Molecular Modeling of Allosteric Site of Isoform-Specific Inhibition of the Peroxisome Proliferator-Activated Receptor PPARγ
Abstract
:1. Introduction
2. Computational Methods
2.1. Preparation of Protein Structures
2.2. Preparation of Ligands
2.3. Molecular Dockin
2.4. Protein-Ligand Interactions
3. Results and Discussion
3.1. Glide Docking
3.2. Binding Mode of PPARγ Ligands at the Allosteric Binding Site
3.3. Binding Mode of PPARγ Ligands at the Orthosteric Binding Site
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosen, E.D.; Spiegelman, B.M. Molecular Regulation of Adipogenesis. Annu. Rev. Cell Dev. Biol. 2000, 16, 145–171. [Google Scholar] [CrossRef] [PubMed]
- Maglich, J.M.; Sluder, A.; Guan, X.; Shi, Y.; McKee, D.D.; Carrick, K.; Kamdar, K.; Willson, T.M.; Moore, J.T. Comparison of complete nuclear receptor sets from the human, Caenorhabditis elegans and Drosophila genomes. Genome Biol. 2001, 2, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science 1988, 240, 889–895. [Google Scholar] [CrossRef] [PubMed]
- Willson, T.M.; Brown, P.J.; Sternbach, D.D.; Henke, B.R. The PPARs: From Orphan Receptors to Drug Discovery. J. Med. Chem. 2000, 43, 527–550. [Google Scholar] [CrossRef]
- Rosen, E.D.; Spiegelman, B.M. PPARγ: A Nuclear Regulator of Metabolism, Differentiation, and Cell Growth. J. Biol. Chem. 2001, 276, 37731–37734. [Google Scholar] [CrossRef] [Green Version]
- Wagstaff, A.J.; Goa, K.L. Rosiglitazone: A review of its use in the management of type 2 diabetes mellitus. Drugs 2002, 62, 1805–1837. [Google Scholar] [CrossRef]
- Tang, H.; Shi, W.; Fu, S.; Wang, T.; Zhai, S.; Song, Y.; Han, J. Pioglitazone and bladder cancer risk: A systematic review and meta-analysis. Cancer Med. 2018, 7, 1070–1080. [Google Scholar] [CrossRef]
- Monami, M.; Lamanna, C.; Marchionni, N.; Mannucci, E. Rosiglitazone and risk of cancer: A meta-analysis of randomized clinical trials. Diabetes Care 2008, 31, 1455–1460. [Google Scholar] [CrossRef] [Green Version]
- Nissen, S.E.; Wolski, K. Effect of Rosiglitazone on the Risk of Myocardial Infarction and Death from Cardiovascular Causes. New Engl. J. Med. 2007, 356, 2457–2471. [Google Scholar] [CrossRef] [Green Version]
- Butler, R.; Mitchell, S.H.; Tindall, D.J.; Young, C.Y. Nonapoptotic cell death associated with S-phase arrest of prostate cancer cells via the peroxisome proliferator-activated receptor gamma ligand, 15-deoxy-delta12,14-prostaglandin J2. Cell Growth Differ. Mol. Biol. J. Am. Assoc. Cancer Res. 2000, 11. [Google Scholar]
- Hisatake, J.I.; Ikezoe, T.; Carey, M.; Holden, S.; Tomoyasu, S.; Koeffler, H.P. Down-Regulation of prostate-specific antigen expression by ligands for peroxisome proliferator-activated receptor gamma in human prostate cancer. Cancer Res. 2000, 60, 5494–5498. [Google Scholar] [PubMed]
- Kubota, T.; Koshizuka, K.; Williamson, E.A.; Asou, H.; Said, J.W.; Holden, S.; Miyoshi, I.; Koeffler, H.P. Ligand for peroxisome proliferator-activated receptor gamma (troglitazone) has potent antitumor effect against human prostate cancer both in vitro and in vivo. Cancer Res. 1998, 58, 3344–3352. [Google Scholar]
- Mueller, E.; Smith, M.; Sarraf, P.; Kroll, T.; Aiyer, A.; Kaufman, D.S.; Oh, W.; Demetri, G.; Figg, W.D.; Zhou, X.-P.; et al. Effects of ligand activation of peroxisome proliferator-activated receptor γ in human prostate cancer. Proc. Natl. Acad. Sci. USA 2000, 97, 10990–10995. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Gong, C.; Chen, A.-M.; Guo, F.-J.; Xu, F.; Ren, Y.; Liao, H. Peroxisome proliferator-activated receptor γ agonist rosiglitazone inhibits migration and invasion of prostate cancer cells through inhibition of the CXCR4/CXCL12 axis. Mol. Med. Rep. 2014, 10, 695–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiau, C.-W.; Yang, C.-C.; Kulp, S.K.; Chen, K.-F.; Chen, C.-S.; Huang, J.-W.; Chen, C.-S. Thiazolidenediones Mediate Apoptosis in Prostate Cancer Cells in Part through Inhibition of Bcl-xL/Bcl-2 Functions Independently of PPARγ. Cancer Res. 2005, 65, 1561–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, C.-C.; Wang, Y.-C.; Wei, S.; Lin, L.-F.; Chen, C.-S.; Lee, C.-C.; Lin, C.-C.; Chen, C.-S. Peroxisome Proliferator-Activated Receptor γ–Independent Suppression of Androgen Receptor Expression by Troglitazone Mechanism and Pharmacologic Exploitation. Cancer Res. 2007, 67, 3229–3238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, I.; Mui, E.; Galbraith, L.; Patel, R.; Tan, E.H.; Salji, M.; Rust, A.G.; Repiscak, P.; Hedley, A.; Markert, E.; et al. Sleeping Beauty screen reveals Pparg activation in metastatic prostate cancer. Proc. Natl. Acad. Sci. USA 2016, 113, 8290–8295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgia, M.M.; Elix, C.C.; Pal, S.K.; Jones, J.O. Different roles of peroxisome proliferator-activated receptor gamma isoforms in prostate cancer. Am. J. Clin. Exp. Urol. 2019, 7, 98–109. [Google Scholar]
- Rogenhofer, S.; Ellinger, J.; Kahl, P.; Stoehr, C.; Hartmann, A.; Engehausen, D.; Wieland, W.-F.; Müller, S.C.; Hofstädter, F.; Walter, B. Enhanced expression of peroxisome proliferate-activated receptor gamma (PPAR-γ) in advanced prostate cancer. Anticancer Res. 2012, 32, 3479–3483. [Google Scholar]
- Segawa, Y.; Yoshimura, R.; Hase, T.; Nakatani, T.; Wada, S.; Kawahito, Y.; Kishimoto, T.; Sano, H. Expression of peroxisome proliferator-activated receptor (PPAR) in human prostate cancer. Prostate 2002, 51, 108–116. [Google Scholar] [CrossRef]
- Tew, B.Y.; Hong, T.B.; Otto-Duessel, M.; Elix, C.; Castro, E.; He, M.; Wu, X.; Pal, S.K.; Kalkum, M.; Jones, J.O. Vitamin K epoxide reductase regulation of androgen receptor activity. Oncotarget 2017, 8, 13818–13831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almahmoud, S.; Elix, C.C.; Jones, J.O.; Hopkins, C.R.; Vennerstrom, J.L.; Zhong, H.A. Virtual screening and biological evaluation of PPARγ antagonists as potential anti-prostate cancer agents. Bioorg. Med. Chem. 2021, 46, 116368. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, J.T.; Berger, A.C.; Shih, J.; Duke, F.F.; Furst, L.; Kwiatkowski, D.J.; Cherniack, A.D.; Meyerson, M.; Strathdee, C.A. Genomic Activation of PPARG Reveals a Candidate Therapeutic Axis in Bladder Cancer. Cancer Res. 2017, 77, 6987–6998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaytseva, Y.Y.; Wallis, N.K.; Southard, R.C.; Kilgore, M.W. The PPARgamma antagonist T0070907 suppresses breast cancer cell proliferation and motility via both PPARgamma-dependent and -independent mechanisms. Anticancer Res. 2011, 31, 813–823. [Google Scholar] [PubMed]
- Nakajima, A.; Tomimoto, A.; Fujita, K.; Sugiyama, M.; Takahashi, H.; Ikeda, I.; Hosono, K.; Endo, H.; Yoneda, K.; Iida, H.; et al. Inhibition of peroxisome proliferator-activated receptor γ activity suppresses pancreatic cancer cell motility. Cancer Sci. 2008, 99, 1892–1900. [Google Scholar] [CrossRef] [PubMed]
- Burton, J.D.; Goldenberg, D.M.; Blumenthal, R.D. Potential of Peroxisome Proliferator-Activated Receptor Gamma Antagonist Compounds as Therapeutic Agents for a Wide Range of Cancer Types. PPAR Res. 2008, 2008, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Asteian, A.; Blayo, A.-L.; He, Y.; Koenig, M.; Shin, Y.; Kuruvilla, D.S.; Corzo, C.A.; Cameron, M.D.; Lin, L.; Ruiz, C.; et al. Design, Synthesis, and Biological Evaluation of Indole Biphenylcarboxylic Acids as PPARγ Antagonists. ACS Med. Chem. Lett. 2015, 6, 998–1003. [Google Scholar] [CrossRef] [Green Version]
- Choi, J.H.; Banks, A.S.; Kamenecka, T.M.; Busby, S.A.; Chalmers, M.J.; Kumar, N.; Kuruvilla, D.S.; Shin, Y.; He, Y.; Bruning, J.B.; et al. Antidiabetic actions of a non-agonist PPARγ ligand blocking Cdk5-mediated phosphorylation. Nature 2011, 477, 477–481. [Google Scholar] [CrossRef] [Green Version]
- Nolte, R.T.; Wisely, G.B.; Westin, S.; Cobb, J.E.; Lambert, M.H.; Kurokawa, R.; Rosenfeld, M.G.; Willson, T.M.; Glass, C.K.; Milburn, M.V. Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature 1998, 395, 137–143. [Google Scholar] [CrossRef]
- Frkic, R.L.; Marshall, A.; Blayo, A.-L.; Pukala, T.; Kamenecka, T.M.; Griffin, P.R.; Bruning, J.B. PPARγ in Complex with an Antagonist and Inverse Agonist: A Tumble and Trap Mechanism of the Activation Helix. iScience 2018, 5, 69–79. [Google Scholar] [CrossRef]
- Hopkins, C.R.; O’Neil, S.V.; Laufersweiler, M.C.; Wang, Y.; Pokross, M.; Mekel, M.; Evdokimov, A.; Walter, R.; Kontoyianni, M.; Petrey, M.E.; et al. Design and synthesis of novel N-sulfonyl-2-indole carboxamides as potent PPAR-γ binding agents with potential application to the treatment of osteoporosis. Bioorg. Med. Chem. Lett. 2006, 16, 5659–5663. [Google Scholar] [CrossRef] [PubMed]
- Hughes, T.S.; Giri, P.K.; de Vera, I.M.S.; Kuruvilla, D.S.; Shin, Y.; Blayo, A.-L.; Kamenecka, T.M.; Burris, T.P.; Griffin, P.R.; Kojetin, D.J. An alternate binding site for PPARγ ligands. Nat. Commun. 2014, 5, 3571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brust, R.; Lin, H.; Fuhrmann, J.; Asteian, A.; Kamenecka, T.M.; Kojetin, D.J. Modification of the Orthosteric PPARγ Covalent Antagonist Scaffold Yields an Improved Dual-Site Allosteric Inhibitor. ACS Chem. Biol. 2017, 12, 969–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maestro, MacroModel, Protein Preparation Wizard, Glide Dock, and Epik; Schrödinger, LLC.: New York, NY, USA, 2019.
- The Molecular Operating Environment (MOE); Chemical Computing Group Inc.: Montreal, QC, Canada, 2019.
- NCI Open Database Compounds, Release 3; National Cancer Institute, National Institutes of Health: Bethseda, MD, USA, 2003. Available online: http://Cactus.nci.nih.gov/download/nci (accessed on 1 June 2019).
- Zhong, H.A.; Santos, E.M.; Vasileiou, C.; Zheng, Z.; Geiger, J.H.; Borhan, B.; Merz, K.M. Free-Energy-Based Protein Design: Re-Engineering Cellular Retinoic Acid Binding Protein II Assisted by the Moveable-Type Approach. J. Am. Chem. Soc. 2018, 140, 3483–3486. [Google Scholar] [CrossRef] [PubMed]
- Hevener, K.E.; Zhao, W.; Ball, D.M.; Babaoglu, K.; Qi, J.; White, S.W.; Lee, R.E. Validation of Molecular Docking Programs for Virtual Screening against Dihydropteroate Synthase. J. Chem. Inf. Model. 2009, 49, 444–460. [Google Scholar] [CrossRef]
- Bender, A.; Glen, R.C. A Discussion of Measures of Enrichment in Virtual Screening: Comparing the Information Content of Descriptors with Increasing Levels of Sophistication. J. Chem. Inf. Model. 2005, 45, 1369–1375. [Google Scholar] [CrossRef]
- Almahmoud, S.; Zhong, H.A. Molecular Modeling Studies on the Binding Mode of the PD-1/PD-L1 Complex Inhibitors. Int. J. Mol. Sci. 2019, 20, 4654. [Google Scholar] [CrossRef] [Green Version]
- Bissantz, C.; Folkers, G.; Rognan, D. Protein-Based Virtual Screening of Chemical Databases. 1. Evaluation of Different Docking/Scoring Combinations. J. Med. Chem. 2000, 43, 4759–4767. [Google Scholar] [CrossRef]
- Yoshizawa, M.; Aoyama, T.; Itoh, T.; Miyachi, H. Arylalkynyl amide-type peroxisome proliferator-activated receptor γ (PPARγ)-selective antagonists covalently bind to the PPARγ ligand binding domain with a unique binding mode. Bioorganic Med. Chem. Lett. 2022, 64, 128676. [Google Scholar] [CrossRef]
- Fuhr, L.; Rousseau, M.; Plauth, A.; Schroeder, F.C.; Sauer, S. Amorfrutins Are Natural PPARγ Agonists with Potent Anti-inflammatory Properties. J. Nat. Prod. 2015, 78, 1160–1164. [Google Scholar] [CrossRef]
- de Groot, J.C.; Weidner, C.; Krausze, J.; Kawamoto, K.; Schroeder, F.C.; Sauer, S.; Büssow, K. Structural Characterization of Amorfrutins Bound to the Peroxisome Proliferator-Activated Receptor γ. J. Med. Chem. 2013, 56, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Bruning, J.B.; Chalmers, M.J.; Prasad, S.; Busby, S.A.; Kamenecka, T.M.; He, Y.; Nettles, K.W.; Griffin, P.R. Partial Agonists Activate PPARγ Using a Helix 12 Independent Mechanism. Structure 2007, 15, 1258–1271. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Kojetin, D.J. Structural mechanism underlying ligand binding and activation of PPARγ. Structure 2021, 29, 940–950.e4. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.Y.; Bae, H.; Lee, Y.J.; Choi, Y.I.; Kim, H.-J.; Park, S.B.; Suh, S.W.; Kim, S.W.; Han, B.W. Structural Basis for the Enhanced Anti-Diabetic Efficacy of Lobeglitazone on PPARγ. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Haffner, C.D.; Lenhard, J.M.; Miller, A.B.; McDougald, D.L.; Dwornik, K.; Ittoop, O.R.; Gampe, J.R.T.; Xu, H.E.; Blanchard, S.; Montana, V.G.; et al. Structure-Based Design of Potent Retinoid X Receptor α Agonists. J. Med. Chem. 2004, 47, 2010–2029. [Google Scholar] [CrossRef]
- Shang, J.; Brust, R.; Mosure, S.A.; Bass, J.; Munoz-Tello, P.; Lin, H.; Hughes, T.S.; Tang, M.; Ge, Q.; Kamenekca, T.M.; et al. Cooperative cobinding of synthetic and natural ligands to the nuclear receptor PPARγ. eLife 2018, 7, e43320. [Google Scholar] [CrossRef]
- Lee, M.A.; Tan, L.; Yang, H.; Im, Y.-G.; Im, Y.J. Structures of PPARγ complexed with lobeglitazone and pioglitazone reveal key determinants for the recognition of antidiabetic drugs. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef]
Compound | IC50 (nM) | ∆GEXP (kcal/mol) | Allosteric GScore | Orthosteric GScore | Compound | IC50 (nM) | ∆GEXP (kcal/mol) | Allosteric GScore | Orthosteric GScore |
---|---|---|---|---|---|---|---|---|---|
NSI | 3 | −11.63 | −12.59 | −14.28 | 22 | 380 | −8.76 | −9.74 | −11.45 |
SR1664 | 80 | −9.68 | −10.31 | −10.96 | 23 | 330 | −8.84 | −9.37 | −11.19 |
SR11023 | 108 | −9.50 | −10.27 | −11.85 | 24 | 330 | −8.84 | −9.57 | −11.84 |
1 | 7 | −11.12 | −12.64 | −14.48 | 25 | 770 | −8.34 | −10.89 | −10.06 |
2 | 1 | −12.28 | −12.75 | −11.42 | 26 | 540 | −8.55 | −9.74 | −10.15 |
3 | 7 | −11.12 | −12.69 | −14.14 | 27 | 6 | −11.22 | −11.19 | −11.68 |
4 | 2 | −11.87 | −11.46 | −11.42 | 28 | 32 | −10.22 | −11.42 | −11.08 |
5 | 290 | −8.92 | −10.33 | −10.97 | 29 | 24 | −10.39 | −11.04 | −11.17 |
6 | 720 | −8.38 | −10.07 | −11.63 | 30 | 30 | −10.26 | −12.32 | −12.48 |
7 | 280 | −8.94 | −10.25 | −10.92 | 31 | 7 | −11.12 | −11.54 | −11.63 |
8 | 80 | −9.68 | −10.78 | −10.85 | 32 | 5 | −11.32 | −12.43 | −12.25 |
9 | 290 | −8.92 | −10.19 | −11.07 | 33 | 8 | −11.05 | −11.47 | −10.93 |
10 | 180 | −9.20 | −10.21 | −11.45 | 34 | 5 | −11.32 | −11.84 | −11.83 |
11 | 90 | −9.61 | −11.14 | −11.96 | 35 | 17 | −10.60 | −11.91 | −12.73 |
12 | 80 | −9.68 | −10.50 | −11.02 | 36 | 40 | −10.09 | −11.66 | −11.95 |
13 | 80 | −9.68 | −10.20 | −11.19 | 37 | 7 | −11.12 | −11.07 | −11.06 |
14 | 680 | −8.41 | −8.93 | −9.34 | 38 | 22 | −10.45 | −11.13 | −11.32 |
15 | 700 | −8.40 | −9.28 | −9.90 | 39 | 77 | −9.70 | −12.26 | −12.17 |
16 | 140 | −9.35 | −9.40 | −11.51 | 40 | 62 | −9.83 | −10.68 | −11.27 |
17 | 90 | −9.61 | −10.74 | −10.80 | 41 | 148 | −9.32 | −10.96 | −10.66 |
18 | 2440 | −7.66 | −7.74 | −8.39 | 42 | 17 | −10.60 | −13.23 | −12.17 |
19 | 400 | −8.73 | −9.94 | −10.27 | 43 | 1100 | −8.13 | −10.98 | −6.61 |
20 | 50 | −9.96 | −11.55 | −10.55 | 44 | 80 | −9.68 | −11.45 | −12.28 |
21 | 280 | −8.94 | −9.93 | −11.24 |
Allosteric Binding Site | Orthosteric Binding Site | |
---|---|---|
Pearson’s R | 0.80 | 0.62 |
Correlation R2 | 0.64 | 0.39 |
ΔΔG | 1.08 | 1.50 |
MAE | 1.10 | 1.63 |
RMSE | 1.29 | 1.83 |
Number of active PPARγ antagonists | 47 |
Number of total compounds in the database | 470 |
Number of active PPARγ antagonists in the top 10% subset | 33 |
Enrichment factor (EF) | 7.0 |
Hit rate (HR) | 70% |
Compound | Interacting Residues | Compound | Interacting Residues |
---|---|---|---|
NSI | Lys265, Ser342 | 22 | Lys265, Ser342 |
SR1664 | Lys265, Ser289, Ser342, Lys367 | 23 | Lys265, Arg288, Ser342, Lys367 |
SR11023 | Lys265, Ser289 | 24 | Lys265, Arg288, Ser342 |
1 | Lys265, Ser342 | 25 | Lys265, Arg288, Ser342 |
2 | Lys265, Ser342 | 26 | Lys265, Arg288, Ser342 |
3 | Lys265, Arg288, Ser342 | 27 | Lys265, Ser289, Ser342 |
4 | Lys265, Ser342 | 28 | Lys265, Ser289, Ser342 |
5 | Lys265, Ser342 | 29 | Lys265, Ser289 |
6 | Lys265, Ser342 | 30 | Lys265, Phe282, Ser342, Lys367 |
7 | Lys265, Ser342 | 31 | Lys265, Ser289 |
8 | Lys265, Arg288, Ser342 | 32 | Lys265, Phe282, Ser342, Lys367 |
9 | Lys265, Ser342 | 33 | Lys265, Ser289 |
10 | Lys265, Arg288, Ser342 | 34 | Lys265, Ser289, Ser342, His449 |
11 | Lys265, Arg288, Ser342 | 35 | Lys265, Phe282, Ser342, Lys367, His449 |
12 | Lys265, Ser342 | 36 | Lys265, Phe282, Lys367 |
13 | Lys265, Ser342 | 37 | Lys265, Ser342 |
14 | Lys265, Arg288, Ser342 | 38 | Phe282, Lys367 |
15 | Lys265, Ser342 | 39 | Lys265, Phe282, Lys367 |
16 | Lys265, Arg288, Ser342 | 40 | Lys265, Gly284 |
17 | Lys265, Ser342 | 41 | Phe282 |
18 | Ser342 | 42 | Lys265, Phe282, Ser342, Lys367 |
19 | Lys265, Arg288, Ser342 | 43 | Arg288 |
20 | Lys265, Ser342 | 44 | Lys265, Phe282, Ser342, Lys367 |
21 | Arg288, Ser342, Glu343 |
Names | Orthosteric GScore | Allosteric GScore | Orthosteric | Allosteric |
---|---|---|---|---|
Rosiglitazone | −8.45 | −6.82 | Leu228 | NA |
Lobeglitazone | −9.70 | −8.56 | Leu228, Phe282 | Leu228 |
Pioglitazone | −8.96 | −2.72 | Ser289, Tyr327, Leu228 | Ser342, Leu340 |
GW1929 | −12.00 | −9.93 | Phe282, Phe363, Lys367 | Lys265, Arg288 |
Farglitazar | −11.85 | −12.58 | Phe282, Lys367, Phe363 | Lys367, Phe282 |
Edaglitazone | −9.98 | −9.68 | Leu228, His449 | Glu343 |
Amorfrutin 1 | −8.74 | −8.42 | Ser289 (phenol) | Glu343, Leu340 |
Amorfrutin 2 | −7.89 | −7.91 | Phe282 (pp), Lys367 | Glu343, Ser342 |
MRL20 | −7.90 | −9.72 | Ser342, His449 | Lys265, Ser342 |
Names | Ortho. Best | Ortho. Mean | Ortho. AE | Allo. Best | Allo. Mean | Allo. AE |
---|---|---|---|---|---|---|
Rosiglitazone | −11.74 | −8.71 | 0.26 | −9.80 | −9.05 | 2.22 |
Lobeglitazone | −12.14 | −10.39 | 0.69 | −11.65 | −10.95 | 2.39 |
Pioglitazone | −8.62 | −6.34 | 2.61 | −9.00 | −6.83 | 4.11 |
GW1929 | −11.01 | −9.65 | 2.35 | −11.73 | −8.88 | 1.05 |
Farglitazar | −11.61 | −10.79 | 1.05 | −13.48 | −12.54 | 0.04 |
Edaglitazone | −9.30 | −8.59 | 1.39 | −11.06 | −9.86 | 0.18 |
Amorfrutin 1 | −8.97 | −8.44 | 0.30 | −8.94 | −8.60 | 0.18 |
Amorfrutin 2 | −7.96 | −7.66 | 0.23 | −8.14 | −7.67 | 0.24 |
MRL20 | −9.57 | −6.72 | 1.18 | −9.91 | −6.89 | 2.82 |
MAE | 1.12 | 1.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almahmoud, S.; Zhong, H.A. Molecular Modeling of Allosteric Site of Isoform-Specific Inhibition of the Peroxisome Proliferator-Activated Receptor PPARγ. Biomolecules 2022, 12, 1614. https://doi.org/10.3390/biom12111614
Almahmoud S, Zhong HA. Molecular Modeling of Allosteric Site of Isoform-Specific Inhibition of the Peroxisome Proliferator-Activated Receptor PPARγ. Biomolecules. 2022; 12(11):1614. https://doi.org/10.3390/biom12111614
Chicago/Turabian StyleAlmahmoud, Suliman, and Haizhen A. Zhong. 2022. "Molecular Modeling of Allosteric Site of Isoform-Specific Inhibition of the Peroxisome Proliferator-Activated Receptor PPARγ" Biomolecules 12, no. 11: 1614. https://doi.org/10.3390/biom12111614
APA StyleAlmahmoud, S., & Zhong, H. A. (2022). Molecular Modeling of Allosteric Site of Isoform-Specific Inhibition of the Peroxisome Proliferator-Activated Receptor PPARγ. Biomolecules, 12(11), 1614. https://doi.org/10.3390/biom12111614