Impact of the Renin-Angiotensin System on the Pathogeny and Pharmacotherapeutics of Neurodegenerative Diseases
Abstract
:1. Introduction
2. Evidence of the RAS in the CNS: Presence of mARN, tARN, AT1 and AT2 Receptors, Mas Receptors, Ang II, Ang (1–7), and Ang IV
3. Renin-Angiotensin-Aldosterone System and Parkinson’s Disease
4. Renin-Angiotensin-Aldosterone System and Alzheimer’s Disease and Other Memory Disorders
5. Renin-Angiotensin-Aldosterone System and Multiple Sclerosis
6. Renin-Angiotensin-Aldosterone System and Huntington’s Disease
7. Renin-Angiotensin-Aldosterone System and Motor Neuron Disease
- Lateral amyotrophic sclerosis (ALS);
- Progressive bulbar palsy;
- Primary lateral sclerosis;
- Progressive muscular atrophy;
- Spinal muscular atrophy;
- Kennedy disease;
8. Renin-Angiotensin-Aldosterone System and Prion Disease
9. Perspectives, If Any
- BBB penetration depends on molecular weight and lipophilicity; there is a seminal study from 2005 that investigates brain penetration and dosages for several widely-used ACEI, demonstrating that there is only a reduced correlation between lipophilicity and effects on the nervous system, whereas molecular weight seems to be more important [219,220]
- Dosage–nervous effects may need higher amounts than usual, even 10–15 times more, which makes them practically useless due to their vascular effects and side effects [220].
- Several studies have suggested that only about half of the ACE in use today have a good enough BBB penetration to have an effect on neurodegeneration, among which are captopril (most of the studies), trandolapril [220], lisinopril [149], ramipril [221], and perindopril [222]. The rest have not been selected for testing; however, a rigorous testing and classification of those drugs is yet to be made.
- ARB usually have bigger molecules than ACEI [223], suggesting worse passage through the BBB; however, there are several more lipophilic drugs from this family, such as telmisartan, candesartan, and losartan, that seem to readily penetrate and have better effects than ACEI on various parameters of NDG diseases [60,68,83,136]. Until the appearance of metanalyses that can compare these parameters and better pharmacodynamic studies for all pharmacologic modulators of the RAS, only anecdotal evidence is available and patients cannot systematically benefit from these substances.
- Known mechanism of action that has achieved new dimensions once the research into the etiopathogenesis of NDG disease has sufficiently been advanced (such as prion diseases and rare diseases, such as familial narcolepsy or Friedreich ataxia, and their RAS connections).
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
3-NP | 3-nitropropionic acid |
6-OHDA | 6-hydroxydopamine |
Ach | Acetylcholine |
ATP | Adenosine triphosphate |
AD | Alzheimer’s Disease |
APP | Amyloid precursor protein |
A-β | β-amyloid |
Ang | Angiotensin |
ARB | Angiotensin receptor blocker |
ACE | Angiotensin-converting enzyme |
ACEI | Angiotensin-converting enzyme inhibitor |
Angt | Angiotensinogen |
ALS | Lateral amyotrophic sclerosis |
BBB | Blood-brain barrier |
BND | Brain neurodegenerative disease |
BK | Bradykinin |
PrPC | Cell prionic protein |
CNS | Central nervous system |
CGC | Cerebellar granule cells |
CSF | Cerebrospinal fluid |
CVD | Cardiovascular diseases |
CVO | Circumventricular organ |
C21 | Compound 21 |
DAG | Diacylglycerol |
DMT | Disease modifying treatment |
DA | Dopamine |
EAE | Experimental autoimmune encephalomyelitis |
GSEA | Gene-set enrichment analysis |
GPI | Glycosyl-phosphatidyl-inositol |
HGF/c-Met | Hepatic Growth Factor/tyrosine kinase type I receptor |
HTT | Huntingtin |
HD | Huntington’s Disease |
IB | Inclusion bodies |
IP3 | Inositol triphosphate |
IRAP | Insulin-regulated aminopeptidase |
JG | Juxtaglomerular |
LAS | Lateral amyotrophic sclerosis |
MPTP | Methyl-phenyl-tetrahydropyridine |
KATP | Mitochondrial ATP-dependent potassium channel |
MAPK | Mitogen-activated protein kinase |
MND | Motor Neuron Disease |
MS | Multiple Sclerosis |
mHTT | Mutant huntingtin protein |
MOG | Myelin oligodendrocyte glycoprotein |
NK | Natural killer |
NDG | Neurodegenerative |
NADPH | Nicotinamide adenine dinucleotide phosphate |
NO | Nitric oxide |
NOS | Nitric oxide synthase |
NOX | Nicotinamide adenine dinucleotide phosphate oxidase |
NF-κB | Nuclear factor-κB |
PD | Parkinson’s Disease |
PPAR-γ | Peroxisome proliferator-activated receptor-γ |
PIP2 | Phosphatidylinositol biphosphate |
PRD | Prion Disease |
PRR | Prorenin receptor |
PKC | Protein kinase C |
PLP p139–151 | Proteolipid protein 139–151 peptide |
ROS | Reactive oxygen species |
R | Receptor |
RRMS | Relapsing remitting MS |
RAS | Renin-angiotensin-aldosterone system |
SG | Stress granules |
SPN | Spiny projection neurons |
SN | Substantia nigra |
SMN | Survival motor neuron |
TSP-1 | Thrombospondin-1 |
TJ | Tight junction |
TGF-β | Transforming growth factor-β |
TNF-α | Tumor necrosis factor-α |
WT | Wild-type |
VEGF | Vascular endothelial growth factor |
Zn | Zinc |
References
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Qazi, S.; Raza, K. Chapter 10—Translational bioinformatics methods for drug discovery and drug repurposing. In Translational Bioinformatics in Healthcare and Medicine; Raza, K., Dey, N., Eds.; Academic Press: Cambridge, MA, USA, 2021; Volume 13, pp. 127–139. [Google Scholar]
- Fountain, J.H.; Lappin, S.L. Physiology, Renin Angiotensin System; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Gouveia, F.; Camins, A.; Ettcheto, M.; Bicker, J.; Falcão, A.; Cruz, M.T.; Fortuna, A. Targeting brain Renin-Angiotensin System for the prevention and treatment of Alzheimer’s disease: Past, present and future. Ageing Res. Rev. 2022, 77, 101612. [Google Scholar] [CrossRef] [PubMed]
- Jackson, L.; Eldahshan, W.; Fagan, S.C.; Ergul, A. Within the Brain: The Renin Angiotensin System. Int. J. Mol. Sci. 2018, 19, 876. [Google Scholar] [CrossRef] [Green Version]
- Patel, S.; Rauf, A.; Khan, H.; Abu-Izneid, T. Renin-angiotensin-aldosterone (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed. Pharmacother. 2017, 94, 317–325. [Google Scholar] [CrossRef]
- Colafella, K.M.M.; Bovée, D.M.; Danser, A.H.J. The renin-angiotensin-aldosterone system and its therapeutic targets. Exp. Eye Res. 2019, 186, 107680. [Google Scholar] [CrossRef]
- Schweda, F. Salt feedback on the renin-angiotensin-aldosterone system. Pflug. Arch.-Eur. J. Physiol. 2015, 467, 565–576. [Google Scholar] [CrossRef]
- Abiodun, O.A.; Ola, M.S. Role of brain renin angiotensin system in neurodegeneration: An update. Saudi J. Biol. Sci. 2020, 27, 905–912. [Google Scholar] [CrossRef]
- Vargas, R.A.V.; Millán, J.M.V.; Bonilla, E.F. Renin-angiotensin system: Basic and clinical aspects—A general perspective. Endocrinol. Diabetes Y Nutr. 2022, 69, 52–62. [Google Scholar] [CrossRef]
- Saravi, B.; Li, Z.; Lang, C.N.; Schmid, B.; Lang, F.K.; Grad, S.; Alini, M.; Richards, R.G.; Schmal, H.; Südkamp, N.; et al. The Tissue Renin-Angiotensin System and Its Role in the Pathogenesis of Major Human Diseases: Quo Vadis? Cells 2021, 10, 650. [Google Scholar] [CrossRef]
- Haulica, I.; Bild, W.; Serban, D.N. Angiotensin peptides and their pleiotropic actions. J. Renin. Angiotensin Aldosterone Syst. 2005, 6, 121–131. [Google Scholar] [CrossRef]
- Bodiga, V.L.; Bodiga, S. Renin angiotensin system in cognitive function and dementia. Asian J. Neurosci. 2013, 2013, 102602. [Google Scholar] [CrossRef] [Green Version]
- Labandeira-Garcia, J.L.; Rodriguez-Perez, A.I.; Garrido-Gil, P.; Rodriguez-Pallares, J.; Lanciego, J.L.; Guerra, M.J. Brain Renin-Angiotensin System and Microglial Polarization: Implications for Aging and Neurodegeneration. Front. Aging Neurosci. 2017, 9, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rukavina Mikusic, N.L.; Pineda, A.M.; Gironacci, M.M. Angiotensin-(1-7) and Mas receptor in the brain. Explor. Med. 2021, 2, 268–293. [Google Scholar] [CrossRef]
- Wright, J.W.; Yamamoto, B.J.; Harding, J.W. Angiotensin receptor subtype mediated physiologies and behaviors: New discoveries and clinical targets. Prog. Neurobiol. 2008, 84, 157–181. [Google Scholar] [CrossRef] [Green Version]
- McFall, A.; Nicklin, S.A.; Work, L.M. The counter regulatory axis of the renin angiotensin system in the brain and ischaemic stroke: Insight from preclinical stroke studies and therapeutic potential. Cell. Signal. 2020, 76, 109809. [Google Scholar] [CrossRef]
- Wright, J.W.; Harding, J.W. The brain renin–angiotensin system: A diversity of functions and implications for CNS diseases. Pflügers Arch.-Eur. J. Physiol. 2012, 465, 133–151. [Google Scholar] [CrossRef]
- Nakagawa, P.; Sigmund, C.D. How Is the Brain Renin-Angiotensin System Regulated? Hypertension 2017, 70, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Daneman, R.; Prat, A. The Blood–Brain Barrier. Cold Spring Harb. Perspect. Biol. 2015, 7, a020412. [Google Scholar] [CrossRef] [Green Version]
- Michal, I.; Guy, S.S.; Michel, R. Astrocytes in Pathogenesis of Multiple Sclerosis and Potential Translation into Clinic. In Glia in Health and Disease; Spohr, T., Ed.; IntechOpen: London, UK, 2020. [Google Scholar]
- Fogarty, D.J.; Matute, C. Angiotensin receptor-like immunoreactivity in adult brain white matter astrocytes and oligodendrocytes. Glia 2001, 35, 131–146. [Google Scholar] [CrossRef]
- Brosnan, C.F.; Raine, C.S. The astrocyte in multiple sclerosis revisited. Glia 2013, 61, 453–465. [Google Scholar] [CrossRef]
- Wosik, K.; Cayrol, R.; Dodelet-Devillers, A.; Berthelet, F.; Bernard, M.; Moumdjian, R.; Bouthillier, A.; Reudelhuber, T.L.; Prat, A. Angiotensin II Controls Occludin Function and Is Required for Blood Brain Barrier Maintenance: Relevance to Multiple Sclerosis. J. Neurosci. 2007, 27, 9032–9042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cosarderelioglu, C.; Nidadavolu, L.S.; George, C.J.; Oh, E.S.; Bennett, D.A.; Walston, J.D.; Abadir, P.M. Brain Renin–Angiotensin System at the Intersect of Physical and Cognitive Frailty. Front. Neurosci. 2020, 14, 586314. [Google Scholar] [CrossRef] [PubMed]
- Grobe, J.L.; Xu, D.; Sigmund, C.D. An Intracellular Renin-Angiotensin System in Neurons: Fact, Hypothesis, or Fantasy. Physiology 2008, 23, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, J.M. Brain and pituitary angiotensin. Endocr. Rev. 1992, 13, 329–380. [Google Scholar] [CrossRef]
- Mecca, A.P.; Regenhardt, R.W.; O’Connor, T.E.; Joseph, J.P.; Raizada, M.K.; Katovich, M.J.; Sumners, C. Cerebroprotection by angiotensin-(1-7) in endothelin-1-induced ischaemic stroke. Exp. Physiol. 2011, 96, 1084–1096. [Google Scholar] [CrossRef] [Green Version]
- Wright, J.W.; Harding, J.W. Brain renin-angiotensin—A new look at an old system. Prog. Neurobiol. 2011, 95, 49–67. [Google Scholar] [CrossRef] [PubMed]
- Costa-Besada, M.A.; Valenzuela, R.; Garrido-Gil, P.; Villar-Cheda, B.; Parga, J.A.; Lanciego, J.L.; Labandeira-Garcia, J.L. Paracrine and Intracrine Angiotensin 1-7/Mas Receptor Axis in the Substantia Nigra of Rodents, Monkeys, and Humans. Mol. Neurobiol. 2018, 55, 5847–5867. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, R.; Costa-Besada, M.A.; Iglesias-Gonzalez, J.; Perez-Costas, E.; Villar-Cheda, B.; Garrido-Gil, P.; Melendez-Ferro, M.; Soto-Otero, R.; Lanciego, J.L.; Henrion, D.; et al. Mitochondrial angiotensin receptors in dopaminergic neurons. Role in cell protection and aging-related vulnerability to neurodegeneration. Cell Death Dis. 2016, 7, e2427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinley, M.J.; Albiston, A.L.; Allen, A.M.; Mathai, M.L.; May, C.N.; McAllen, R.M.; Oldfield, B.J.; Mendelsohn, F.A.; Chai, S.Y. The brain renin-angiotensin system: Location and physiological roles. Int. J. Biochem. Cell Biol. 2003, 35, 901–918. [Google Scholar] [CrossRef]
- Zawada, W.M.; Mrak, R.E.; Biedermann, J.; Palmer, Q.D.; Gentleman, S.M.; Aboud, O.; Griffin, W.S. Loss of angiotensin II receptor expression in dopamine neurons in Parkinson’s disease correlates with pathological progression and is accompanied by increases in Nox4- and 8-OH guanosine-related nucleic acid oxidation and caspase-3 activation. Acta Neuropathol. Commun. 2015, 3, 9. [Google Scholar] [CrossRef]
- Gurley, S.B.; Allred, A.; Le, T.H.; Griffiths, R.; Mao, L.; Philip, N.; Haystead, T.A.; Donoghue, M.; Breitbart, R.E.; Acton, S.L.; et al. Altered blood pressure responses and normal cardiac phenotype in ACE2-null mice. J. Clin. Investig. 2006, 116, 2218–2225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banegas, I.; Prieto, I.; Vives, F.; Alba, F.; Gasparo, M.d.; Segarra, A.B.; Hermoso, F.; Durán, R.; Ramírez, M. Brain Aminopeptidases and Hypertension. JRAAS 2006, 7, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Prieto, I.; Segarra, A.B.; Gasparo, M.d.; Martínez-Cañamero, M.; Ramírez-Sánchez, M. Divergent profile between hypothalamic and plasmatic aminopeptidase activities in WKY and SHR. Influence of beta-adrenergic blockade. Life Sci. 2018, 192, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Ferrario, C.M.; Groban, L.; Wang, H.; Sun, X.; VonCannon, J.L.; Wright, K.N.; Ahmad, S. The renin-angiotensin system biomolecular cascade: A 2022 update of newer insights and concepts. Kidney Int. Suppl. 2022, 12, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Puertas, M.d.C.; Martínez-Martos, J.M.; Cobo, M.; Rosa, P.L.; Sandalio, M.; Palomeque, T.; Torres, M.I.; Carrera-González, M.P.; Mayas, M.D.; Ramírez-Expósito, M.J. Plasma renin–angiotensin system-regulating aminopeptidase activities are modified in early stage Alzheimer’s disease and show gender differences but are not related to apolipoprotein E genotype. Exp. Gerontol. 2013, 48, 557–564. [Google Scholar] [CrossRef]
- Vadhan, J.D.; Speth, R.C. The role of the brain renin-angiotensin system (RAS) in mild traumatic brain injury (TBI). Pharmacol. Ther. 2021, 218, 107684. [Google Scholar] [CrossRef]
- Jin, C.Z.; Jang, J.H.; Wang, Y.; Kim, J.G.; Bae, Y.M.; Shi, J.; Che, C.R.; Kim, S.J.; Zhang, Y.H. Neuronal nitric oxide synthase is up-regulated by angiotensin II and attenuates NADPH oxidase activity and facilitates relaxation in murine left ventricular myocytes. J. Mol. Cell. Cardiol. 2012, 52, 1274–1281. [Google Scholar] [CrossRef]
- Yasar, S.; Varma, V.R.; Harris, G.C.; Carlson, M.C. Associations of Angiotensin Converting Enzyme-1 and Angiotensin II Blood Levels and Cognitive Function. J. Alzheimers Dis. 2018, 63, 655–664. [Google Scholar] [CrossRef]
- Kehoe, P.G.; Miners, S.; Love, S. Angiotensins in Alzheimer’s disease—friend or foe? Trends Neurosci. 2009, 32, 619–628. [Google Scholar] [CrossRef]
- Valencia, s.; Shamoon, L.; Romero, A.; De la Cuesta, F.; Sanchez-Ferrer, C.F.; Peiro, C. Angiotensin-(1-7), a protective peptide against vascular aging. Peptides 2022, 152, 170775. [Google Scholar] [CrossRef]
- Khurana, V.; Goswami, B. Angiotensin converting enzyme (ACE). Clin. Chim. Acta 2022, 524, 113–122. [Google Scholar] [CrossRef] [PubMed]
- Jiang, T.; Yu, J.-T.; Zhu, X.-C.; Zhang, Q.-Q.; Tan, M.-S.; Cao, L.; Wang, H.-F.; Lu, J.; Gao, Q.; Zhang, Y.-D.; et al. Angiotensin-(1–7) induces cerebral ischaemic tolerance by promoting brain angiogenesis in a Mas/eNOS-dependent pathway. Br. J. Pharmacol. 2014, 171, 4222–4232. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol. Rev. 2018, 98, 505–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Royea, J.; Martinot, P.; Hamel, E. Memory and cerebrovascular deficits recovered following angiotensin IV intervention in a mouse model of Alzheimer’s disease. Neurobiol. Dis. 2020, 134, 104644. [Google Scholar] [CrossRef]
- Gard, P.R.; Fidalgo, S.; Lotter, I.; Richardson, C.; Farina, N.; Rusted, J.; Tabet, N. Changes of renin-angiotensin system-related aminopeptidases in early stage Alzheimer’s disease. Exp. Gerontol. 2017, 89, 1–7. [Google Scholar] [CrossRef]
- Fearnley JM, L.A. Ageing and Parkinson’s disease: Substantia nigra regional selectivity. Brain 1991, 114, 2283–2301. [Google Scholar] [CrossRef]
- Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A.-E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers 2017, 3, 17013. [Google Scholar] [CrossRef]
- Haas, S.J.-P.; Zhou, X.; Machado, V.; Wree, A.; Krieglstein, K.; Spittau, B. Expression of Tgfβ1 and Inflammatory Markers in the 6-hydroxydopamine Mouse Model of Parkinson’s Disease. Front. Mol. Neurosci. 2016, 9, 7. [Google Scholar] [CrossRef] [Green Version]
- Forrester, S.J.; Booz, G.W.; Sigmund, C.D.; Coffman, T.M.; Kawai, T.; Rizzo, V.; Scalia, R.; Eguchi, S. Angiotensin II signal transduction: An update on mechanisms of physiology and pathophysiology. Physiol. Rev. 2018, 98, 1627–1738. [Google Scholar] [CrossRef]
- Farag, E.; Sessler, D.I.; Ebrahim, Z.; Kurz, A.; Morgan, J.; Ahuja, S.; Maheshwari, K.; John Doyle, D. The renin angiotensin system and the brain: New developments. J. Clin. Neurosci. 2017, 46, 1–8. [Google Scholar] [CrossRef]
- Gao, Q.; Ou, Z.; Jiang, T.; Tian, Y.Y.; Zhou, J.S.; Wu, L.; Shi, J.Q.; Zhang, Y.D. Azilsartan ameliorates apoptosis of dopaminergic neurons and rescues characteristic parkinsonian behaviors in a rat model of Parkinson’s disease. Oncotarget 2017, 8, 24099–24109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Pallares, J.; Parga, J.A.; Joglar, B.; Guerra, M.J.; Labandeira-Garcia, J.L. Mitochondrial ATP-sensitive potassium channels enhance angiotensin-induced oxidative damage and dopaminergic neuron degeneration. Relevance for aging-associated susceptibility to Parkinson’s disease. Age 2012, 34, 863–880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabikh, M.; Chahla, C.; Okdeh, N.; Kovacic, H.; Sabatier, J.-M.; Fajloun, Z. Parkinson disease: Protective role and function of neuropeptides. Peptides 2021, 151, 170713. [Google Scholar] [CrossRef]
- Jo, Y.; Kim, S.; Yu, Y.M. POSC203 Preventive Effects of Renin-Angiotensin System Inhibitors on Parkinson’s Disease: A Population-Based Retrospective Cohort Study. Value Health 2022, 25, S140. [Google Scholar] [CrossRef]
- Rocha, N.P.; Scalzo, P.L.; Barbosa, I.G.; de Campos-Carli, S.M.; Tavares, L.D.; de Souza, M.S.; Christo, P.P.; Reis, H.J.; Simões e Silva, A.C.; Teixeira, A.L. Peripheral levels of angiotensins are associated with depressive symptoms in Parkinson’s disease. J. Neurol. Sci. 2016, 368, 235–239. [Google Scholar] [CrossRef]
- Villar-Cheda, B.; Rodríguez-Pallares, J.; Valenzuela, R.; Muñoz, A.; Guerra, M.J.; Baltatu, O.C.; Labandeira-Garcia, J.L. Nigral and striatal regulation of angiotensin receptor expression by dopamine and angiotensin in rodents: Implications for progression of Parkinson’s disease. Eur. J. Neurosci. 2010, 32, 1695–1706. [Google Scholar] [CrossRef]
- Jo, Y.; Kim, S.; Ye, B.S.; Lee, E.; Yu, Y.M. Protective Effect of Renin-Angiotensin System Inhibitors on Parkinson’s Disease: A Nationwide Cohort Study. Front. Pharmacol. 2022, 13, 837890. [Google Scholar] [CrossRef]
- Calsolaro, V.; Edison, P. Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement 2016, 12, 719–732. [Google Scholar] [CrossRef]
- Raskin, J.; Cummings, J.; Hardy, J.; Schuh, K.; Dean, R.A. Neurobiology of Alzheimer’s Disease: Integrated Molecular, Physiological, Anatomical, Biomarker, and Cognitive Dimensions. Curr. Alzheimer Res. 2015, 12, 712–722. [Google Scholar] [CrossRef] [Green Version]
- Ouk, M.; Wu, C.-Y.; Rabin, J.S.; Edwards, J.D.; Ramirez, J.; Masellis, M.; Swartz, R.H.; Herrmann, N.; Lanctôt, K.L.; Black, S.E.; et al. Associations between brain amyloid accumulation and the use of angiotensin-converting enzyme inhibitors versus angiotensin receptor blockers. Neurobiol. Aging 2021, 100, 22–31. [Google Scholar] [CrossRef]
- Jiang, T.; Gao, L.; Lu, J.; Zhang, Y.D. ACE2-Ang-(1-7)-Mas Axis in Brain: A Potential Target for Prevention and Treatment of Ischemic Stroke. Curr. Neuropharmacol. 2013, 11, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Scotti, L.; Bassi, L.; Soranna, D.; Verde, F.; Silani, V.; Torsello, A.; Parati, G.; Zambon, A. Association between renin-angiotensin-aldosterone system inhibitors and risk of dementia: A meta-analysis. Pharmacol. Res. 2021, 166, 105515. [Google Scholar] [CrossRef] [PubMed]
- Li, E.C.; Heran, B.S.; Wright, J.M. Angiotensin converting enzyme (ACE) inhibitors versus angiotensin receptor blockers for primary hypertension. Cochrane Database Syst. Rev. 2014, 2014, Cd009096. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, J.M. Angiotensin II AT1 receptor blockers as treatments for inflammatory brain disorders. Clin. Sci. 2012, 123, 567–590. [Google Scholar] [CrossRef] [Green Version]
- Elkahloun, A.G.; Hafko, R.; Saavedra, J.M. An integrative genome-wide transcriptome reveals that candesartan is neuroprotective and a candidate therapeutic for Alzheimer’s disease. Alzheimer’s Res. Ther. 2016, 8, 26822027. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, J.M. Beneficial effects of Angiotensin II receptor blockers in brain disorders. Pharmacol. Res. 2017, 125, 91–103. [Google Scholar] [CrossRef]
- Carvalho, C.; Moreira, P.I. Oxidative Stress: A Major Player in Cerebrovascular Alterations Associated to Neurodegenerative Events. Front. Physiol. 2018, 9, 806. [Google Scholar] [CrossRef] [Green Version]
- Bhat, S.A.; Goel, R.; Shukla, S.; Shukla, R.; Hanif, K. Angiotensin Receptor Blockade by Inhibiting Glial Activation Promotes Hippocampal Neurogenesis Via Activation of Wnt/β-Catenin Signaling in Hypertension. Mol. Neurobiol. 2018, 55, 5282–5298. [Google Scholar] [CrossRef]
- Quitterer, U.; AbdAlla, S. Improvements of symptoms of Alzheimer’s disease by inhibition of the angiotensin system. Pharmacol. Res. 2020, 154, 104230. [Google Scholar] [CrossRef]
- Valero-Esquitino, V.; Lucht, K.; Namsolleck, P.; Monnet-Tschudi, F.; Stubbe, T.; Lucht, F.; Liu, M.; Ebner, F.; Brandt, C.; Danyel, L.A.; et al. Direct angiotensin type 2 receptor (AT2R) stimulation attenuates T-cell and microglia activation and prevents demyelination in experimental autoimmune encephalomyelitis in mice. Clin. Sci. 2014, 128, 95–109. [Google Scholar] [CrossRef]
- Constantinescu, C.S.; Goodman, D.B.P.; Grossman, R.I.; Mannon, L.J.; Cohen, J.A. Serum Angiotensin-Converting Enzyme in Multiple Sclerosis. Arch. Neurol. 1997, 54, 1012–1015. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.W.; Kawas, L.H.; Harding, J.W. The development of small molecule angiotensin IV analogs to treat Alzheimer’s and Parkinson’s diseases. Prog. Neurobiol. 2015, 125, 26–46. [Google Scholar] [CrossRef] [PubMed]
- Speth, R.C. 4.24—Renin-Angiotensin-Aldosterone System. Compr. Pharmacol. 2022, 4, 528–569. [Google Scholar] [CrossRef]
- Sun, X.; Deng, Y.; Fu, X.; Wang, S.; Duan, R.; Zhang, Y. AngIV-Analog Dihexa Rescues Cognitive Impairment and Recovers Memory in the APP/PS1 Mouse via the PI3K/AKT Signaling Pathway. Brain Sci. 2021, 11, 1487. [Google Scholar] [CrossRef]
- Nataraj, C.; Oliverio, M.I.; Mannon, R.B.; Mannon, P.J.; Audoly, L.P.; Amuchastegui, C.S.; Ruiz, P.; Smithies, O.; Coffman, T.M. Angiotensin II regulates cellular immune responses through a calcineurin-dependent pathway. J. Clin. Investig. 1999, 104, 1693–1701. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, J.M. Angiotensin II AT(1) receptor blockers ameliorate inflammatory stress: A beneficial effect for the treatment of brain disorders. Cell Mol. Neurobiol. 2012, 32, 667–681. [Google Scholar] [CrossRef] [Green Version]
- Stegbauer, J.; Lee, D.-H.; Seubert, S.; Ellrichmann, G.; Manzel, A.; Kvakan, H.; Muller, D.N.; Gaupp, S.; Rump, L.C.; Gold, R.; et al. Role of the renin-angiotensin system in autoimmune inflammation of the central nervous system. Proc. Natl. Acad. Sci. USA 2009, 106, 14942–14947. [Google Scholar] [CrossRef] [Green Version]
- Sathiya, S.; Ranju, V.; Kalaivani, P.; Priya, R.J.; Sumathy, H.; Sunil, A.G.; Babu, C.S. Telmisartan attenuates MPTP induced dopaminergic degeneration and motor dysfunction through regulation of alpha-synuclein and neurotrophic factors (BDNF and GDNF) expression in C57BL/6J mice. Neuropharmacology 2013, 73, 98–110. [Google Scholar] [CrossRef]
- Tong, Q.; Wu, L.; Jiang, T.; Ou, Z.; Zhang, Y.; Zhu, D. Inhibition of endoplasmic reticulum stress-activated IRE1alpha-TRAF2-caspase-12 apoptotic pathway is involved in the neuroprotective effects of telmisartan in the rotenone rat model of Parkinson’s disease. Eur. J. Pharmacol. 2016, 776, 106–115. [Google Scholar] [CrossRef]
- Danielyan, L.; Klein, R.; Hanson, L.R.; Buadze, M.; Schwab, M.; Gleiter, C.H.; Frey, W.H. Protective effects of intranasal losartan in the APP/PS1 transgenic mouse model of Alzheimer disease. Rejuvenation Res. 2010, 13, 195–201. [Google Scholar] [CrossRef]
- Wang, J.; Ho, L.; Chen, L.; Zhao, Z.; Zhao, W.; Qian, X.; Humala, N.; Seror, I.; Bartholomew, S.; Rosendorff, C.; et al. Valsartan lowers brain beta-amyloid protein levels and improves spatial learning in a mouse model of Alzheimer disease. J. Clin. Investig. 2007, 117, 3393–3402. [Google Scholar] [CrossRef] [PubMed]
- Abo-Youssef, A.M.; Khallaf, W.A.; Khattab, M.M.; Messiha, B.A.S. The anti-Alzheimer effect of telmisartan in a hyperglycemic ovariectomized rat model; role of central angiotensin and estrogen receptors. Food Chem. Toxicol. 2020, 142, 111441. [Google Scholar] [CrossRef] [PubMed]
- Wright, J.W.; Harding, J.W. The brain RAS and Alzheimer’s disease. Exp. Neurol. 2010, 223, 326–333. [Google Scholar] [CrossRef]
- Zhuang, S.; Wang, H.-F.; Wang, X.; Li, J.; Xing, C.-M. The association of renin-angiotensin system blockade use with the risks of cognitive impairment of aging and Alzheimer’s disease: A meta-analysis. J. Clin. Neurosci. 2016, 33, 32–38. [Google Scholar] [CrossRef] [PubMed]
- Austin, B.P.; Nair, V.A.; Meier, T.B.; Xu, G.; Rowley, H.A.; Carlsson, C.M.; Johnson, S.C.; Prabhakaran, V. Effects of Hypoperfusion in Alzheimer’s Disease. J. Alzheimers Dis. 2011, 26, 123–133. [Google Scholar] [CrossRef]
- Rodriguez-Perez, A.I.; Borrajo, A.; Rodriguez-Pallares, J.; Guerra, M.J.; Labandeira-Garcia, J.L. Interaction between NADPH-oxidase and Rho-kinase in angiotensin II-induced microglial activation. Glia 2015, 63, 466–482. [Google Scholar] [CrossRef]
- Ola, M.S.; Ahmed, M.M.; Abuohashish, H.M.; Al-Rejaie, S.S.; Alhomida, A.S. Telmisartan ameliorates neurotrophic support and oxidative stress in the retina of streptozotocin-induced diabetic rats. Neurochem. Res. 2013, 38, 1572–1579. [Google Scholar] [CrossRef]
- Lin, H.-C.; Tseng, Y.-F.; Shen, A.-L.; Chao, J.C.-J.; Hsu, C.-Y.; Lin, H.-L. Association of angiotensin receptor blockers with incident Parkinson’s disease in patients with hypertension: A retrospective cohort study. Am. J. Med. 2022, 135, 1001–1007. [Google Scholar] [CrossRef]
- Deng, G.; Vaziri, N.D.; Jabbari, B.; Ni, Z.; Yan, X.X. Increased tyrosine nitration of the brain in chronic renal insufficiency: Reversal by antioxidant therapy and angiotensin-converting enzyme inhibition. J. Am. Soc. Nephrol. 2001, 12, 1892–1899. [Google Scholar] [CrossRef]
- Su, Q.; Huo, C.-J.; Li, H.-B.; Liu, K.-L.; Li, X.; Yang, Q.; Song, X.-A.; Chen, W.-S.; Cui, W.; Zhu, G.-Q.; et al. Renin-angiotensin system acting on reactive oxygen species in paraventricular nucleus induces sympathetic activation via AT1R/PKCγ/Rac1 pathway in salt-induced hypertension. Sci. Rep. 2017, 7, 43107. [Google Scholar] [CrossRef]
- Gopal, K.; Gowtham, M.; Sachin, S.; Ravishankar Ram, M.; Shankar, E.M.; Kamarul, T. Attrition of Hepatic Damage Inflicted by Angiotensin II with alpha-Tocopherol and beta-Carotene in Experimental Apolipoprotein E Knock-out Mice. Sci. Rep. 2015, 5, 18300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verdecchia, P.; Angeli, F.; Mazzotta, G.; Gentile, G.; Reboldi, G. The renin angiotensin system in the development of cardiovascular disease: Role of aliskiren in risk reduction. Vasc. Health Risk Manag. 2008, 4, 971–981. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.F.; Kataoka, K.; Toyama, K.; Sueta, D.; Koibuchi, N.; Yamamoto, E.; Yata, K.; Tomimoto, H.; Ogawa, H.; Kim-Mitsuyama, S. Attenuation of brain damage and cognitive impairment by direct renin inhibition in mice with chronic cerebral hypoperfusion. Hypertension 2011, 58, 635–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.D.; Wu, C.L.; Lin, T.K.; Chuang, Y.C.; Yang, D.I. Renin inhibitor aliskiren exerts neuroprotection against amyloid beta-peptide toxicity in rat cortical neurons. Neurochem. Int. 2012, 61, 369–377. [Google Scholar] [CrossRef] [PubMed]
- Torika, N.; Asraf, K.; Roasso, E.; Danon, A.; Fleisher-Berkovich, S. Angiotensin Converting Enzyme Inhibitors Ameliorate Brain Inflammation Associated with Microglial Activation: Possible Implications for Alzheimer’s Disease. J. Neuroimmune Pharmacol. 2016, 11, 774–785. [Google Scholar] [CrossRef]
- Lassmann, H. Multiple Sclerosis Pathology. In Cold Spring Harbor Perspectives in Medicine; Weiner, H.L., Kuchroo, V.K., Eds.; Cold Spring Harbor Laboratory Press: Long Island, NY, USA, 2018; Volume 8, p. a028936. [Google Scholar]
- Hussain, R.; Zubair, H.; Pursell, S.; Shahab, M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci. 2018, 8, 177. [Google Scholar] [CrossRef] [Green Version]
- Jackson, S.J.; Diemel, L.T.; Pryce, G.; Baker, D. Cannabinoids and neuroprotection in CNS inflammatory disease. J. Neurol. Sci. 2005, 233, 21–25. [Google Scholar] [CrossRef]
- Hauser, S.L.; Cree, B.A.C. Treatment of Multiple Sclerosis: A Review. Am. J. Med. 2020, 133, 1380–1390. [Google Scholar] [CrossRef]
- Katz Sand, I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr. Opin. Neurol. 2015, 28, 193–205. [Google Scholar] [CrossRef]
- Kempuraj, D.; Thangavel, R.; Natteru, P.; Selvakumar, G.; Saeed, D.; Zahoor, H.; Zaheer, S.; Iyer, S.; Zaheer, A. Neuroinflammation Induces Neurodegeneration. J. Neurol. Neurosurg. Spine 2016, 1, 1003. [Google Scholar]
- Russo, M.V.; McGavern, D.B. Inflammatory neuroprotection following traumatic brain injury. Science 2016, 353, 783–785. [Google Scholar] [CrossRef] [PubMed]
- Huseby, E.S.; Liggitt, D.; Brabb, T.; Schnabel, B.; Öhlén, C.; Goverman, J. A Pathogenic Role for Myelin-specific CD8+ T Cells in a Model for Multiple Sclerosis. J. Exp. Med. 2001, 194, 669–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, A.C.; Lalor, S.J.; Lynch, M.A.; Mills, K.H. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav. Immun. 2010, 24, 641–651. [Google Scholar] [CrossRef] [PubMed]
- Fraussen, J.; de Bock, L.; Somers, V. B cells and antibodies in progressive multiple sclerosis: Contribution to neurodegeneration and progression. Autoimmun. Rev. 2016, 15, 896–899. [Google Scholar] [CrossRef]
- Healy, L.M.; Stratton, J.A.; Kuhlmann, T.; Antel, J. The role of glial cells in multiple sclerosis disease progression. Nat. Rev. Neurol. 2022, 18, 237–248. [Google Scholar] [CrossRef]
- Correale, J.; Farez, M.F. The Role of Astrocytes in Multiple Sclerosis Progression. Front. Neurol. 2015, 6, 180. [Google Scholar] [CrossRef] [Green Version]
- Biancardi, V.C.; Stranahan, A.M.; Krause, E.G.; de Kloet, A.D.; Stern, J.E. Cross talk between AT1 receptors and Toll-like receptor 4 in microglia contributes to angiotensin II-derived ROS production in the hypothalamic paraventricular nucleus. Am. J. Physiol. Heart Circ. Physiol. 2016, 310, H404–H415. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.-H.; Heidecke, H.; Schröder, A.; Paul, F.; Wachter, R.; Hoffmann, R.; Ellrichmann, G.; Dragun, D.; Waschbisch, A.; Stegbauer, J.; et al. Increase of angiotensin II type 1 receptor auto-antibodies in Huntington’s disease. Mol. Neurodegener. 2014, 9, 49. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.; Wei, W. Angiotensin II in inflammation, immunity and rheumatoid arthritis. Clin. Exp. Immunol. 2015, 179, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Shao, J.; Nangaku, M.; Miyata, T.; Inagi, R.; Yamada, K.; Kurokawa, K.; Fujita, T. Imbalance of T-cell subsets in angiotensin II-infused hypertensive rats with kidney injury. Hypertension 2003, 42, 31–38. [Google Scholar] [CrossRef]
- Kawajiri, M.; Mogi, M.; Osoegawa, M.; Matsuoka, T.; Tsukuda, K.; Kohara, K.; Horiuchi, M.; Miki, T.; Kira, J.I. Reduction of angiotensin II in the cerebrospinal fluid of patients with multiple sclerosis. Mult. Scler. J. 2008, 14, 557–560. [Google Scholar] [CrossRef] [PubMed]
- Kawajiri, M.; Mogi, M.; Higaki, N.; Matsuoka, T.; Ohyagi, Y.; Tsukuda, K.; Kohara, K.; Horiuchi, M.; Miki, T.; Kira, J.I. Angiotensin-converting enzyme (ACE) and ACE2 levels in the cerebrospinal fluid of patients with multiple sclerosis. Mult. Scler. 2009, 15, 262–265. [Google Scholar] [CrossRef] [PubMed]
- Haarmann, A.; Hähnel, L.; Schuhmann, M.K.; Buttmann, M. Age-adjusted CSF β2-microglobulin and lactate are increased and ACE is decreased in patients with multiple sclerosis, but only lactate correlates with clinical disease duration and severity. J. Neuroimmunol. 2018, 323, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu, C.s.; Ventura, E.; Hilliard, B.; Rostami, A. Effects Of The Angiotensin Converting Enzyme Inhibitor Captopril On Experimental Autoimmune Encephalomyelitis. Immunopharmacol. Immunotoxicol. 1995, 17, 471–495. [Google Scholar] [CrossRef]
- Ottervald, J.; Franzén, B.; Nilsson, K.; Andersson, L.I.; Khademi, M.; Eriksson, B.; Kjellström, S.; Marko-Varga, G.; Végvári, Á.; Harris, R.A.; et al. Multiple sclerosis: Identification and clinical evaluation of novel CSF biomarkers. J. Proteom. 2010, 73, 1117–1132. [Google Scholar] [CrossRef]
- Razazian, N.; Almasi, V.; Afshari, D.; Bostani, A.; Moradian, N.; Farahvashi, M. Serum Angiotensin-Converting Enzyme in Patients Suffering from Multiple Sclerosis and Healthy Controls: A Pilot Study. Neurophysiology 2019, 50, 348–350. [Google Scholar] [CrossRef]
- Platten, M.; Youssef, S.; Hur, E.M.; Ho, P.P.; Han, M.H.; Lanz, T.V.; Phillips, L.K.; Goldstein, M.J.; Bhat, R.; Raine, C.S.; et al. Blocking angiotensin-converting enzyme induces potent regulatory T cells and modulates TH1- and TH17-mediated autoimmunity. Proc. Natl. Acad. Sci. USA 2009, 106, 14948–14953. [Google Scholar] [CrossRef] [Green Version]
- Lanz, T.V.; Ding, Z.; Ho, P.P.; Luo, J.; Agrawal, A.N.; Srinagesh, H.; Axtell, R.; Zhang, H.; Platten, M.; Wyss-Coray, T.; et al. Angiotensin II sustains brain inflammation in mice via TGF-β. J. Clin. Investig. 2010, 120, 2782–2794. [Google Scholar] [CrossRef]
- Luo, J.; Ho, P.P.; Buckwalter, M.S.; Hsu, T.; Lee, L.Y.; Zhang, H.; Kim, D.K.; Kim, S.J.; Gambhir, S.S.; Steinman, L.; et al. Glia-dependent TGF-beta signaling, acting independently of the TH17 pathway, is critical for initiation of murine autoimmune encephalomyelitis. J. Clin. Investig. 2007, 117, 3306–3315. [Google Scholar] [CrossRef] [Green Version]
- Kale, N. Optic neuritis as an early sign of multiple sclerosis. Eye Brain 2016, 8, 195–202. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Namekata, K.; Kimura, A.; Harada, C.; Harada, T. The Renin-Angiotensin System Regulates Neurodegeneration in a Mouse Model of Optic Neuritis. Am. J. Pathol. 2017, 187, 2876–2885. [Google Scholar] [CrossRef] [PubMed]
- Joglar, B.; Rodriguez-Pallares, J.; Rodriguez-Perez, A.I.; Rey, P.; Guerra, M.J.; Labandeira-Garcia, J.L. The inflammatory response in the MPTP model of Parkinson’s disease is mediated by brain angiotensin: Relevance to progression of the disease. J. Neurochem. 2009, 109, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Bhat, S.A.; Rajasekar, N.; Hanif, K.; Nath, C.; Shukla, R. Hypertension exacerbates predisposition to neurodegeneration and memory impairment in the presence of a neuroinflammatory stimulus: Protection by angiotensin converting enzyme inhibition. Pharmacol. Biochem. Behav. 2015, 133, 132–145. [Google Scholar] [CrossRef] [PubMed]
- Iwasaki, Y.; Ichikawa, Y.; Igarashi, O.; Ikeda, K.; Konno, S.; Aoyagi, J.; Kinoshita, M. Temocapril prevents motor neuron damage and upregulation of cyclooxygenase-II in glutamate-induced neurotoxicity. Neurol. Res. 2003, 25, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Sengul, G.; Coskun, S.; Cakir, M.; Coban, M.K.; Saruhan, F.; Hacimuftuoglu, A. Neuroprotective effect of ACE inhibitors in glutamate—induced neurotoxicity: Rat neuron culture study. Turk. Neurosurg. 2011, 21, 367–371. [Google Scholar] [CrossRef]
- Goniotaki, D.; Lakkaraju, A.K.K.; Shrivastava, A.N.; Bakirci, P.; Sorce, S.; Senatore, A.; Marpakwar, R.; Hornemann, S.; Gasparini, F.; Triller, A.; et al. Inhibition of group-I metabotropic glutamate receptors protects against prion toxicity. PLoS Pathog. 2017, 13, e1006733. [Google Scholar] [CrossRef]
- Kim, M.S.; Lee, G.H.; Kim, Y.M.; Lee, B.W.; Nam, H.Y.; Sim, U.C.; Choo, S.J.; Yu, S.W.; Kim, J.J.; Kim Kwon, Y.; et al. Angiotensin II Causes Apoptosis of Adult Hippocampal Neural Stem Cells and Memory Impairment Through the Action on AMPK-PGC1alpha Signaling in Heart Failure. Stem Cells Transl. Med. 2017, 6, 1491–1503. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chen, S.; Liu, J.; Jin, Y.; Yu, S.; An, R. Telmisartan inhibits oxalate and calcium oxalate crystal-induced epithelial-mesenchymal transformation via PPAR-γ-AKT/STAT3/p38 MAPK-Snail pathway. Life Sci. 2020, 241, 117108. [Google Scholar] [CrossRef]
- Auladell, C.; de Lemos, L.; Verdaguer, E.; Ettcheto, M.; Busquets, O.; Lazarowski, A.; Beas-Zarate, C.; Olloquequi, J.; Folch, J.; Camins, A. Role of JNK isoforms in the kainic acid experimental model of epilepsy and neurodegeneration. Front. Biosci. 2017, 22, 795–814. [Google Scholar] [CrossRef] [Green Version]
- Wei-Guo, Z.; Hui, Y.; Shan, L.; Yun, Z.; Wen-Cheng, N.; Fu-Lin, Y.; Fang-Yan, F.; Jun-Hua, G.; Jian-Hua, Z. PPAR-gamma agonist inhibits Ang II-induced activation of dendritic cells via the MAPK and NF-kappaB pathways. Immunol. Cell Biol. 2010, 88, 305–312. [Google Scholar] [CrossRef]
- Muñoz, A.; Rey, P.; Guerra, M.J.; Mendez-Alvarez, E.; Soto-Otero, R.; Labandeira-Garcia, J.L. Reduction of dopaminergic degeneration and oxidative stress by inhibition of angiotensin converting enzyme in a MPTP model of parkinsonism. Neuropharmacology 2006, 51, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Grammatopoulos, T.N.; Jones, S.M.; Ahmadi, F.A.; Hoover, B.R.; Snell, L.D.; Skoch, J.; Jhaveri, V.V.; Poczobutt, A.M.; Weyhenmeyer, J.A.; Zawada, W.M. Angiotensin type 1 receptor antagonist losartan, reduces MPTP-induced degeneration of dopaminergic neurons in substantia nigra. Mol. Neurodegener. 2007, 2, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; et al. Huntington disease. Nat. Reviews. Dis. Primers 2015, 1, 15005. [Google Scholar] [CrossRef] [PubMed]
- Saudou, F.; Humbert, S. The Biology of Huntingtin. Neuron 2016, 89, 910–926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thion, M.S.; Humbert, S. Cancer: From Wild-Type to Mutant Huntingtin. J. Huntingt. Dis. 2018, 7, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wexler, A.; Wild, E.; Tabrizi, S. George Huntington: A legacy of inquiry, empathy and hope. Brain 2016, 139, aww165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Winderickx, J.; Franssens, V.; Liu, B. A Mitochondria-Associated Oxidative Stress Perspective on Huntington’s Disease. Front. Mol. Neurosci. 2018, 11, 329. [Google Scholar] [CrossRef] [PubMed]
- Carmo, C.; Naia, L.; Lopes, C.; Rego, A.C. Mitochondrial Dysfunction in Huntington’s Disease. Adv. Exp. Med. Biol. 2018, 1049, 59–83. [Google Scholar] [CrossRef]
- Mittal, S.K.; Eddy, C. The role of dopamine and glutamate modulation in Huntington disease. Behav. Neurol. 2013, 26, 255–263. [Google Scholar] [CrossRef]
- Ajitkumar, A.; De Jesus, O. Huntington Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Caron, N.S.; Wright, G.E.B.; Hayden, M.R. Huntington Disease. In GeneReviews(®); Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington, Seattle: Seattle, WA, USA, 1993. [Google Scholar]
- Loi, S.M.; Walterfang, M.; Velakoulis, D.; Looi, J.C. Huntington’s disease: Managing neuropsychiatric symptoms in Huntington’s disease. Australas. Psychiatry Bull. R. Aust. N. Z. Coll. Psychiatr. 2018, 26, 376–380. [Google Scholar] [CrossRef]
- Merical, B.; Sánchez-Manso, J.C. Chorea. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Rocha, N.P.; Cleary, C.; Colpo, G.D.; Furr Stimming, E.; Teixeira, A.L. Peripheral Levels of Renin-Angiotensin System Components Are Associated With Cognitive Performance in Huntington’s Disease. Front. Neurosci. 2020, 14, 594945. [Google Scholar] [CrossRef] [PubMed]
- Thakur, K.S.; Prakash, A.; Bisht, R.; Bansal, P.K. Beneficial effect of candesartan and lisinopril against haloperidol-induced tardive dyskinesia in rat. J. Renin Angiotensin Aldosterone Syst. 2015, 16, 917–929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bild, W.; Hritcu, L.; Stefanescu, C.; Ciobica, A. Inhibition of central angiotensin II enhances memory function and reduces oxidative stress status in rat hippocampus. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2013, 43, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Ciobica, A.; Hritcu, L.; Nastasa, V.; Padurariu, M.; Bild, W. Inhibition of central angiotensin converting enzyme exerts anxiolytic effects by decreasing brain oxidative stress. J. Med. Biochem. 2011, 30, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, A.; Shetty, S.; Shirole, T.; Jagtap, A.G. Potential of protease inhibitor in 3-nitropropionic acid induced Huntington’s disease like symptoms: Mitochondrial dysfunction and neurodegeneration. Neurotoxicology 2014, 45, 139–148. [Google Scholar] [CrossRef]
- Machado, T.C.G.; Guatimosim, C.; Kangussu, L.M. The Renin-Angiotensin System in Huntington’s Disease: Villain or Hero? Protein Pept. Lett. 2020, 27, 456–462. [Google Scholar] [CrossRef]
- Imamura, T.; Fujita, K.; Tagawa, K.; Ikura, T.; Chen, X.; Homma, H.; Tamura, T.; Mao, Y.; Taniguchi, J.B.; Motoki, K.; et al. Identification of hepta-histidine as a candidate drug for Huntington’s disease by in silico-in vitro- in vivo-integrated screens of chemical libraries. Sci. Rep. 2016, 6, 33861. [Google Scholar] [CrossRef]
- Steventon, J.J.; Rosser, A.E.; Hart, E.; Murphy, K. Hypertension, Antihypertensive Use and the Delayed-Onset of Huntington’s Disease. Mov. Disord. Off. J. Mov. Disord. Soc. 2020, 35, 937–946. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, J.; Swingler, R.J. Motor neuron disease—A review. Scott. Med. J. 2000, 45, 4–7. [Google Scholar] [CrossRef]
- Raaphorst, J.; Beeldman, E.; De Visser, M.; De Haan, R.J.; Schmand, B. A systematic review of behavioural changes in motor neuron disease. Amyotroph. Lateral Scler. 2012, 13, 493–501. [Google Scholar] [CrossRef]
- Donohoe, D.J.; Brady, B. Motor neuron disease: Etiology, pathogenesis and treatment—A review. Ir. J. Med. Sci. 1996, 165, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Kawajiri, M.; Mogi, M.; Higaki, N.; Tateishi, T.; Ohyagi, Y.; Horiuchi, M.; Miki, T.; Kira, J.I. Reduced angiotensin II levels in the cerebrospinal fluid of patients with amyotrophic lateral sclerosis. Acta Neurol. Scand. 2009, 119, 341–344. [Google Scholar] [CrossRef] [PubMed]
- Lin, F.C.; Tsai, C.P.; Kuang-Wu Lee, J.; Wu, M.T.; Tzu-Chi Lee, C. Angiotensin-converting enzyme inhibitors and amyotrophic lateral sclerosis risk: A total population-based case-control study. JAMA Neurol. 2015, 72, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Ohrui, T.; Tomita, N.; Sato-Nakagawa, T.; Matsui, T.; Maruyama, M.; Niwa, K.; Arai, H.; Sasaki, H. Effects of brain-penetrating ACE inhibitors on Alzheimer disease progression. Neurology 2004, 63, 1324–1325. [Google Scholar] [CrossRef]
- Ohrui, T.; Matsui, T.; Yamaya, M.; Arai, H.; Ebihara, S.; Maruyama, M.; Sasaki, H. Angiotensin-converting enzyme inhibitors and incidence of Alzheimer’s disease in Japan. J. Am. Geriatr. Soc. 2004, 52, 649–650. [Google Scholar] [CrossRef]
- Gao, Y.; O’Caoimh, R.; Healy, L.; Kerins, D.M.; Eustace, J.; Guyatt, G.; Sammon, D.; Molloy, D.W. Effects of centrally acting ACE inhibitors on the rate of cognitive decline in dementia. BMJ Open 2013, 3, e002881. [Google Scholar] [CrossRef] [Green Version]
- AbdAlla, S.; Langer, A.; Fu, X.; Quitterer, U. ACE inhibition with captopril retards the development of signs of neurodegeneration in an animal model of Alzheimer’s disease. Int. J. Mol. Sci. 2013, 14, 16917–16942. [Google Scholar] [CrossRef]
- Reardon, K.A.; Mendelsohn, F.A.; Chai, S.Y.; Horne, M.K. The angiotensin converting enzyme (ACE) inhibitor, perindopril, modifies the clinical features of Parkinson’s disease. Aust. N. Z. J. Med. 2000, 30, 48–53. [Google Scholar] [CrossRef]
- Park, H.S.; You, M.J.; Yang, B.; Jang, K.B.; Yoo, J.; Choi, H.J.; Lee, S.H.; Bang, M.; Kwon, M.S. Chronically infused angiotensin II induces depressive-like behavior via microglia activation. Sci. Rep. 2020, 10, 22082. [Google Scholar] [CrossRef]
- Rana, I.; Suphapimol, V.; Jerome, J.R.; Talia, D.M.; Deliyanti, D.; Wilkinson-Berka, J.L. Angiotensin II and aldosterone activate retinal microglia. Exp. Eye Res. 2020, 191, 107902. [Google Scholar] [CrossRef]
- Struthers, A.; Krum, H.; Williams, G.H. A comparison of the aldosterone-blocking agents eplerenone and spironolactone. Clin. Cardiol. 2008, 31, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Min, L.J.; Mogi, M.; Iwanami, J.; Sakata, A.; Jing, F.; Tsukuda, K.; Ohshima, K.; Horiuchi, M. Angiotensin II and aldosterone-induced neuronal damage in neurons through an astrocyte-dependent mechanism. Hypertens. Res. 2011, 34, 773–778. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Bhat, S.A.; Hanif, K.; Nath, C.; Shukla, R. Angiotensin II Receptor Blockers Attenuate Lipopolysaccharide-Induced Memory Impairment by Modulation of NF-κB-Mediated BDNF/CREB Expression and Apoptosis in Spontaneously Hypertensive Rats. Mol. Neurobiol. 2018, 55, 1725–1739. [Google Scholar] [CrossRef]
- Skaper, S.D. Neurotrophic Factors: An Overview. Methods Mol. Biol. 2018, 1727, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.Y.; Alhusban, A.; Ishrat, T.; Pillai, B.; Eldahshan, W.; Waller, J.L.; Ergul, A.; Fagan, S.C. Brain-Derived Neurotrophic Factor Knockdown Blocks the Angiogenic and Protective Effects of Angiotensin Modulation After Experimental Stroke. Mol. Neurobiol. 2017, 54, 661–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvin, Z.; Laurence, G.G.; Coleman, B.R.; Zhao, A.; Hajj-Moussa, M.; Haddad, G.E. Regulation of L-type inward calcium channel activity by captopril and angiotensin II via the phosphatidyl inositol 3-kinase pathway in cardiomyocytes from volume-overload hypertrophied rat hearts. Can. J. Physiol. Pharmacol. 2011, 89, 206–215. [Google Scholar] [CrossRef] [Green Version]
- Moon, J.H.; Jeong, J.K.; Hong, J.M.; Seol, J.W.; Park, S.Y. Inhibition of Autophagy by Captopril Attenuates Prion Peptide-Mediated Neuronal Apoptosis via AMPK Activation. Mol. Neurobiol. 2019, 56, 4192–4202. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Ichikawa, Y.; Igarashi, O.; Kinoshita, M.; Ikeda, K. Trophic effect of olmesartan, a novel AT1R antagonist, on spinal motor neurons in vitro and in vivo. Neurol. Res. 2002, 24, 468–472. [Google Scholar] [CrossRef]
- Ma, P.C.; Maulik, G.; Christensen, J.; Salgia, R. c-Met: Structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev. 2003, 22, 309–325. [Google Scholar] [CrossRef]
- Albiston, A.L.; McDowall, S.G.; Matsacos, D.; Sim, P.; Clune, E.; Mustafa, T.; Lee, J.; Mendelsohn, F.A.; Simpson, R.J.; Connolly, L.M.; et al. Evidence that the angiotensin IV (AT(4)) receptor is the enzyme insulin-regulated aminopeptidase. J. Biol. Chem. 2001, 276, 48623–48626. [Google Scholar] [CrossRef] [Green Version]
- Albiston, A.L.; Diwakarla, S.; Fernando, R.N.; Mountford, S.J.; Yeatman, H.R.; Morgan, B.; Pham, V.; Holien, J.K.; Parker, M.W.; Thompson, P.E.; et al. Identification and development of specific inhibitors for insulin-regulated aminopeptidase as a new class of cognitive enhancers. Br. J. Pharmacol. 2011, 164, 37–47. [Google Scholar] [CrossRef]
- Franchi, C.; Bianchi, E.; Pupillo, E.; Poloni, M.; Nobili, A.; Fortino, I.; Bortolotti, A.; Merlino, L.; Beghi, E. Angiotensin-converting enzyme inhibitors and motor neuron disease: An unconfirmed association. Amyotroph. Lateral Scler. Front. Degener. 2016, 17, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Pfeiffer, R.M.; Mayer, B.; Kuncl, R.W.; Check, D.P.; Cahoon, E.K.; Rivera, D.R.; Freedman, D.M. Identifying potential targets for prevention and treatment of amyotrophic lateral sclerosis based on a screen of medicare prescription drugs. Amyotroph. Lateral Scler. Front. Degener. 2020, 21, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Kotni, M.K.; Zhao, M.; Wei, D.-Q. Gene expression profiles and protein-protein interaction networks in amyotrophic lateral sclerosis patients with C9orf72 mutation. Orphanet J. Rare Dis. 2016, 11, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Li, X.; Shen, J.; Tan, H.; Rong, T.; Lin, Y.; Feng, E.; Chen, Z.; Jiao, Y.; Liu, G.; et al. Bioinformatic analysis of SMN1-ACE/ACE2 interactions hinted at a potential protective effect of spinal muscular atrophy against COVID-19-induced lung injury. Brief. Bioinform. 2021, 22, 1291–1296. [Google Scholar] [CrossRef] [PubMed]
- Shababi, M.; Habibi, J.; Ma, L.; Glascock, J.J.; Sowers, J.R.; Lorson, C.L. Partial restoration of cardio-vascular defects in a rescued severe model of spinal muscular atrophy. J. Mol. Cell. Cardiol. 2012, 52, 1074–1082. [Google Scholar] [CrossRef] [Green Version]
- Prusiner, S.B. Novel proteinaceous infectious particles cause scrapie. Science 1982, 216, 136–144. [Google Scholar] [CrossRef] [Green Version]
- Prusiner, S.B. Research on scrapie. Lancet 1982, 2, 494–495. [Google Scholar] [CrossRef]
- Wright, C.; Howard, A.; Lim, S.; Lakshman, P.; Loo, C. PrPc: The Normal Prion. FASEB J. 2018, 32, 794–798. [Google Scholar] [CrossRef]
- Miranzadeh Mahabadi, H.; Taghibiglou, C. Cellular Prion Protein (PrPc): Putative Interacting Partners and Consequences of the Interaction. Int. J. Mol. Sci. 2020, 21, 7058. [Google Scholar] [CrossRef]
- Cazaubon, S.; Viegas, P.; Couraud, P.O. Functions of prion protein PrPc. Med. Sci. 2007, 23, 741–745. [Google Scholar] [CrossRef]
- Castle, A.R.; Gill, A.C. Physiological Functions of the Cellular Prion Protein. Front. Mol. Biosci. 2017, 4, 19. [Google Scholar] [CrossRef] [Green Version]
- Beraldo, F.H.; Arantes, C.P.; Santos, T.G.; Queiroz, N.G.; Young, K.; Rylett, R.J.; Markus, R.P.; Prado, M.A.; Martins, V.R. Role of alpha7 nicotinic acetylcholine receptor in calcium signaling induced by prion protein interaction with stress-inducible protein 1. J. Biol. Chem. 2010, 285, 36542–36550. [Google Scholar] [CrossRef] [Green Version]
- Meade, R.M.; Fairlie, D.P.; Mason, J.M. Alpha-synuclein structure and Parkinson’s disease—lessons and emerging principles. Mol. Neurodegener. 2019, 14, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spillantini, M.G.; Schmidt, M.L.; Lee, V.M.; Trojanowski, J.Q.; Jakes, R.; Goedert, M. Alpha-synuclein in Lewy bodies. Nature 1997, 388, 839–840. [Google Scholar] [CrossRef] [PubMed]
- Aguzzi, A.; Lakkaraju, A.K.K. Cell Biology of Prions and Prionoids: A Status Report. Trends Cell Biol. 2016, 26, 40–51. [Google Scholar] [CrossRef]
- Peng, C.; Trojanowski, J.Q.; Lee, V.M. Protein transmission in neurodegenerative disease. Nat. Reviews. Neurol. 2020, 16, 199–212. [Google Scholar] [CrossRef]
- Guo, J.L.; Narasimhan, S.; Changolkar, L.; He, Z.; Stieber, A.; Zhang, B.; Gathagan, R.J.; Iba, M.; McBride, J.D.; Trojanowski, J.Q.; et al. Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice. J. Exp. Med. 2016, 213, 2635–2654. [Google Scholar] [CrossRef] [Green Version]
- Geschwind, M.D. Rapidly Progressive Dementia. Continuum 2016, 22, 510–537. [Google Scholar] [CrossRef] [Green Version]
- Kubler, E.; Oesch, B.; Raeber, A.J. Diagnosis of prion diseases. Br. Med. Bull. 2003, 66, 267–279. [Google Scholar] [CrossRef] [Green Version]
- Verma, A. Prions, prion-like prionoids, and neurodegenerative disorders. Ann. Indian Acad. Neurol. 2016, 19, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Bourgognon, J.M.; Spiers, J.G.; Robinson, S.W.; Scheiblich, H.; Glynn, P.; Ortori, C.; Bradley, S.J.; Tobin, A.B.; Steinert, J.R. Inhibition of neuroinflammatory nitric oxide signaling suppresses glycation and prevents neuronal dysfunction in mouse prion disease. Proc. Natl. Acad. Sci. USA 2021, 118, e2009579118. [Google Scholar] [CrossRef]
- Kozin, S.A.; Polshakov, V.I.; Mezentsev, Y.V.; Ivanov, A.S.; Zhokhov, S.S.; Yurinskaya, M.M.; Vinokurov, M.G.; Makarov, A.A.; Mitkevich, V.A. Enalaprilat Inhibits Zinc-Dependent Oligomerization of Metal-Binding Domain of Amyloid-beta Isoforms and Protects Human Neuroblastoma Cells from Toxic Action of these Isoforms. Mol. Biol. 2018, 52, 590–597. [Google Scholar] [CrossRef]
- Fedosiewicz-Wasiluk, M.; Holy, Z.Z.; Wisniewski, K. L-AP4, a potent agonist of group III metabotropic glutamate receptor, decreases central action of angiotensin II. Pol. J. Pharmacol. 2002, 54, 415–422. [Google Scholar] [PubMed]
- Gao, N.; Wang, H.; Xu, X.; Yang, Z.; Zhang, T. Angiotensin II induces cognitive decline and anxiety-like behavior via disturbing pattern of theta-gamma oscillations. Brain Res. Bull. 2021, 174, 84–91. [Google Scholar] [CrossRef]
- Ho, J.K.; Moriarty, F.; Manly, J.J.; Larson, E.B.; Evans, D.A.; Rajan, K.B.; Hudak, E.M.; Hassan, L.; Liu, E.; Sato, N.; et al. Blood-Brain Barrier Crossing Renin-Angiotensin Drugs and Cognition in the Elderly: A Meta-Analysis. Hypertension 2021, 78, 629–643. [Google Scholar] [CrossRef]
- Wright, J.W.; Harding, J.W. Contributions by the Brain Renin-Angiotensin System to Memory, Cognition, and Alzheimer’s Disease. J. Alzheimers Dis. 2019, 67, 469–480. [Google Scholar] [CrossRef]
- Plosker, G.L.; McTavish, D. Captopril. A review of its pharmacology and therapeutic efficacy after myocardial infarction and in ischaemic heart disease. Drugs Aging 1995, 7, 226–253. [Google Scholar] [CrossRef]
- Sonsalla, P.K.; Coleman, C.; Wong, L.Y.; Harris, S.L.; Richardson, J.R.; Gadad, B.S.; Li, W.; German, D.C. The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism. Exp. Neurol. 2013, 250, 376–383. [Google Scholar] [CrossRef] [Green Version]
- Smeda, J.S.; Daneshtalab, N. Cerebrovascular recovery after stroke with individual and combined losartan and captopril treatment of SHRsp. Vascul. Pharmacol. 2017, 96–98, 40–52. [Google Scholar] [CrossRef]
- Baazaoui, N.; Iqbal, K. COVID-19 and Neurodegenerative Diseases: Prion-Like Spread and Long-Term Consequences. J. Alzheimers Dis. 2022, 88, 399–416. [Google Scholar] [CrossRef] [PubMed]
- Khazaal, S.; Harb, J.; Rima, M.; Annweiler, C.; Wu, Y.; Cao, Z.; Abi Khattar, Z.; Legros, C.; Kovacic, H.; Fajloun, Z.; et al. The Pathophysiology of Long COVID throughout the Renin-Angiotensin System. Molecules 2022, 27, 2903. [Google Scholar] [CrossRef] [PubMed]
- Mungmungpuntipantip, R.; Wiwanitkit, V. Regarding Oculomotor Palsy After the Administration of the Messenger RNA-1273 Vaccine for SARS-CoV-2: Diplopia After the COVID-19 Vaccine. J. Neuroophthalmol. 2022, 1097. [Google Scholar] [CrossRef] [PubMed]
- Hadi-Alijanvand, H.; Di Paola, L.; Hu, G.; Leitner, D.M.; Verkhivker, G.M.; Sun, P.; Poudel, H.; Giuliani, A. Biophysical Insight into the SARS-CoV2 Spike-ACE2 Interaction and Its Modulation by Hepcidin through a Multifaceted Computational Approach. ACS Omega 2022, 7, 17024–17042. [Google Scholar] [CrossRef]
- Heneka, M.T.; Golenbock, D.; Latz, E.; Morgan, D.; Brown, R. Immediate and long-term consequences of COVID-19 infections for the development of neurological disease. Alzheimers Res. Ther. 2020, 12, 69. [Google Scholar] [CrossRef]
- Mattioli, F.; Piva, S.; Stampatori, C.; Righetti, F.; Mega, I.; Peli, E.; Sala, E.; Tomasi, C.; Indelicato, A.M.; Latronico, N.; et al. Neurologic and cognitive sequelae after SARS-CoV2 infection: Different impairment for ICU patients. J. Neurol. Sci. 2022, 432, 120061. [Google Scholar] [CrossRef]
- Wysocki, J.; Lores, E.; Ye, M.; Soler, M.J.; Batlle, D. Kidney and Lung ACE2 Expression after an ACE Inhibitor or an Ang II Receptor Blocker: Implications for COVID-19. J. Am. Soc. Nephrol. 2020, 31, 1941–1943. [Google Scholar] [CrossRef]
- Chandra, A.; Johri, A. A Peek into Pandora’s Box: COVID-19 and Neurodegeneration. Brain Sci. 2022, 12, 190. [Google Scholar] [CrossRef]
- Li, Y.; Lu, S.; Gu, J.; Xia, W.; Zhang, S.; Zhang, S.; Wang, Y.; Zhang, C.; Sun, Y.; Lei, J.; et al. SARS-CoV-2 impairs the disassembly of stress granules and promotes ALS-associated amyloid aggregation. Protein Cell 2022, 13, 602–614. [Google Scholar] [CrossRef]
- Rocha, N.P.; Simoes, E.S.A.C.; Prestes, T.R.R.; Feracin, V.; Machado, C.A.; Ferreira, R.N.; Teixeira, A.L.; de Miranda, A.S. RAS in the Central Nervous System: Potential Role in Neuropsychiatric Disorders. Curr. Med. Chem. 2018, 25, 3333–3352. [Google Scholar] [CrossRef]
- Goldstein, B.; Speth, R.C.; Trivedi, M. Renin–angiotensin system gene expression and neurodegenerative diseases. J. Renin-Angiotensin-Aldosterone Syst. 2016, 17, 1470320316666750. [Google Scholar] [CrossRef] [PubMed]
- Ranadive, S.A.; Chen, A.X.; Serajuddin, A.T. Relative lipophilicities and structural-pharmacological considerations of various angiotensin-converting enzyme (ACE) inhibitors. Pharm. Res. 1992, 9, 1480–1486. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Wang, J.M.; Leenen, F.H. Inhibition of brain angiotensin-converting enzyme by peripheral administration of trandolapril versus lisinopril in Wistar rats. Am. J. Hypertens. 2005, 18, 158–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, N.; Rangoonwala, B.; Rosenthal, J.; Vasmant, D. Physicochemical and enzyme binding kinetic properties of a new angiotensin-converting enzyme inhibitor ramipril and their clinical implications. Clin. Physiol. Biochem. 1990, 8 (Suppl. 1), 44–52. [Google Scholar]
- de Oliveira, F.F.; Bertolucci, P.H.; Chen, E.S.; Smith, M.C. Brain-penetrating angiotensin-converting enzyme inhibitors and cognitive change in patients with dementia due to Alzheimer’s disease. J. Alzheimers Dis. 2014, 42 (Suppl. 3), S321–S324. [Google Scholar] [CrossRef]
- Ouk, M.; Wu, C.Y.; Rabin, J.S.; Jackson, A.; Edwards, J.D.; Ramirez, J.; Masellis, M.; Swartz, R.H.; Herrmann, N.; Lanctôt, K.L.; et al. The use of angiotensin-converting enzyme inhibitors vs. angiotensin receptor blockers and cognitive decline in Alzheimer’s disease: The importance of blood-brain barrier penetration and APOE ε4 carrier status. Alzheimers Res. Ther. 2021, 13, 43. [Google Scholar] [CrossRef]
- Fiscon, G.; Conte, F.; Amadio, S.; Volonté, C.; Paci, P. Drug Repurposing: A Network-based Approach to Amyotrophic Lateral Sclerosis. Neurother. J. Am. Soc. Exp. NeuroTherapeutics 2021, 18, 1678–1691. [Google Scholar] [CrossRef]
- Paranjpe, M.D.; Taubes, A.; Sirota, M. Insights into Computational Drug Repurposing for Neurodegenerative Disease. Trends Pharmacol. Sci. 2019, 40, 565–576. [Google Scholar] [CrossRef] [Green Version]
- Advani, D.; Gupta, R.; Tripathi, R.; Sharma, S.; Ambasta, R.K.; Kumar, P. Protective role of anticancer drugs in neurodegenerative disorders: A drug repurposing approach. Neurochem. Int. 2020, 140, 104841. [Google Scholar] [CrossRef]
- Khatri, D.K.; Kadbhane, A.; Patel, M.; Nene, S.; Atmakuri, S.; Srivastava, S.; Singh, S.B. Gauging the role and impact of drug interactions and repurposing in neurodegenerative disorders. Curr. Res. Pharmacol. Drug Discov. 2021, 2, 100022. [Google Scholar] [CrossRef]
- Liu, W.; Wang, G.; Wang, Z.; Wang, G.; Huang, J.; Liu, B. Repurposing small-molecule drugs for modulating toxic protein aggregates in neurodegenerative diseases. Drug Discov. Today 2022, 27, 1994–2007. [Google Scholar] [CrossRef] [PubMed]
- Savva, K.; Zachariou, M.; Oulas, A.; Minadakis, G.; Sokratous, K.; Dietis, N.; Spyrou, G.M. Chapter 4—Computational Drug Repurposing for Neurodegenerative Diseases. In Silico Drug Design; Roy, K., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 85–118. [Google Scholar]
- George, A.J.; Allen, A.; Chand, A.L. Repurposing ARBs as treatments for breast cancer. Aging 2017, 9, 1357–1358. [Google Scholar] [CrossRef]
- Gelosa, P.; Castiglioni, L.; Camera, M.; Sironi, L. Repurposing of drugs approved for cardiovascular diseases: Opportunity or mirage? Biochem. Pharmacol. 2020, 177, 113895. [Google Scholar] [CrossRef] [PubMed]
- Ayyar, P.; Subramanian, U. Repurposing—Second life for drugs. Pharmacia 2022, 69, 51–59. [Google Scholar] [CrossRef]
- Ishida, J.; Konishi, M.; Ebner, N.; Springer, J. Repurposing of approved cardiovascular drugs. J. Transl. Med. 2016, 14, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.-Z.; Quan, Y.; Tang, G.-Y. Medical genetics-based drug repurposing for Alzheimer’s disease. Brain Res. Bull. 2015, 110, 26–29. [Google Scholar] [CrossRef]
- Villapol, S.; Saavedra, J.M. Neuroprotective effects of angiotensin receptor blockers. Am. J. Hypertens. 2015, 28, 289–299. [Google Scholar] [CrossRef]
Mechanism of Protection | Biological Pathway | Group of Drugs | Substances | Diseases |
---|---|---|---|---|
Vascular protection | Activation of ACE2/MasR axis [64] | ACEI | Captopril | PD AD |
Protection of cerebral vasculature [53] | ARB | Candesartan and losartan | PD AD | |
Prevention of vascular damage caused by elevated levels of A-β [65,66] | ARB/ACEI ARB higher than ACEI | Losartan, olmesartan, and valsartan | AD |
Mechanism of Protection | Biological Pathway | Group of Drugs | Substances | Diseases | |
---|---|---|---|---|---|
Inhibition of neuroinflammation | Inhibition of activation of glial cells [70,71] | ARB | Candesartan | MS AD MND | |
Suppression of pro-inflammatory microglia | [72,73,74] | ACEI | Captopril | MS | |
[73] | AT2R agonist C21 | C21 | MS | ||
Inhibition of gliosis | [75] | HGF/cMET receptor or Ang IV/AT4R | Ang IV/AT4R antagonists Divalinal-Ang IV; norleual-Ang IV | PD AD MND HD | |
Ang IV/AT4R agonist Nle1-Ang IV [75] | PD AD | ||||
Stimulation of new synapse formation | [75,76] | AT4R agonist | ATH-1017 | ||
[77] | Ang IV/AT4R /IRAP | IRAP modulator Dihexa | HD AD | ||
Inhibition of immune cell activation [78,74] | ACEI | Lisinopril | MS | ||
Inhibition of the RhoA/ROCK pathway and decrease in TNF-α [67,79] | ACEI | Perindopril | MS | ||
Decrease in TGF-β [80] | Renin inhibitor | Aliskiren | MS | ||
Upregulation of PPAR-γ [81] | ARB | Telmisartan | |||
Downregulation of IL1-α, NO, and TNF-α [82] |
Mechanism of Protection | Biological Pathway | Group of Drugs | Substances | Diseases | |
---|---|---|---|---|---|
Inhibition of oxidative damage | Inhibition of NOX complex | [89] | ARB | Irbesartan | AD PD MND |
[90] | Telmisartan | AD PD MND | |||
[89,91] | Olmesartan | PD HD | |||
Increase in NO synthesis [14,26] | ARB | Losartan | |||
Inhibition of nitrosative stress [92] | ACEI | Captopril | MND | ||
Lowering of SOD and GPX [93] | |||||
Antioxidation by α-tocopherol [94] | Vit E | ALL | |||
Reduce DA neuron loss by mytochondrial ATP-dependent potassium channels (KATP) [55] | Azilsartan | PD |
Mechanism of Protection | Biological Pathway | Group of Drugs | Substances | Diseases |
---|---|---|---|---|
Inhibition of protein misfolding | Decrease in A-β plaque formation [83] | ARB | Losartan | AD |
Attenuation of oligomerization of A-β peptides [84] | ARB | Valsartan | AD | |
Reduction in A-β toxicity [95] | Renin inhibitor | Aliskiren | AD | |
Reduction in A-β and τ protein levels [85] | ARB | Telmisartan | AD | |
Inhibition of α-synuclein [98] | ARB | Telmisartan |
Mechanism of Protection | Biological Pathway | Group of Drugs | Substances | Diseases |
---|---|---|---|---|
Inhibition of apoptosis | Inhibition of NF-κB-induced neuronal death [126,127] | ACEI | Perindopril | AD PD HD |
Inhibition of NF-κB-induced neuronal death [126,127] Reduction of glutamate excitotoxicity [128,129] | ACEI | Trandolapril | HD | |
Temocapril | ALS MS | |||
Reduction of glutamate excitotoxicity [128,129] Pharmacologic inhibition of metabotropic glutamate receptors [130] | ACEI | Captopril | HD | |
Ramipril | HD | |||
Perindopril | HD | |||
LAP-4 | PRD | |||
Inhibition of activation of MAPK and PPARγ-coactivator-α1–Bax pathway [131,132] | ARB | Telmisartan | ||
Inhibition of PI3K/Akt cascade [133,134] | ||||
Reduction of dopaminergic neuron loss [135,136] | ACEI | Captopril | PD | |
Reduction of dopaminergic neuron loss [135,136] | ARB | Losartan | PD |
Mechanism of Protection | Biological Pathway | Group of Drugs | Substances | Diseases |
---|---|---|---|---|
Stimulation of neurotrophic factors | Modulation of neurotrophins–NGF, BDNF [5,170] | ARB/AT2R blockers | Candesartan PD123319 | |
Neurotrophins -3, -4, -6 [171,172] | ||||
Inhibition of astrocytic hyperstimulation | Ang II stimulates astrocytes to secrete aldosterone, which is neurotoxic [169] | ARB | Valsartan | HD |
Inhibition of aldosterone action [169] | Aldosterone receptor blocker | Eplerenone | HD | |
Other mechanisms | Inhibition of L-Ca2+ channel [173] | ACEI | Captopril | PRD PD AD Stroke |
Inhibition of PrPSc-induced neuronal autophagy [174] | ACEI | Captopril | PRD PD AD | |
Long COVID | ||||
Myelin protection | Inhibition of de-myelination [73] | ARB | Candesartan | MS |
Promotion of myelination [125] | ACEI | Captopril | MS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bild, W.; Vasincu, A.; Rusu, R.-N.; Ababei, D.-C.; Stana, A.B.; Stanciu, G.D.; Savu, B.; Bild, V. Impact of the Renin-Angiotensin System on the Pathogeny and Pharmacotherapeutics of Neurodegenerative Diseases. Biomolecules 2022, 12, 1429. https://doi.org/10.3390/biom12101429
Bild W, Vasincu A, Rusu R-N, Ababei D-C, Stana AB, Stanciu GD, Savu B, Bild V. Impact of the Renin-Angiotensin System on the Pathogeny and Pharmacotherapeutics of Neurodegenerative Diseases. Biomolecules. 2022; 12(10):1429. https://doi.org/10.3390/biom12101429
Chicago/Turabian StyleBild, Walther, Alexandru Vasincu, Răzvan-Nicolae Rusu, Daniela-Carmen Ababei, Aurelian Bogdan Stana, Gabriela Dumitrița Stanciu, Bogdan Savu, and Veronica Bild. 2022. "Impact of the Renin-Angiotensin System on the Pathogeny and Pharmacotherapeutics of Neurodegenerative Diseases" Biomolecules 12, no. 10: 1429. https://doi.org/10.3390/biom12101429
APA StyleBild, W., Vasincu, A., Rusu, R. -N., Ababei, D. -C., Stana, A. B., Stanciu, G. D., Savu, B., & Bild, V. (2022). Impact of the Renin-Angiotensin System on the Pathogeny and Pharmacotherapeutics of Neurodegenerative Diseases. Biomolecules, 12(10), 1429. https://doi.org/10.3390/biom12101429