284–305. [Google Scholar] [CrossRef] [PubMed]
- Wilson, I.D.; Plumb, R.; Granger, J.; Major, H.; Williams, R.; Lenz, E.M. HPLC-MS-based methods for the study of metabonomics. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2005, 817, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Smilde, A.K.; Westerhuis, J.A.; Hoefsloot, H.C.; Bijlsma, S.; Rubingh, C.M.; Vis, D.J.; Jellema, R.H.; Pijl, H.; Roelfsema, F.; van der Greef, J. Dynamic metabolomic data analysis: A tutorial review. Metab. Off. J. Metab. Soc. 2010, 6, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Wei, Z.; Xi, J.; Gao, S.; You, X.; Li, N.; Cao, Y.; Wang, L.; Luan, Y.; Dong, X. Metabolomics coupled with pathway analysis characterizes metabolic changes in response to BDE-3 induced reproductive toxicity in mice. Sci. Rep. 2018, 8, 5423. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Lei, R.; Tiainen, M.; Wu, S.; Zhang, Q.; Pei, F.; Guo, X. Disordered glycometabolism involved in pathogenesis of Kashin-Beck disease, an endemic osteoarthritis in China. Exp. Cell Res. 2014, 326, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Zhai, G.; Wang-Sattler, R.; Hart, D.J.; Arden, N.K.; Hakim, A.J.; Illig, T.; Spector, T.D. Serum branched-chain amino acid to histidine ratio: A novel metabolomic biomarker of knee osteoarthritis. Ann. Rheum. Dis. 2010, 69, 1227–1231. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Xiang, C.; Wang, H.; Yuan, H.; Zhao, X.; Xiao, X. Effect of zoledronic acid therapy on postmenopausal osteoporosis between the Uighur and Han population in Xinjiang: An open-label, long-term safety and efficacy study. J. Clin. Pharm. Ther. 2018, 43, 336–341. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, X.; Zhang, D.; Chen, H.; Chao, Y.; Wu, K.; Dong, X.; Su, J. Integrative Bone Metabolomics-Lipidomics Strategy for Pathological Mechanism of Postmenopausal Osteoporosis Mouse Model. Sci. Rep. 2018, 8, 16456. [Google Scholar] [CrossRef] [PubMed]
- Sipilä, S.; Poutamo, J. Muscle performance, sex hormones and training in peri-menopausal and post-menopausal women. Scand. J. Med. Sci. Sports 2003, 13, 19–25. [Google Scholar] [CrossRef]
- Abmayr, S.M.; Pavlath, G.K. Myoblast fusion: Lessons from flies and mice. Development 2012, 139, 641–656. [Google Scholar] [CrossRef] [Green Version]
- Bijlsma, S.; Bobeldijk, I.; Verheij, E.R.; Ramaker, R.; Kochhar, S.; Macdonald, I.A.; van Ommen, B.; Smilde, A.K. Large-scale human metabolomics studies: A strategy for data (pre-) processing and validation. Anal. Chem. 2006, 78, 567–574. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, H.; Su, Z.; Khoo, C.; Gu, L. Identifying Cranberry Juice Consumers with Predictive OPLS-DA Models of Plasma Metabolome and Validation of Cranberry Juice Intake Biomarkers in a Double-Blinded, Randomized, Placebo-Controlled, Cross-Over Study. Mol. Nutr. Food Res. 2020, 64, e1901242. [Google Scholar] [CrossRef]
- Muramatsu, M.; Inoue, S. Estrogen Receptors: How Do They Control Reproductive and Nonreproductive Functions? Biochem. Biophys. Res. Commun. 2000, 270, 1–10. [Google Scholar] [CrossRef]
- Nilsson, S.; Gustafsson, J.Å. Estrogen receptors: Therapies targeted to receptor subtypes. Clin. Pharmacol. Ther. 2011, 89, 44–55. [Google Scholar] [CrossRef]
- Pöllänen, E.; Sipilä, S.; Alen, M.; Ronkainen, P.H.; Ankarberg-Lindgren, C.; Puolakka, J.; Suominen, H.; Hämäläinen, E.; Turpeinen, U.; Konttinen, Y.T.; et al. Differential influence of peripheral and systemic sex steroids on skeletal muscle quality in pre- and postmenopausal women. Aging Cell 2011, 10, 650–660. [Google Scholar] [CrossRef] [Green Version]
- Gillies, G.E.; McArthur, S. Estrogen actions in the brain and the basis for differential action in men and women: A case for sex-specific medicines. Pharmacol. Rev. 2010, 62, 155–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Souza, M.J.; Koltun, K.J.; Etter, C.V.; Southmayd, E.A. Current Status of the Female Athlete Triad: Update and Future Directions. Curr. Osteoporos. Rep. 2017, 15, 577–587. [Google Scholar] [CrossRef]
- Marcus, R.; Cann, C.; Madvig, P.; Minkoff, J.; Goddard, M.; Bayer, M.; Genant, H. Menstrual function and bone mass in elite women distance runners. Endocrine and metabolic features. Ann. Intern. Med. 1985, 102, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Hamrick, M.W. A role for myokines in muscle-bone interactions. Exerc. Sport Sci. Rev. 2011, 39, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamrick, M.W.; McNeil, P.L.; Patterson, S.L. Role of muscle-derived growth factors in bone formation. J. Musculoskelet. Neuronal Interact. 2010, 10, 64. [Google Scholar]
- Hua, S.; Susan, G.; Roberto, C.; Stavros, T. Deletion of connexin43 in osteoblasts/osteocytes leads to impaired muscle formation in mice. J. Bone Miner. Res. Off. J. Am. Soc. Bone Miner. Res. 2015, 30, 596–605. [Google Scholar]
- Karsenty, G.; Mera, P. Molecular bases of the crosstalk between bone and muscle. Bone 2018, 115, 43–49. [Google Scholar] [CrossRef]
- Väänänen, H.K.; Härkönen, P.L. Estrogen and bone metabolism. Maturitas 1996, 23, S65–S69. [Google Scholar] [CrossRef]
- Komm, B.S.; Morgenstern, D.; Luis, A.Y.; Jenkins, S.N. The safety and tolerability profile of therapies for the prevention and treatment of osteoporosis in postmenopausal women. Expert Rev. Clin. Pharmacol. 2015, 8, 769–784. [Google Scholar] [CrossRef]
- Hongrong, D.; Shujie, C.; Xiaohan, P.; Xiaoshuang, D.; Guihua, P.; Ze, L.; Xudong, M.; Ye, T.; Susu, Z.; Bingdong, L.; et al. Transferrin receptor 1 ablation in satellite cells impedes skeletal muscle regeneration through activation of ferroptosis. J. Cachexia Sarcopenia Muscle 2021, 12, 746–768. [Google Scholar]
- Jenkitkasemwong, S.; Wang, C.-Y.; Coffey, R.; Zhang, W.; Chan, A.; Biel, T.; Kim, J.-S.; Hojyo, S.; Fukada, T.; Knutson, M.D. SLC39A14 Is Required for the Development of Hepatocellular Iron Overload in Murine Models of Hereditary Hemochromatosis. Cell Metab. 2015, 22, 138–150. [Google Scholar] [CrossRef] [Green Version]
- Liuzzi, J.P.; Fikret, A.; Hyeyoung, N.; Knutson, M.D.; Cousins, R.J. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proc. Natl. Acad. Sci. USA 2006, 103, 13612–13617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gianfranca, C.; Imma, C.; Antonella, M.; Pietro, A.; Manfredi, A.A.; Clara, C.; Patrizia, R.-Q. The Repair of Skeletal Muscle Requires Iron Recycling through Macrophage Ferroportin. J. Immunol. 2016, 197, 1914–1925. [Google Scholar]
- Neelam, C.; Yashveer, S. L-histidine controls the hydroxyapatite mineralization with plate-like morphology: Effect of concentration and media. Mater. Sci. Eng. C 2021, 120, 111669. [Google Scholar]
- Wei, D.; Mengchun, Q.; Yirui, W.; Xiaojie, F.; Hongchen, L. Zoledronate and high glucose levels influence osteoclast differentiation and bone absorption via the AMPK pathway. Biochem. Biophys. Res. Commun. 2018, 505, 1195–1202. [Google Scholar]
- Liu, L.-P.; Liu, J.-F.; Lu, Y.-Q. Effects of Sheng-Mai injection on the PRPP synthetase activity in BFU-Es and CFU-Es from bone marrows of mice with benzene-induced aplastic anemia. Life Sci. 2001, 69, 1373–1379. [Google Scholar] [CrossRef]
- Antonioli, L.; Blandizzi, C.; Pacher, P.; Haskó, G. Immunity, inflammation and cancer: A leading role for adenosine. Nat. Rev. Cancer 2013, 13, 842–857. [Google Scholar] [CrossRef] [PubMed]
- Antonioli, L.; Colucci, R.; Pellegrini, C.; Giustarini, G.; Tuccori, M.; Blandizzi, C.; Fornai, M. The role of purinergic pathways in the pathophysiology of gut diseases: Pharmacological modulation and potential therapeutic applications. Pharmacol. Ther. 2013, 139, 157–188. [Google Scholar] [CrossRef]
- Takahashi, S.; Yamamoto, T.; Moriwaki, Y.; Tsutsumi, Z.; Yamakita, J.I.; Higashino, K. Decreased serum concentrations of 1,25(OH)2-vitamin D3 in patients with gout. Adv. Exp. Med. Biol. 1998, 431, 336–338. [Google Scholar]
- Li, L.; Yan, W.; Lei, Z.; Peng, X.; Xiao, L.; Yanan, D.; Ping, L.; Awen, H.; QianRui, F.; Jingcan, H.; et al. Assessing the Associations of Blood Metabolites With Osteoporosis: A Mendelian Randomization Study. J. Clin. Endocrinol. Metab. 2018, 103, 1850–1855. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, P.J.; Rolo, A.P.; Palmeira, C.M.; Moreno, A.J. Carvedilol reduces mitochondrial damage induced by hypoxanthine/xanthine oxidase: Relevance to hypoxia/reoxygenation injury. Cardiovasc. Toxicol. 2001, 1, 205–213. [Google Scholar] [CrossRef] [Green Version]
- Negro, M.; Giardina, S.; Marzani, B.; Marzatico, F. Branched-chain amino acid supplementation does not enhance athletic performance but affects muscle recovery and the immune system. J. Sports Med. Phys. Fit. 2008, 48, 347. [Google Scholar]
- Laura, B.-M.; Antonia, M.-H.M.; Marta, P.-G.; Isabel, R.-G.M.; Manuel, E.-U. Arginine Biosynthesis Modulates Pyoverdine Production and Release in Pseudomonas putida as Part of the Mechanism of Adaptation to Oxidative Stress. J. Bacteriol. 2019, 201, e00454-19. [Google Scholar]
- Guggenbuhl, P.; Fergelot, P.; Doyard, M.; Libouban, H.; Roth, M.-P.; Gallois, Y.; Chalès, G.; Loréal, O.; Chappard, D. Bone status in a mouse model of genetic hemochromatosis. Osteoporos. Int. 2011, 22, 2313–2319. [Google Scholar] [CrossRef] [Green Version]
- Viktória, J. Clinical Impact and Cellular Mechanisms of Iron Overload-Associated Bone Loss. Front. Pharmacol. 2017, 8, 77. [Google Scholar]
- Simão, M.; Camacho, A.; Ostertag, A.; Cohen-Solal, M.; Pinto, I.J.; Porto, G.; Korng, E.H.; Cancela, M.L. Iron-enriched diet contributes to early onset of osteoporotic phenotype in a mouse model of hereditary hemochromatosis. PLoS ONE 2018, 13, e0207441. [Google Scholar] [CrossRef]
- Wang, X.; Fei, B.; Shen, G.; Jiang, Y.; Zhang, W.; Huang, X.; Xu, Y. Iron overload increases osteoclastogenesis and aggravates the effects of ovariectomy on bone mass. J. Endocrinol. 2015, 226, 121–134. [Google Scholar]
- Liu, X.; Zhang, S.; Lu, X.; Zheng, S.; Li, F.; Xiong, Z. Metabonomic study on the anti-osteoporosis effect of Rhizoma Drynariae and its action mechanism using ultra-performance liquid chromatography–tandem mass spectrometry. J. Ethnopharmacol. 2012, 139, 311–317. [Google Scholar] [CrossRef]
- Yadav, V.K.; Ryu, J.-H.; Suda, N.; Tanaka, K.F.; Gingrich, J.A.; Schütz, G.; Glorieux, F.H.; Chiang, C.Y.; Zajac, J.D.; Insogna, K.L.; et al. Lrp5 Controls Bone Formation by Inhibiting Serotonin Synthesis in the Duodenum. Cell 2008, 135, 825–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sattin, A.; Pekary, A.E.; Blood, J. Escitalopram Regulates Expression of TRH and TRH-Like Peptides in Rat Brain and Peripheral Tissues. Neuroendocrinology 2008, 88, 135–146. [Google Scholar] [CrossRef] [PubMed]
- Wood, A.W.; Duan, C.; Bern, H.A. Insulin-Like Growth Factor Signaling in Fish. Int. Rev. Cytol. 2005, 243, 215–285. [Google Scholar] [PubMed]
- Cassano, M.; Quattrocelli, M.; Crippa, S.; Perini, I.; Ronzoni, F.; Sampaolesi, M. Cellular mechanisms and local progenitor activation to regulate skeletal muscle mass. J. Muscle Res. Cell Motil. 2009, 30, 243–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, C.H.; Ivanisevic, J.; Siuzdak, G. Metabolomics: Beyond biomarkers and towards mechanisms. Nat. Rev. Mol. Cell Biol. 2016, 17, 451–459. [Google Scholar] [CrossRef] [Green Version]
- Johnson, C.H.; Gonzalez, F.J. Challenges and opportunities of metabolomics. J. Cell Physiol. 2012, 227, 2975–2981. [Google Scholar] [CrossRef] [PubMed]
No. | m/z | RT (min) | Name | Formula | Adduct | VIP | FC | Pathway | Phase # | ||
---|---|---|---|---|---|---|---|---|---|---|---|
[Sham-OVX] | [OVX—E2] | [Sham/OVX] | [OVX/E2] | ||||||||
1 | 104.1068 | 0.628326 | Choline | C5H14NO | M+H | 1.99055 | 4.15666 | — | 0.761420332220201 * | Glycerophospholipid metabolism | Ⅰ |
2 | 114.0655 | 0.670794 | Creatinine | C4H7N3O | M+H | 1.12556 | 1.20794 | 1.16838813632129 *** | 0.868640449077801 ** | Arginine biosynthesis | Ⅰ |
3 | 115.0044 | 1.133651 | Fumaric acid | C4H4O4 | M-H | 0.823357 | 1.3535 | 1.18475649691836 ** | 0.782460430064511 *** | — | Ⅰ |
4 | 123.056 | 0.993859 | Niacinamide | C6H6N2O | M+H | 4.34495 | 3.07659 | 1.3146239858077 ** | — | Nicotinate and nicotinamide metabolism | Ⅰ |
5 | 128.9597 | 0.600534 | Dimethyldisulfide | C2H6S2 | M+Cl | 1.33201 | 1.0461 | 1.68360931432131 *** | 0.748896335151599 * | — | Ⅰ |
6 | 132.08 | 0.671339 | 3-Methylindole | C9H9N | M+H | 8.14758 | 7.73113 | 1.11695054898848 ** | 0.915561301482534 * | Tryptophan metabolism | Ⅰ |
7 | 132.1006 | 1.212927 | Leucine | C6H13NO2 | M+H | 5.14486 | 11.1368 | — | 0.656558924361863 * | — | Ⅰ |
8 | 137.0447 | 1.007996 | Erythronic acid | C4H8O5 | M+H | 2.11715 | 5.11092 | — | 0.842216410457762 * | — | Ⅰ |
9 | 145.0649 | 0.629002 | L-Glutamine | C10H10O | M-H | 0.324981 | 1.64018 | — | 0.807916416097675 * | Arginine biosynthesis | Ⅰ |
10 | 145.051 | 1.392685 | Methylglutaric acid | C6H10O4 | M-H | 2.44631 | 1.58801 | 1.73862365343816 ** | — | — | Ⅰ |
11 | 146.0592 | 3.753873 | Indole-3-carboxaldehyde | C9H7NO | M+H | 0.716426 | 1.09405 | — | 0.642949508463612 * | Purine metabolism | Ⅰ |
12 | 154.0622 | 0.595069 | L-Histidine | C6H9N3O2 | M-H | 0.746679 | 1.33778 | — | 0.687650886091606 ** | Histidine metabolism | Ⅰ |
13 | 156.0757 | 0.580905 | Urocanic acid | C6H6N2O2 | M+NH4 | 0.891396 | 1.57463 | — | 0.76801224287754 * | Histidine metabolism | Ⅰ |
14 | 162.1134 | 0.647544 | L-Carnitine | C7H15NO3 | M+H | 1.39599 | 2.24982 | — | 0.814676279423792 * | Oxidative phosphorylation & Thermogenesis | Ⅰ |
15 | 166.0851 | 2.001319 | Phenylalanine | C9H8O2 | M+NH4 | 3.40204 | 7.36224 | — | 0.66880554095327 * | — | Ⅰ |
16 | 167.0195 | 0.890411 | Uric acid | C5H4N4O3 | M-H | 1.5676 | 1.53901 | 1.86295694809978 * | — | Purine metabolism | Ⅰ |
17 | 175.1182 | 0.605419 | Arginine | C6H14N4O2 | M+H | 0.950214 | 1.63368 | — | 0.697768957488221 * | Arginine biosynthesis | Ⅰ |
18 | 176.0562 | 1.216735 | N-Acetyl-L-aspartic acid | C6H9NO5 | M+H | 0.457301 | 1.03731 | — | 0.591565318586933 * | Arginine biosynthesis | Ⅰ |
19 | 188.0696 | 3.753191 | Indoleacrylic acid | C11H9NO2 | M+H | 1.96072 | 3.12121 | — | 0.633975178007676 * | — | Ⅰ |
20 | 189.1586 | 0.587062 | N6, N6, N6-Trimethyl-L-lysine | C9H20N2O2 | M+H | 0.581521 | 1.1139 | 1.26553165740387 * | 0.598635929115935 *** | Oxidative phosphorylation & Thermogenesis | Ⅰ |
21 | 202.1095 | 4.602232 | Acetylcarnitine | C9H17NO4 | M-H | 0.723706 | 1.3691 | — | 0.393454866839646 * | Oxidative phosphorylation & Thermogenesis | Ⅰ |
22 | 203.0837 | 3.794141 | L-Tryptophan | C11H12N2O2 | M-H | 0.688977 | 1.22077 | — | 0.705435116239765 * | Tryptophan metabolism | Ⅰ |
23 | 213.0393 | 1.391897 | p-Hydroxymandelic acid | C8H8O4 | M+FA-H | 1.01894 | 0.580048 | 1.60962362078635 * | — | — | Ⅰ |
24 | 229.1531 | 1.021603 | Leucylproline | C11H20N2O3 | M+H | 1.42508 | 1.93097 | 1.22695989785742 * | 0.779746081798664 ** | — | Ⅰ |
25 | 230.0297 | 1.39159 | 2-Amino-3-carboxymuconic acid semialdehyde | C7H7NO5 | M+FA-H | 1.40212 | 0.854046 | 1.76871679389686 ** | — | Tryptophan metabolism | Ⅰ |
26 | 239.116 | 0.584029 | Anserine | C10H16N4O3 | M-H | 1.45976 | 0.788336 | 1.29276359029791 ** | — | Histidine metabolism | Ⅰ |
27 | 258.1109 | 0.638932 | Glycerophosphocholine | C8H20NO6P | M+H | 1.37042 | 2.06634 | 1.83918725529827 ** | 0.38912024015719 *** | Glycerophospholipid metabolism | Ⅰ |
28 | 263.2338 | 13.50023 | Palmitaldehyde | C16H32O | M+Na | 1.0577 | 1.2071 | 2.1074416504338 * ** | 0.500126885803229 *** | Tryptophan metabolism | Ⅰ |
29 | 279.2353 | 13.49943 | Linoleic acid | C18H32O2 | M-H | 2.18294 | 2.44137 | 2.25020157276134*** | 0.490801930932198 *** | — | Ⅰ |
30 | 280.1653 | 8.966165 | Prolylphenylalanine | C14H18N2O3 | M+NH4 | 1.04127 | 0.965697 | 1.42805455591819 *** | 0.774828595167275 ** | — | Ⅰ |
31 | 281.2507 | 14.64251 | Vaccenic acid | C18H34O2 | M-H | 0.896885 | 1.09955 | 2.1528646984969 *** | 0.461301521076128 *** | — | Ⅰ |
32 | 293.2146 | 9.545482 | 9-OxoODE | C18H30O3 | M-H | 1.80771 | 1.77528 | 2.28277988282034 *** | 0.551308194208161 ** | Glycerophospholipid metabolism | Ⅰ |
33 | 295.2301 | 9.298135 | 13-HODE | C18H32O3 | M-H | 0.948831 | 1.64456 | 1.93721337344917 ** | 0.357258751691486 *** | Glycerophospholipid metabolism | Ⅰ |
34 | 296.0646 | 0.617891 | 5-Aminoimidazole ribonucleotide | C8H14N3O7P | M+H | 0.924232 | 1.3571 | 1.88084682781242 ** | 0.404760064989924 *** | Histidine metabolite | Ⅰ |
35 | 303.2358 | 13.31774 | Arachidonic acid | C20H32O2 | M-H | 3.12025 | 3.5239 | 1.53409019367542 *** | 0.706526468814323 ** | Glycerophospholipid metabolism | Ⅰ |
36 | 305.2444 | 13.31633 | Octanoylcarnitine | C15H29NO4 | M+NH4 | 2.1425 | 2.39263 | 1.74294985577128 *** | 0.617880771536116 *** | — | Ⅰ |
37 | 306.0736 | 0.853002 | Glutathione | C10H17N3O6S | M-H | 0.271999 | 1.8032 | — | 0.613780322915892 * | Cysteine and methionine metabolism | Ⅰ |
38 | 319.191 | 13.50041 | Ubiquinone-2 | C19H26O4 | M+H | 0.874951 | 1.0324 | 1.74238563302715 *** | 0.582455077036921 *** | — | Ⅰ |
39 | 329.2339 | 5.829618 | 9,12,13-TriHOME | C18H34O5 | M-H | 0.454282 | 1.1416 | — | 0.374493955652705 *** | Glycerophospholipid metabolism | Ⅰ |
40 | 329.2514 | 14.05921 | Docosapentaenoic acid | C22H34O2 | M-H | 0.498006 | 1.22922 | — | 0.473442901456016 *** | Biosynthesis of unsaturated fatty acids | Ⅰ |
41 | 403.1622 | 13.30849 | LysoPA(i-13:0/0:0) | C16H33O7P | M+Cl | 2.1169 | 2.45337 | 1.5786366934321 ** | 0.669220463950303 ** | — | Ⅰ |
42 | 436.2879 | 9.421978 | LysoPE(P-16:0/0:0) | C22H43NO5 | M+Cl | 1.63689 | 1.90884 | 1.83811965532063 *** | 0.55218775697055 *** | — | Ⅰ |
43 | 453.2865 | 8.904551 | Cholic acid | C24H40O5 | M+FA-H | 1.38344 | 1.32711 | 1.7272126612545 *** | 0.692868741397353 * | Primary bile acid biosynthesis | Ⅰ |
44 | 462.3036 | 9.894062 | LysoPE(P-18:1/0:0) | C23H46NO6P | M-H | 1.02737 | 1.11653 | 1.57754658465202 ** | 0.680272204730959 * | — | Ⅰ |
45 | 466.3153 | 11.28517 | Glycohyocholic acid | C26H43NO6 | M+H | 1.19529 | 1.21009 | 1.59921132406263 * | — | — | Ⅰ |
46 | 480.2975 | 9.266177 | Retinyl beta-glucuronide | C26H38O7 | M+NH4 | 2.9821 | 2.05286 | 1.76295122148748 *** | 0.773558552128259 * | — | Ⅰ |
47 | 481.3185 | 10.71418 | LysoPE(18:0/0:0) | C26H44O5 | M+FA-H | 2.94576 | 2.47977 | 1.92511114432689 *** | — | — | Ⅰ |
48 | 490.2786 | 7.467329 | Chenodeoxycholic acid sulfate | C24H40O7S | M+NH4 | 0.982727 | 1.04848 | 2.17942495354643 *** | 0.478755397066275 *** | — | Ⅰ |
49 | 516.3049 | 8.961922 | LysoPC(18:4/0:0) | C26H46NO7P | M-H | 1.56594 | 1.35042 | 2.10833476650201 *** | 0.597857675967578 ** | Glycerophospholipid metabolism | Ⅰ |
50 | 520.2712 | 8.904493 | LysoPS(18:2/0:0) | C24H44NO9P | M-H | 1.03408 | 1.04804 | 1.64204279449899 *** | 0.699072746882726 * | — | Ⅰ |
51 | 526.2842 | 8.213898 | Isodesmosine | C24H40N5O8 | M+H | 5.73742 | 4.33894 | 1.41467979845622 *** | — | — | Ⅰ |
52 | 548.3674 | 9.647121 | LysoPC(20:2/0:0) | C28H54NO7P | M+H | 1.09737 | 1.19136 | 2.49636956071126 *** | 0.414483299250478 *** | Glycerophospholipid metabolism | Ⅰ |
53 | 548.3033 | 10.71418 | LysoPE(20:3/0:0) | C25H46NO7P | M+FA-H | 1.70686 | 1.51257 | 1.62794342299198 *** | — | — | Ⅰ |
54 | 588.3399 | 8.285756 | LysoPC(20:4/0:0) | C32H48O7 | M+FA-H | 1.07686 | 1.18063 | 1.32460166924025 *** | 0.788136582237281 ** | — | Ⅰ |
55 | 612.3412 | 8.276272 | LysoPC(22:6/0:0) | C37H47NO4 | M+FA-H | 1.49253 | 1.17802 | 1.82482512793769 *** | 0.750351737131499 ** | — | Ⅰ |
56 | 614.346 | 9.084809 | LysoPC (22:5/0:0) | C30H52NO7P | M+FA-H | 0.894325 | 1.31495 | 1.43993246105778 *** | 0.5970624600792 *** | Glycerophospholipid metabolism | Ⅰ |
1 | 267.0714 | 0.707363 | Inosine | C10H12N4O5 | M-H | 2.00802 | 2.33534 | 0.770100006297074 ** | — | Purine metabolism | Ⅱ |
2 | 291.0762 | 0.72853 | Cysteinyl-Phenylalanine | C12H16N2O3S | M+Na | 2.21001 | 1.71329 | 0.714621327035955 *** | — | — | Ⅱ |
1 | 212.1008 | 0.573274 | N-Acetyl-1-methylhistidine | C9H10N2O3 | M+NH4 | 0.563681 | 0.399834 | — | — | — | Ⅲ |
2 | 225.1001 | 0.583991 | Carnosine | C9H14N4O3 | M-H | 0.737296 | 0.212796 | — | — | Histidine metabolism | Ⅲ |
3 | 349.0534 | 1.006389 | Inosinic acid | C10H13N4O8P | M+H | 2.43973 | 0.20068 | 1.624576293826 ** | — | Purine metabolism | Ⅲ |
1 | 135.0314 | 1.011678 | Hypoxanthine | C5H4N4O | M-H | 0.639457 | 0.931754 | — | — | Purine metabolism | Ⅳ |
2 | 242.1778 | 5.770676 | N-Undecanoylglycine | C13H25NO3 | M-H | 0.967668 | 0.53091 | — | — | — | Ⅳ |
3 | 266.1456 | 6.31293 | Prolyl-Lysine | C11H21N3O3 | M+Na | 0.714918 | 0.989698 | — | 0.807036290414128 * | Ⅳ | |
4 | 275.0193 | 0.695852 | D-Ribulose 5-phosphate | C5H11O8P | M+FA-H | 0.304399 | 0.701141 | — | — | — | Ⅳ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Z.; Ge, F.; Che, Y.; Wu, S.; Dong, X.; Song, D. Metabolomics Coupled with Pathway Analysis Provides Insights into Sarco-Osteoporosis Metabolic Alterations and Estrogen Therapeutic Effects in Mice. Biomolecules 2022, 12, 41. https://doi.org/10.3390/biom12010041
Wei Z, Ge F, Che Y, Wu S, Dong X, Song D. Metabolomics Coupled with Pathway Analysis Provides Insights into Sarco-Osteoporosis Metabolic Alterations and Estrogen Therapeutic Effects in Mice. Biomolecules. 2022; 12(1):41. https://doi.org/10.3390/biom12010041
Chicago/Turabian StyleWei, Ziheng, Fei Ge, Yanting Che, Si Wu, Xin Dong, and Dianwen Song. 2022. "Metabolomics Coupled with Pathway Analysis Provides Insights into Sarco-Osteoporosis Metabolic Alterations and Estrogen Therapeutic Effects in Mice" Biomolecules 12, no. 1: 41. https://doi.org/10.3390/biom12010041
APA StyleWei, Z., Ge, F., Che, Y., Wu, S., Dong, X., & Song, D. (2022). Metabolomics Coupled with Pathway Analysis Provides Insights into Sarco-Osteoporosis Metabolic Alterations and Estrogen Therapeutic Effects in Mice. Biomolecules, 12(1), 41. https://doi.org/10.3390/biom12010041