Effect of Nitrogen Concentration on the Biosynthesis of Citric Acid, Protein, and Lipids in the Yeast Yarrowia lipolytica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Medium and Cultivation Conditions
2.3. Analytical Methods
2.4. Calculations
2.5. Statistical Analysis
3. Results
3.1. Effect of Nitrogen on Yeast Growth and Citric acid Production
3.2. Effect of Nitrogen Concentration on the Characteristics of Biomass of Producing Strain
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, M.M.; Lidon, F.C. An overview on applications and side effects of antioxidant food additives. Emir. J. Food Agric. 2016, 28, 823–832. [Google Scholar] [CrossRef]
- Lambros, M.; Tran, T.; Fei, Q.; Nicolaou, M. Citric Acid: A Multifunctional Pharmaceutical Excipient. Pharmaceutics 2022, 14, 972. [Google Scholar] [CrossRef] [PubMed]
- Ashkan, T.N.; Adeli, M.; Vossoughi, M. Synthesis of gold nanoparticle necklaces using linear–dendritic copolymers. Eur. Polym. J. 2010, 48, 165–170. [Google Scholar]
- Raminya, L.O.; Ozolin, M.Y. Citrates production from the fermentation solution of n-alkanes. In Biosynthesis of Hydroxy Acids and Keto Acids by Microorganisms; Zinatne: Riga, Latvia, 1984; pp. 35–42. (In Russian) [Google Scholar]
- Gurses, M.S.; Erkey, C.; Kizilel, S.; Uzun, A. Characterization of sodium tripolyphosphate and sodium citrate dehydrate residues on surfaces. Talanta 2018, 176, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Igliński, B.; Kiełkowska, U.; Piechota, G. Proecological aspects of citric acid technology. Clean Technol. Environ. 2022, 24, 1–19. [Google Scholar] [CrossRef]
- Wojtatowicz, M.; Rymowicz, W.; Kautola, H. Comparison of different strains of the yeast Yarrowia lipolytica for citric acid production from glucose hydrol. Appl. Biochem. Biotechnol. 1991, 31, 165–174. [Google Scholar] [CrossRef] [PubMed]
- Rane, K.D.; Sims, K.A. Citric acid production by Yarrowia lipolytica: Effect of nitrogen and biomass concentration on yield and productivity. Biotechnol. Lett. 1996, 18, 1139–1144. [Google Scholar] [CrossRef]
- Anastassiadis, S.; Aivasidis, A.; Wandrey, C. Citric acid production by Candida strains under intracellular nitrogen limitation. Appl. Microbiol. Biotechnol. 2002, 60, 81–87. [Google Scholar] [PubMed]
- Papanikolaou, S.; Galiotou-Panayotou, M.; Chevalot, I.; Komaitis, M.; Marc, I.; Aggelis, G. Influence of Glucose and Saturated Free-Fatty Acid Mixtures on Citric Acid and Lipid Production by Yarrowia lipolytica. Curr. Microbiol. 2006, 52, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Moeller, L.; Strehlitz, B.; Aurich, A.; Zehnsdorf, A.; Bley, T. Optimization of citric acid production from glucose by Yarrowia lipolytica. Eng. Life Sci. 2007, 7, 504–511. [Google Scholar] [CrossRef]
- Moeller, L.; Grünberg, M.; Zehnsdorf, A.; Aurich, A.; Bley, T.; Strehlitz, B. Repeated fed-batch fermentation using biosensor online control for citric acid production by Yarrowia lipolytica. J. Biotechnol. 2011, 153, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.J.; Chen, X.; Wang, Y.K.; Liu, G.L.; Chi, Z.M. Enhanced citric acid production by a yeast Yarrowia lipolytica over-expressing a pyruvate carboxylase gene. Bioprocess Biosyst. Eng. 2016, 39, 1289–1296. [Google Scholar] [CrossRef] [PubMed]
- Kamzolova, S.V.; Morgunov, I.G. Metabolic peculiarities of the citric acid overproduction from glucose in yeasts Yarrowia lipolytica. Bioresour. Technol. 2017, 243, 433–440. [Google Scholar] [CrossRef]
- Sabra, W.; Bommareddy, R.R.; Maheshwari, G.; Papanikolaou, S.; Zeng, A.P. Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: Insights through transcriptome and fluxome analyses. Microb. Cell Fact. 2017, 16, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carsanba, E.; Papanikolaou, S.; Fickers, P.; Erten, H. Screening various Yarrowia lipolytica strains for citric acid production. Yeast 2019, 36, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Carsanba, E.; Papanikolaou, S.; Fickers, P.; Erten, H. Lipids by Yarrowia lipolytica Strains Cultivated on Glucose in Batch Cultures. Microorganisms 2020, 8, 1054. [Google Scholar] [CrossRef] [PubMed]
- Kamzolova, S.V.; Vinokurova, N.G.; Lunina, J.N.; Zelenkova, N.F.; Morgunov, I.G. Production of technical-grade sodium citrate from glycerol-containing biodiesel waste by Yarrowia lipolytica. Bioresour. Technol. 2015, 193, 250–255. [Google Scholar] [CrossRef]
- Rakicka, M.; Lazar, Z.; Rywinska, A.; Rymowicz, W. Efficient utilization of inulin and glycerol as fermentation substrates in erythritol and citric acid production using expressing inulinase. Chem. Pap. 2016, 70, 1452–1459. [Google Scholar] [CrossRef]
- Mirończuk, A.M.; Rzechonek, D.A.; Biegalska, A.; Rakicka, M.; Dobrowolski, A. A novel strain of Yarrowia lipolytica as a platform for value-added product synthesis from glycerol. Biotechnol. Biofuels 2016, 9, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rzechonek, D.A.; Dobrowolski, A.; Rymowicz, W.; Mirończuk, A.M. Aseptic production of citric and isocitric acid from crude glycerol by genetically modified Yarrowia lipolytica. Bioresour. Technol. 2019, 271, 340–344. [Google Scholar] [CrossRef]
- Förster, A.; Aurich, A.; Mauersberger, S.; Barth, G. Citric acid production from sucrose using a recombinant strain of the yeast Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 2007, 75, 1409–1417. [Google Scholar] [CrossRef] [PubMed]
- Moeller, L.; Zehnsdorf, A.; Aurich, A.; Barth, G.; Bley, T.; Strehlitz, B. Citric acid production from sucrose by recombinant Yarrowia lipolytica using semicontinuous fermentation. Eng. Life Sci. 2013, 13, 163–171. [Google Scholar] [CrossRef]
- Ledesma-Amaro, R.; Lazar, Z.; Rakicka, M.; Guo, Z.; Fouchard, F.; Coq, A.C.; Nicaud, J.M. Metabolic engineering of Yarrowia lipolytica to produce chemicals and fuels from xylose. Metab. Eng. 2016, 38, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Hapeta, P.; Szczepańska, P.; Witkowski, T.; Nicaud, J.-M.; Crutz-Le Coq, A.-M.; Lazar, Z. The role of hexokinase and hexose transporters in preferential use of glucose over fructose and downstream metabolic pathways in the yeast Yarrowia lipolytica. Int. J. Mol. Sci. 2021, 22, 9282. [Google Scholar] [CrossRef]
- Kamzolova, S.V.; Shishkanova, N.V.; Morgunov, I.G.; Finogenova, T.V. Oxygen requirements for growth and citric acid production of Yarrowia lipolytica. FEMS Yeast Res. 2003, 3, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Aurich, A.; Förster, A.; Mauersberger, S.; Barth, G.; Stottmeister, U. Citric acid production from renewable resources by Yarrowia lipolytica. Biotechnol. Adv. 2003, 21, 454–455. [Google Scholar]
- Kamzolova, S.V.; Lunina, J.N.; Morgunov, I.G. Biochemistry of citric acid production from rapeseed oil by Yarrowia lipolytica yeast. JAOCS 2011, 88, 1965–1976. [Google Scholar] [CrossRef]
- Cavallo, E.; Charreau, H.; Cerrutti, P.; Foresti, M.L. Yarrowia lipolytica: A model yeast for citric acid production. FEMS Yeast Res. 2017, 17, fox084. [Google Scholar] [CrossRef] [Green Version]
- Timoumi, A.; Cléret, M.; Bideaux, C.; Guillouet, S.E.; Allouche, Y.; Molina-Jouve, C.; Fillaudeau, L.; Gorret, N. Dynamic behavior of Yarrowia lipolytica in response to pH perturbations: Dependence of the stress response on the culture mode. Appl. Microbiol. Biotechnol. 2017, 101, 351–366. [Google Scholar] [CrossRef]
- Zinjarde, S.S. Food-related applications of Yarrowia lipolytica. Food Chem. 2014, 152, 1–10. [Google Scholar] [CrossRef]
- Burkholder, P.; McVeigh, J.; Moyer, D. Studies on some growth factors of yeasts. J. Bacteriol. 1944, 48, 385–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sultanovich, Y.A.; Nechaev, A.P.; Barsukova, I.A. Method for the quantitative determination of the fatty acid composition of microbial lipids. Byull. Izobret. 1982, 39, 136. [Google Scholar]
- Minkevich, I.G.; Dedyukhina, E.G.; Chistyakova, T.Y.I. The effect of lipid content on the elemental composition and energy capacity of yeast biomass. Appl. Microbiol. Biotechnol. 2010, 88, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, S.; Chatzifragkou, A.; Fakas, S.; Galiotou-Panayotou, M.; Komaitis, M.; Nicaud, J.M.; Aggelis, G. Biosynthesis of lipids and organic acids by Yarrowia lipolytica strains cultivated on glucose. Eur. J. Lipid Sci. Technol. 2009, 111, 1221–1232. [Google Scholar] [CrossRef]
- Lazar, Z.; Dulermo, T.; Neuvéglise, C.; Crutz-Le Coq, A.M.; Nicaud, J.M. Hexokinase—A limiting factor in lipid production from fructose in Yarrowia lipolytica. Metab. Eng. 2014, 26, 89–99. [Google Scholar] [CrossRef]
- Fu, G.Y.; Lu, Y.; Chi, Z.; Liu, G.L.; Zhao, S.F.; Jiang, H.; Chi, Z.M. Cloning and characterization of a pyruvate carboxylase from Penicillium rubens and overexpression of the gene in the yeast Yarrowia lipolytica for enhanced citric acid production. Mar. Biotechnol. 2016, 18, 1–14. [Google Scholar] [CrossRef]
- Da Silva, L.V.; Tavares, C.B.; Amaral, P.F.F.; Coehlo, M.A.Z. Production of citric acid by Yarrowia lipolytica in different crude oil concentrations and in different nitrogen sources. Chem. Eng. Trans. 2012, 27, 199–204. [Google Scholar]
- Wang, F.; Yue, L.X.; Wang, L.; Madzak, C.; Li, J.; Wang, X.H.; Chi, Z. Genetic modification of the marine-derived yeast Yarrowia lipolytica with high-protein content using a GPI-anchor-fusion expression system. Biotechnol. Prog. 2009, 25, 1297–1303. [Google Scholar] [CrossRef]
- Drzymała, K.; Mirończuk, A.M.; Pietrzak, W.; Dobrowolski, A. Rye and Oat Agricultural Wastes as Substrate Candidates for Biomass Production of the Non-Conventional Yeast Yarrowia lipolytica. Sustainability 2020, 12, 7704. [Google Scholar] [CrossRef]
- Juszczyk, P.; Tomaszewska, L.; Kita, A.; Rymowicz, W. Biomass production by novel strains of Yarrowia lipolytica using raw glycerol, derived from biodiesel production. Bioresour. Technol. 2013, 137, 124–131. [Google Scholar] [CrossRef]
- Wojtatowicz, M.; Rymowicz, W. Effect of inoculum on kinetics and yield of citric acids production on glucose by Yarrowia lipolytica A-101. Acta Aliment. Pol. 1991, 41, 137–143. [Google Scholar]
- Rozov, A.; Khusainov, I.; El Omari, K.; Duman, R.; Mykhaylyk, V.; Yusupov, M.; Westhof, E.; Wagner, A.; Yusupova, G. Importance of potassium ions for ribosome structure and function revealed by long-wavelength X-ray diffraction. Nat. Commun. 2019, 10, 2519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, D.J.; Moore, P.B.; Steitz, T.A. The contribution of metal ions to the structural stability of the large ribosomal subunit. RNA 2004, 10, 1366–1379. [Google Scholar] [CrossRef] [Green Version]
- Robles-Rodríguez, C.E.; Muñoz-Tamayo, R.; Bideaux, C.; Gorret, N.; Guillouet, S.E.; Molina-Jouve, C.; Roux, G.; Aceves-Lara, C.A. Modeling and optimization of lipid accumulation by Yarrowia lipolytica from glucose under nitrogen depletion conditions. Biotechnol. Bioeng. 2018, 115, 1137–1151. [Google Scholar] [CrossRef]
- Zhang, S.; Jagtap, S.S.; Deewan, A.; Rao, C.V. pH selectively regulates citric acid and lipid production in Yarrowia lipolytica W29 during nitrogen-limited growth on glucose. J. Biotechnol. 2019, 290, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Whelan, J.; Fritsche, K. Linoleic acid. Adv. Nutr. 2013, 4, 311–312. [Google Scholar] [CrossRef] [Green Version]
- Jach, M.E.; Serefko, A.; Ziaja, M.; Kieliszek, M. Yeast Protein as an Easily Accessible Food Source. Metabolites 2022, 12, 63. [Google Scholar] [CrossRef]
- Millward, D.J. Amino acid scoring patterns for protein quality assessment. Br. J. Nutr. 2012, 108, S31–S43. [Google Scholar] [CrossRef]
(NH4)2SO4 (g/L) | Biomass (g/L) | CA (g/L) | µmax (h−1) | YX/S (g/g) | ICA (g/L) | YCA/S (g/g) | qp (g/g × h) | Qp (g/L × h) |
---|---|---|---|---|---|---|---|---|
2 | 6.38 ± 0.32 | 53.05 ± 2.66 | 0.23 ± 0.01 | 0.07 ± 0.00 | 3.18 ± 0.15 | 0.58 ± 0.03 | 0.06 ± 0.00 | 0.48 ± 0.02 |
3 | 10.15 ± 0.10 | 80.30 ± 3.64 | 0.24 ± 0.02 | 0.10 ± 0.00 | 4.80 ± 0.23 | 0.78 ± 0.04 | 0.05 ± 0.00 | 0.81 ± 0.04 |
4 | 12.05 ± 1.27 | 99.90 ± 3.30 | 0.24 ± 0.02 | 0.10 ± 0.01 | 5.97 ± 0.24 | 0.77 ± 0.03 | 0.06 ± 0.00 | 0.86 ± 0.03 |
6 | 22.11 ± 1.73 | 95.48 ± 1.94 | 0.24 ± 0.02 | 0.17 ± 0.01 | 5.74 ± 0.11 | 0.72 ± 0.01 | 0.03 ± 0.00 | 1.11 ± 0.02 |
10 | 27.25 ± 0.74 | 81.98 ± 3.30 | 0.27 ± 0.02 | 0.17 ± 0.01 | 8.09 ± 0.38 | 0.52 ± 0.04 | 0.02 ± 0.00 | 0.57 ± 0.04 |
Summary | ||||||
Groups | Sample | SS | Avg. | Variance | ||
2 | 4 | 212.2 | 53.05 | 7.0567 | ||
3 | 4 | 321.2 | 80.3 | 13.2333 | ||
4 | 4 | 399.6 | 99.9 | 10.8733 | ||
6 | 4 | 381.9 | 95.475 | 3.7692 | ||
10 | 4 | 327.9 | 81.975 | 10.9158 | ||
Analysis of Variance | ||||||
Source of Variance | Sum of Squares | dF | MSS | F | p | F Critical |
Between groups | 5371.523 | 4 | 1342.88075 | 146.4481533 | 0.00000000001 | 3.055568276 |
Within groups | 137.545 | 15 | 9.169666667 | |||
Total | 5509.068 | 19 |
Parameters | (NH4)2SO4 (g/L) | ||||
---|---|---|---|---|---|
2 | 3 | 4 | 6 | 10 | |
Protein production in DCW (g/g) | 0.19 ± 0.006 | 0.19 ± 0.006 | 0.19 ± 0.011 | 0.20 ± 0.004 | 0.22 ± 0.013 |
Lipid production in DCW (g/g) | 0.11 ± 0.004 | 0.11 ± 0.003 | 0.11 ± 0.004 | 0.10 ± 0.004 | 0.10 ± 0.005 |
Total amount of protein (g/L) | 1.19 ± 0.041 | 1.72 ± 0.071 | 2.26 ± 0.128 | 4.42 ± 0.094 | 6.02 ± 0.366 |
Total amount of lipids (g/L) | 0.67 ± 0.022 | 0.99 ± 0.039 | 1.27 ± 0.043 | 2.29 ± 0.109 | 2.75 ± 0.133 |
Energy capacity of biomass (QB) (kJ/g) | 15.13 ± 0.01 | 15.13 ± 0.01 | 15.13 ± 0.01 | 15.13 ± 0.01 | 15.13 ± 0.01 |
ηX/S (g/g) | 0.07 | 0.09 | 0.11 | 0.18 | 0.18 |
Carbon (% of DCW) | 41.80 ± 0.48 | 41.79 ± 1.27 | 41.28 ± 2.83 | 41.30 ± 1.13 | 41.25 ± 2.90 |
Hydrogen (% of DCW) | 6.20 ± 0.18 | 6.08 ± 0.34 | 5.95 ± 0.29 | 6.10 ± 0.28 | 5.93 ± 0.25 |
Nitrogen (% of DCW) | 3.08 ± 0.17 | 3.28 ± 0.22 | 3.15 ± 0.07 | 4.15 ± 0.21 | 5.08 ± 0.25 |
Oxygen (% of DCW) | 41.15 ± 0.59 | 41.25 ± 1.03 | 41.07 ± 2.83 | 40.25 ± 1.48 | 41.25 ± 2.90 |
Phosphorus (% of DCW) | 0.91 ± 0.03 | 0.94 ± 0.02 | 0.96 ± 0.01 | 0.98 ± 0.01 | 0.96 ± 0.04 |
Potassium (% of DCW) | 1.44 ± 0.06 | 1.48 ± 0.11 | 1.71 ± 0.06 | 1.70 ± 0.14 | 1.93 ± 0.11 |
Magnesium (% of DCW) | 0.11 ± 0.01 | 0.13 ± 0.01 | 0.16 ± 0.01 | 0.19 ± 0.01 | 0.20 ± 0.01 |
Calcium (% of DCW) | 0.11 ± 0.01 | 0.12 ± 0.01 | 0.10 ± 0.01 | 0.14 ± 0.01 | 0.12 ± 0.00 |
Fatty Acids (% from Total Fatty Acids) | (NH4)2SO4 (g/L) | ||||
---|---|---|---|---|---|
2 | 3 | 4 | 6 | 10 | |
Lauric acid (C12:0) | 0.10 ± 0.00 | 0.13 ± 0.01 | 0.10 ± 0.00 | 0.12 ± 0.01 | 0.14 ± 0.01 |
Myristic acid (C14:0) | 0.85 ± 0.07 | 0.75 ± 0.14 | 0.85 ± 0.07 | 0.93 ± 0.04 | 0.95 ± 0.02 |
Myristoleic acid (C14:1) | 0.11 ± 0.01 | 0.11 ± 0.01 | 0.10 ± 0.00 | 0.25 ± 0.04 | 0.24 ± 0.02 |
Pentadecylic acid (C15:0) | 0.11 ± 0.01 | 0.13 ± 0.01 | 0.10 ± 0.00 | 0.20 ± 0.01 | 0.18 ± 0.01 |
Palmitic acid (C16:0) | 23.1 ± 0.99 | 24.4 ± 1.41 | 26.9 ± 0.42 | 21.55 ± 0.78 | 17.35 ± 1.48 |
Palmitoleic acid (C16:1) | 12.9 ± 0.28 | 12.95 ± 0.04 | 13.75 ± 0.78 | 13.65 ± 0.49 | 10.41 ± 0.76 |
Heptadecanoic acid (C17:0) | 0.58 ± 0.04 | 0.63 ± 0.03 | 0.58 ± 0.04 | 0.45 ± 0.07 | 0.43 ± 0.04 |
Heptadecenoic (C17:1) | 1.20 ± 0.14 | 1.20 ± 0.14 | 1.05 ± 0.07 | 1.33 ± 0.11 | 1.55 ± 0.06 |
Stearic acid (C18:0) | 0.11 ± 0.01 | 0.13 ± 0.01 | 0.14 ± 0.01 | 0.85 ± 0.07 | 1.15 ± 0.07 |
Oleic acid (C18:1) | 45.45± 0.78 | 43.25± 1.20 | 44.35± 1.20 | 38.4 ± 1.27 | 33.55 ± 2.05 |
Linoleic acid (C18:2) | 9.65 ± 0.21 | 10.9 ± 1.27 | 10.9 ± 1.26 | 17.15 ± 1.2 | 25.65 ± 0.92 |
Linolenic acid (C18:3) | 0.11 ± 0.01 | 0.11 ± 0.00 | 0.31 ± 0.01 | 1.50 ± 0.07 | 3.80 ± 0.28 |
n-Nonadecanoic acid (C19:1) | 1.15 ± 0.21 | 1.05 ± 0.07 | 0.95 ± 0.07 | 1.05 ± 0.07 | 0.93 ± 0.04 |
Arachidic acid (C20:0) | 0.11 ± 0.01 | 0.12 ± 0.01 | 0.10 ± 0.00 | 0.21 ± 0.01 | 0.10 ± 0.00 |
Sum of unsaturated fatty acids (UFAs) | 68.56 | 69.56 | 71.40 | 73.33 | 76.11 |
Sum of saturated fatty acids (SFAs) | 24.85 | 26.15 | 28.67 | 24.18 | 20.15 |
Ration of UFAs/SFAs | 2.76 | 2.67 | 2.49 | 3.03 | 3.79 |
Amino Acids (AA) | Bound AA | Free AA | Total Amount of AA |
---|---|---|---|
mg/g DCW | mg/g DCW | mg/g DCW | |
Glutamine | 31.43 ± 0.75 | 5.39 ± 0.62 | 36.82 |
Asparagine | 25.69 ± 0.69 | 0.27 ± 0.08 | 25.95 |
Leucine | 22.37 ± 0.66 | 0.30 ± 0.05 | 22.66 |
Valine | 18.27 ± 0.23 | 1.14 ± 0.19 | 19.40 |
Lysine | 18.39 ± 0.16 | 0.51 ± 0.10 | 18.90 |
Threonine | 15.22 ± 0.34 | 0.34 ± 0.06 | 15.56 |
Glycine | 15.02 ± 1.27 | 0.26 ± 0.08 | 15.28 |
Alanine | 13.16 ± 0.37 | 1.53 ± 0.18 | 14.69 |
Serine | 13.62 ± 0.30 | 0.30 ± 0.06 | 13.92 |
Phenylalanine | 12.49 ± 0.16 | 0.10 ± 0.01 | 12.59 |
Isoleucine | 12.09 ± 0.12 | 0.26 ± 0.01 | 12.34 |
Histidine | 5.78 ± 0.08 | 0.22 ± 0.02 | 6.00 |
Methionine | 4.36 ± 0.14 | 0.00 | 4.36 |
Arginine | 0.11 ± 0.01 | 0.10 ± 0.00 | 0.21 |
Cysteine | 0.10 ± 0.00 | 0.00 | 0.10 |
Tryptophan | 0.10 ± 0.00 | 0.00 | 0.10 |
Tyrosine | 0.10 ± 0.00 | 0.00 | 0.10 |
Proline | 0.10 ± 0.00 | 0.00 | 0.10 |
Amino Acids (AA) | Y. lipolytica VKM Y-2373 (the Present Study) (mg/g Protein) | Y. lipolytica (mg/g Protein) [46] | AA Requirements for Adults from 2007 FAO/WHO (mg/g Protein) [47] |
---|---|---|---|
Arginine | 1 | 48 | n.d. |
Histidine | 27 | 26 | 15 |
Isoleucine | 56 | 44 | 30 |
Leucine | 103 | 68 | 59 |
Lysine | 86 | 70 | 45 |
SAA | 20 | 23 | 22 |
AAA | 57 | 153 | 38 |
Threonine | 71 | 48 | 23 |
Valine | 88 | 53 | 39 |
Total | 509 | 533 | 271 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamzolova, S.V.; Lunina, J.N.; Samoilenko, V.A.; Morgunov, I.G. Effect of Nitrogen Concentration on the Biosynthesis of Citric Acid, Protein, and Lipids in the Yeast Yarrowia lipolytica. Biomolecules 2022, 12, 1421. https://doi.org/10.3390/biom12101421
Kamzolova SV, Lunina JN, Samoilenko VA, Morgunov IG. Effect of Nitrogen Concentration on the Biosynthesis of Citric Acid, Protein, and Lipids in the Yeast Yarrowia lipolytica. Biomolecules. 2022; 12(10):1421. https://doi.org/10.3390/biom12101421
Chicago/Turabian StyleKamzolova, Svetlana V., Julia N. Lunina, Vladimir A. Samoilenko, and Igor G. Morgunov. 2022. "Effect of Nitrogen Concentration on the Biosynthesis of Citric Acid, Protein, and Lipids in the Yeast Yarrowia lipolytica" Biomolecules 12, no. 10: 1421. https://doi.org/10.3390/biom12101421
APA StyleKamzolova, S. V., Lunina, J. N., Samoilenko, V. A., & Morgunov, I. G. (2022). Effect of Nitrogen Concentration on the Biosynthesis of Citric Acid, Protein, and Lipids in the Yeast Yarrowia lipolytica. Biomolecules, 12(10), 1421. https://doi.org/10.3390/biom12101421