Synergistically Anti-Multiple Myeloma Effects: Flavonoid, Non-Flavonoid Polyphenols, and Bortezomib
Abstract
:1. Introduction
2. Research Methodology
3. Mechanisms of MM
4. Bortezomib in MM Therapy
5. Exploration of Synergistic Drug Combinations in MM Therapy
6. Flavonoids and Non-Flavonoid Polyphenols in MM Therapy
7. Synergistic Effects of Flavonoids and Bortezomib in Anti-MM
7.1. Icariin and Bortezomib
7.2. Icariside II and Bortezomib
7.3. EGCG and Bortezomib
7.4. Scutellarein and Bortezomib
7.5. Wogonin and Bortezomib
7.6. Morin and Bortezomib
7.7. Formononetin and Bortezomib
7.8. Daidzin and Bortezomib
7.9. Plant Extracts and Bortezomib
8. Synergistic Effects of Non-Flavonoid Polyphenols and Bortezomib in Anti-MM
8.1. Silibinin and Bortezomib
8.2. Resveratrol and Bortezomib
8.3. Curcumin and Bortezomib
8.4. Caffeic acid and Bortezomib
9. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ludwig, H.; Novis Durie, S.; Meckl, A.; Hinke, A.; Durie, B. Multiple Myeloma Incidence and Mortality Around the Globe; Interrelations Between Health Access and Quality, Economic Resources, and Patient Empowerment. Oncologist 2020, 25, e1406–e1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazandjian, D. Multiple myeloma epidemiology and survival: A unique malignancy. Semin. Oncol. 2016, 43, 676–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowan, A.J.; Allen, C.; Barac, A.; Basaleem, H.; Bensenor, I.; Curado, M.P.; Foreman, K.; Gupta, R.; Harvey, J.; Hosgood, H.D.; et al. Global Burden of Multiple Myeloma: A Systematic Analysis for the Global Burden of Disease Study 2016. JAMA Oncol. 2018, 4, 1221–1227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cowan, A.J.; Green, D.J.; Kwok, M.; Lee, S.; Coffey, D.G.; Holmberg, L.A.; Tuazon, S.; Gopal, A.K.; Libby, E.N. Diagnosis and Management of Multiple Myeloma. JAMA: J. Am. Med. Assoc. 2022, 327, 464–477. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Gundu, N.; Kancharia, H.; Sahoo, R.K.; Malik, P.S.; Sharma, A.; Gupta, R.; Sharma, O.; Biswas, A.; Kumar, R.; et al. Multiple Myeloma—Effect of Induction Therapy on Transplant Outcomes. Clin. Lymphoma Myeloma Leuk. 2020, 21, 80–90.e5. [Google Scholar] [CrossRef]
- Rosiñol, L.; Oriol, A.; Rios, R.; Sureda, A.; Blanchard, M.J.; Hernández, M.T.; Martínez-Martínez, R.; Moraleda, J.M.; Jarque, I.; Bargay, J.; et al. Bortezomib, lenalidomide, and dexamethasone as induction therapy prior to autologous transplant in multiple myeloma. Blood 2019, 134, 1337–1345. [Google Scholar] [CrossRef] [Green Version]
- Facon, T.; Venner, C.P.; Bahlis, N.J.; Offner, F.; White, D.J.; Karlin, L.; Benboubker, L.; Rigaudeau, S.; Rodon, P.; Voog, E.; et al. Oral ixazomib, lenalidomide, and dexamethasone for transplant-ineligible patients with newly diagnosed multiple myeloma. Blood 2021, 137, 3616–3628. [Google Scholar] [CrossRef]
- Al Hadidi, S.; Yellapragada, S. Treatment Options for Relapsed and Refractory Multiple Myeloma: A Luxury or a Challenge? JAMA Oncol. 2021, 7, 1449. [Google Scholar] [CrossRef]
- Kastritis, E.; Terpos, E.; Dimopoulos, M.A. How I treat relapsed multiple myeloma. Blood 2022, 139, 2904–2917. [Google Scholar] [CrossRef]
- Pancheri, E.; Guglielmi, V.; Wilczynski, G.M.; Malatesta, M.; Tonin, P.; Tomelleri, G.; Nowis, D.; Vattemi, G. Non-Hematologic Toxicity of Bortezomib in Multiple Myeloma: The Neuromuscular and Cardiovascular Adverse Effects. Cancers 2020, 12, 2540. [Google Scholar] [CrossRef]
- Argyropoulou, A.; Aligiannis, N.; Trougakos, I.P.; Skaltsounis, A.-L. Natural compounds with anti-ageing activity. Nat. Prod. Rep. 2013, 30, 1412–1437. [Google Scholar] [CrossRef] [PubMed]
- Haque, A.; Brazeau, D.; Amin, A.R. Perspectives on natural compounds in chemoprevention and treatment of cancer: An update with new promising compounds. Eur. J. Cancer 2021, 149, 165–183. [Google Scholar] [CrossRef] [PubMed]
- Mrityunjaya, M.; Pavithra, V.; Neelam, R.; Janhavi, P.; Halami, P.M.; Ravindra, P.V. Immune-Boosting, Antioxidant and Anti-inflammatory Food Supplements Targeting Pathogenesis of COVID-19. Front. Immunol. 2020, 11, 570122. [Google Scholar] [CrossRef] [PubMed]
- Neha, K.; Haider, R.; Pathak, A.; Yar, M.S. Medicinal prospects of antioxidants: A review. Eur. J. Med. Chem. 2019, 178, 687–704. [Google Scholar] [CrossRef] [PubMed]
- Rondanelli, M.; Faliva, M.A.; Miccono, A.; Naso, M.; Nichetti, M.; Riva, A.; Guerriero, F.; De Gregori, M.; Peroni, G.; Perna, S. Food pyramid for subjects with chronic pain: Foods and dietary constituents as anti-inflammatory and antioxidant agents. Nutr. Res. Rev. 2018, 31, 131–151. [Google Scholar] [CrossRef] [PubMed]
- Forni, C.; Rossi, M.; Borromeo, I.; Feriotto, G.; Platamone, G.; Tabolacci, C.; Mischiati, C.; Beninati, S. Flavonoids: A Myth or a Reality for Cancer Therapy? Molecules 2021, 26, 3583. [Google Scholar] [CrossRef]
- Maiuolo, J.; Gliozzi, M.; Carresi, C.; Musolino, V.; Oppedisano, F.; Scarano, F.; Nucera, S.; Scicchitano, M.; Bosco, F.; Macri, R.; et al. Nutraceuticals and Cancer: Potential for Natural Polyphenols. Nutrients 2021, 13, 3834. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, J.; Li, Y.; Xu, D.-P.; Li, S.; Chen, Y.-M.; Li, H.-B. Natural Polyphenols for Prevention and Treatment of Cancer. Nutrients 2016, 8, 515. [Google Scholar] [CrossRef] [Green Version]
- Jöhrer, K.; Çiçek, S. Multiple Myeloma Inhibitory Activity of Plant Natural Products. Cancers 2021, 13, 2678. [Google Scholar] [CrossRef]
- Pojero, F.; Poma, P.; Spanò, V.; Montalbano, A.; Barraja, P.; Notarbartolo, M. Targeting multiple myeloma with natural polyphenols. Eur. J. Med. Chem. 2019, 180, 465–485. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; the PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.Y.; Li, Z.J.; Chen, X.; Huang, X.R.; Fang, Z.Q.; Zhang, J.G.; Fang, J. Icaritin Reverses Multidrug Resistance of Multiple Myeloma Cell Line KM3/BTZ. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2017, 25, 1690–1695. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-H.; Ahn, K.S.; Jeong, S.-J.; Kwon, T.-R.; Jung, J.H.; Yun, S.-M.; Han, I.; Lee, S.-G.; Kim, D.K.; Kang, M.; et al. Janus activated kinase 2/signal transducer and activator of transcription 3 pathway mediates icariside II-induced apoptosis in U266 multiple myeloma cells. Eur. J. Pharmacol. 2011, 654, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zheng, Y.; Zhang, W.; Hou, L.; Gao, Y. Scutellarin circumvents chemoresistance, promotes apoptosis, and represses tumor growth by HDAC/miR-34a-mediated down-modulation of Akt/mTOR and NF-κB-orchestrated signaling pathways in multiple myeloma. Int. J. Clin. Exp. Pathol. 2020, 13, 212–219. [Google Scholar] [PubMed]
- Shi, L.; Wu, Y.; Lv, D.L.; Feng, L. Scutellarein selectively targets multiple myeloma cells by increasing mitochondrial superoxide production and activating intrinsic apoptosis pathway. Biomed. Pharmacother. 2018, 109, 2109–2118. [Google Scholar] [CrossRef]
- Fu, R.; Chen, Y.; Wang, X.-P.; An, T.; Tao, L.; Zhou, Y.-X.; Huang, Y.-J.; Chen, B.-A.; Li, Z.-Y.; You, Q.-D.; et al. Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis. Oncotarget 2015, 7, 5715–5727. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.C.; Phromnoi, K.; Aggarwal, B.B. Morin inhibits STAT3 tyrosine 705 phosphorylation in tumor cells through activation of protein tyrosine phosphatase SHP1. Biochem. Pharmacol. 2012, 85, 898–912. [Google Scholar] [CrossRef]
- Kim, C.; Lee, S.-G.; Yang, W.M.; Arfuso, F.; Um, J.-Y.; Kumar, A.P.; Bian, J.; Sethi, G.; Ahn, K.S. Formononetin-induced oxidative stress abrogates the activation of STAT3/5 signaling axis and suppresses the tumor growth in multiple myeloma preclinical model. Cancer Lett. 2018, 431, 123–141. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J.H.; Ko, J.-H.; Chinnathambi, A.; Alharbi, S.A.; Shair, O.H.; Sethi, G.; Ahn, K.S. Formononetin Regulates Multiple Oncogenic Signaling Cascades and Enhances Sensitivity to Bortezomib in a Multiple Myeloma Mouse Model. Biomolecules 2019, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.H.; Jung, S.H.; Chinnathambi, A.; Alahmadi, T.A.; Alharbi, S.A.; Sethi, G.; Ahn, K.S. Attenuation of STAT3 Signaling Cascade by Daidzin Can Enhance the Apoptotic Potential of Bortezomib against Multiple Myeloma. Biomolecules 2019, 10, 23. [Google Scholar] [CrossRef]
- Tibullo, D.; Caporarello, N.; Giallongo, C.; Anfuso, C.D.; Genovese, C.; Arlotta, C.; Puglisi, F.; Parrinello, N.L.; Bramanti, V.; Romano, A.; et al. Antiproliferative and Antiangiogenic Effects of Punica granatum Juice (PGJ) in Multiple Myeloma (MM). Nutrients 2016, 8, 611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geraldes, C.; Goncalves, A.; Alves, R.; Roque, A.; Manuel, J.; Costa, N.; Sarmento-Ribeiro, A. New Targeted Drugs in Multiple Myeloma Therapy—in Vitro Studies. Clin. Lymphoma Myeloma Leuk. 2015, 15, e254. [Google Scholar] [CrossRef]
- Ge, X.-P.; Hong, Y.-T.; Li, Y.-L.; Li, B.-Z. Curcumin Increases the Chemosensitivity of Multiple Myeloma to Bortezomib by Inhibiting the Notch1 Signaling Pathway. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2019, 27, 464–471. [Google Scholar]
- Altayli, E.; Koru, Ö.; ÖNGÜRÜ, Ö.; Ide, T.; Acikel, C.; Sarper, M.; Elci, M.P.; Sağkan, R.I.; Astarci, E.; Tok, D.; et al. An in vitro and in vivo investigation of the cytotoxic effects of caffeic acid (3,4-dihydroxycinnamic acid) phenethyl ester and bortezomib in multiple myeloma cells. Turk. J. Med. Sci. 2015, 45, 38–46. [Google Scholar] [CrossRef] [PubMed]
- Jung, Y.Y.; Lee, J.H.; Nam, D.; Narula, A.S.; Namjoshi, O.A.; Blough, B.E.; Um, J.-Y.; Sethi, G.; Ahn, K.S. Anti-myeloma Effects of Icariin Are Mediated Through the Attenuation of JAK/STAT3-Dependent Signaling Cascade. Front. Pharmacol. 2018, 9, 531. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Li, J.; Gu, J.; Huang, B.; Zhao, Y.; Zheng, D.; Ding, Y.; Zeng, L. Potentiation of (−)-epigallocatechin-3-gallate-induced apoptosis by bortezomib in multiple myeloma cells. Acta Biochim. et Biophys. Sin. 2009, 41, 1018–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis-Sobreiro, M.; Gajate, C.; Mollinedo, F. Involvement of mitochondria and recruitment of Fas/CD95 signaling in lipid rafts in resveratrol-mediated antimyeloma and antileukemia actions. Oncogene 2009, 28, 3221–3234. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Ayyappan, V.; Bae, E.-K.; Lee, C.; Kim, B.-S.; Kim, B.K.; Lee, Y.-Y.; Ahn, K.-S.; Yoon, S.-S. Curcumin in combination with bortezomib synergistically induced apoptosis in human multiple myeloma U266 cells. Mol. Oncol. 2008, 2, 317–326. [Google Scholar] [CrossRef] [Green Version]
- Sung, B.; Kunnumakkara, A.B.; Sethi, G.; Anand, P.; Guha, S.; Aggarwal, B.B. Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. Mol. Cancer Ther. 2009, 8, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.H.; Mujtaba, T.; Kanwar, J.; Wan, S.B.; Dou, Q.P. Sensitizing human multiple myeloma cells to the proteasome inhibitor bortezomib by novel curcumin analogs. Int. J. Mol. Med. 2011, 29, 102–106. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Hu, W.-X. Targeting signaling pathways in multiple myeloma: Pathogenesis and implication for treatments. Cancer Lett. 2018, 414, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K.C.; Carrasco, R.D. Pathogenesis of Myeloma. Annu. Rev. Pathol. Mech. Dis. 2011, 6, 249–274. [Google Scholar] [CrossRef] [PubMed]
- Robak, P.; Drozdz, I.; Szemraj, J.; Robak, T. Drug resistance in multiple myeloma. Cancer Treat. Rev. 2018, 70, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Gandolfi, S.; Laubach, J.P.; Hideshima, T.; Chauhan, D.; Anderson, K.C.; Richardson, P.G. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017, 36, 561–584. [Google Scholar] [CrossRef]
- Scott, K.; Hayden, P.J.; Will, A.; Wheatley, K.; Coyne, I. Bortezomib for the treatment of multiple myeloma. Cochrane Database Syst. Rev. 2016, 4, CD010816. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.R.C.; Abdul-Majeed, S.; Cael, B.; Barta, S.K. Clinical Pharmacokinetics and Pharmacodynamics of Bortezomib. Clin. Pharmacokinet. 2018, 58, 157–168. [Google Scholar] [CrossRef]
- Thibaudeau, T.A.; Smith, D.M. A Practical Review of Proteasome Pharmacology. Pharmacol. Rev. 2019, 71, 170–197. [Google Scholar] [CrossRef] [Green Version]
- Manasanch, E.E.; Orlowski, R.Z. Proteasome inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 2017, 14, 417–433. [Google Scholar] [CrossRef]
- Tallarida, R.J. Drug synergism: Its detection and applications. J. Pharmacol. Exp. Ther. 2001, 298, 865–872. Available online: https://pubmed.ncbi.nlm.nih.gov/11504778/ (accessed on 31 September 2001).
- Coates, A.R.M.; Hu, Y.; Holt, J.; Yeh, P. Antibiotic combination therapy against resistant bacterial infections: Synergy, rejuvenation and resistance reduction. Expert Rev. Anti-Infect. Ther. 2020, 18, 5–15. [Google Scholar] [CrossRef]
- Guieu, B.; Jourdan, J.-P.; Dreneau, A.; Willand, N.; Rochais, C.; Dallemagne, P. Desirable drug–drug interactions or when a matter of concern becomes a renewed therapeutic strategy. Drug Discov. Today 2020, 26, 315–328. [Google Scholar] [CrossRef] [PubMed]
- Ianevski, A.; Giri, A.K.; Aittokallio, T. SynergyFinder 2.0: Visual analytics of multi-drug combination synergies. Nucleic Acids Res. 2020, 48, W488–W493. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.B.M.A.; Toh, T.B.; Hooi, L.; Silva, A.; Zhang, Y.; Tan, P.F.; Teh, A.L.; Karnani, N.; Jha, S.; Ho, C.-M.; et al. Optimizing drug combinations against multiple myeloma using a quadratic phenotypic optimization platform (QPOP). Sci. Transl. Med. 2018, 10, eaan0941. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Xu, L.; Wu, X.; Feng, J.; Shu, M.; Gu, H.; Gao, G.; Zhang, J.; Dong, B.; Chen, X. Synergistic Efficacy of the Demethylation Agent Decitabine in Combination With the Protease Inhibitor Bortezomib for Treating Multiple Myeloma Through the Wnt/β-Catenin Pathway. Oncol. Res. Featur. Preclin. Clin. Cancer Ther. 2019, 27, 729–737. [Google Scholar] [CrossRef]
- Palumbo, A.; Chanan-Khan, A.; Weisel, K.; Nooka, A.K.; Masszi, T.; Beksac, M.; Spicka, I.; Hungria, V.; Munder, M.; Mateos, M.V.; et al. Daratumumab, Bortezomib, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2016, 375, 754–766. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, J.; Shirazi, F.; Singh, R.K.; Kuiatse, I.; Wang, H.; Lee, H.C.; Berkova, Z.; Berger, A.; Hyer, M.; Chattopadhyay, N.; et al. Ubiquitin-activating enzyme inhibition induces an unfolded protein response and overcomes drug resistance in myeloma. Blood 2019, 133, 1572–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes 2020, 8, 1222. [Google Scholar] [CrossRef]
- Di Lorenzo, C.; Colombo, F.; Biella, S.; Stockley, C.; Restani, P. Polyphenols and Human Health: The Role of Bioavailability. Nutrients 2021, 13, 273. [Google Scholar] [CrossRef]
- Lu, X.; Saeed, M.E.M.; Hegazy, M.-E.F.; Kampf, C.J.; Efferth, T. Chemopreventive Property of Sencha Tea Extracts towards Sensitive and Multidrug-Resistant Leukemia and Multiple Myeloma Cells. Biomolecules 2020, 10, 1000. [Google Scholar] [CrossRef]
- Tuli, H.S.; Mittal, S.; Aggarwal, D.; Parashar, G.; Parashar, N.C.; Upadhyay, S.K.; Barwal, T.S.; Jain, A.; Kaur, G.; Savla, R.; et al. Path of Silibinin from diet to medicine: A dietary polyphenolic flavonoid having potential anti-cancer therapeutic significance. Semin. Cancer Biol. 2020, 73, 196–218. [Google Scholar] [CrossRef]
- Rauf, A.; Imran, M.; Butt, M.S.; Nadeem, M.; Peters, D.G.; Mubarak, M.S. Resveratrol as an anti-cancer agent: A review. Crit. Rev. Food Sci. Nutr. 2018, 58, 1428–1447. [Google Scholar] [CrossRef] [PubMed]
- Bannerman, B.; Xu, L.; Jones, M.; Tsu, C.; Yu, J.; Hales, P.; Monbaliu, J.; Fleming, P.; Dick, L.; Manfredi, M.; et al. Preclinical evaluation of the antitumor activity of bortezomib in combination with vitamin C or with epigallocatechin gallate, a component of green tea. Cancer Chemother. Pharmacol. 2011, 68, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Francisco, V.; Ruiz-Fernández, C.; González-Rodríguez, M.; Cordero-Barreal, A.; Pino, J.; Viñuela, J.E.; Lago, F.; Conde, J.; Gómez, R.; Carvalho, G.R.; et al. Evaluation of Virola oleifera activity in musculoskeletal pathologies: Inhibition of human multiple myeloma cells proliferation and combination therapy with dexamethasone or bortezomib. J. Ethnopharmacol. 2021, 272, 113932. [Google Scholar] [CrossRef] [PubMed]
- Tsalikis, J.; Abdel-Nour, M.; Farahvash, A.; Sorbara, M.T.; Poon, S.; Philpott, D.J.; Girardin, S.E. Isoginkgetin, a Natural Biflavonoid Proteasome Inhibitor, Sensitizes Cancer Cells to Apoptosis via Disruption of Lysosomal Homeostasis and Impaired Protein Clearance. Mol. Cell. Biol. 2019, 39, e00489-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Imam, F.; Al-Harbi, N.O.; Al-Harbia, M.M.; Korashy, H.M.; Ansari, M.A.; Sayed-Ahmed, M.M.; Nagi, M.N.; Iqbal, M.; Anwer, K.; Kazmi, I.; et al. Rutin Attenuates Carfilzomib-Induced Cardiotoxicity Through Inhibition of NF-κB, Hypertrophic Gene Expression and Oxidative Stress. Cardiovasc. Toxicol. 2015, 17, 58–66. [Google Scholar] [CrossRef]
- Chen, K.; Fan, J.; Luo, Z.-F.; Yang, Y.; Xin, W.-J.; Liu, C.-C. Reduction of SIRT1 epigenetically upregulates NALP1 expression and contributes to neuropathic pain induced by chemotherapeutic drug bortezomib. J. Neuroinflamm. 2018, 15, 292. [Google Scholar] [CrossRef]
- Accardi, F.; Toscani, D.; Costa, F.; Aversa, F.; Giuliani, N. The Proteasome and Myeloma-Associated Bone Disease. Calcif. Tissue Res. 2017, 102, 210–226. [Google Scholar] [CrossRef]
- Golden, E.B.; Lam, P.Y.; Kardosh, A.; Gaffney, K.; Cadenas, E.; Louie, S.G.; Petasis, N.; Chen, T.C.; Schönthal, A.H. Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid–based proteasome inhibitors. Blood 2009, 113, 5927–5937. [Google Scholar] [CrossRef] [Green Version]
- Sak, K. Dietary Flavonoids with Catechol Moiety Inhibit Anticancer Action of Bortezomib: What about the other Boronic Acid-Based Drugs? Curr. Cancer Drug Targets 2022, 22, 741–748. [Google Scholar] [CrossRef]
- Qiu, X.; Wu, X.; He, W. (−)-Epigallocatechin-3-gallate plays an antagonistic role in the antitumor effect of bortezomib in myeloma cells via activating Wnt/β-catenin signaling pathway. Adv. Clin. Exp. Med. 2022, 31, 789–794. [Google Scholar] [CrossRef]
Authors | Year | Title | Polyphenols, or Plant Extracts Rich in Polyphenols | Journal Title, Volume and Page Number | Doi |
---|---|---|---|---|---|
Li, Z. Y., et al. [22] | 2017 | Icaritin Reverses Multidrug Resistance of Multiple Myeloma Cell Line KM3/BTZ. | Icariin | Zhongguo shi yan xue ye xue za zhi 25(6): 1690–1695. | 10.19746/J.CNKI.ISSN.1009-2137.2019.02.025 |
Kim, S. H., et al. [23] | 2011 | Janus activated kinase 2/signal transducer and activator of transcription 3 pathway mediates icariside II-induced apoptosis in U266 multiple myeloma cells. | Icariside II | Eur J Pharmacol 654(1): 10–16. | 10.1016/J.EJPHAR.2010.11.032 |
Li, L., et al. [24] | 2020 | Scutellarin circumvents chemoresistance, promotes apoptosis, and represses tumor growth by HDAC/miR-34a-mediated down-modulation of Akt/mTOR and NF-κB-orchestrated signaling pathways in multiple myeloma. | Scutellarein | Int J Clin Exp Pathol 13(2): 212–219. | Not available |
Shi, L., et al. [25] | 2019 | Scutellarein selectively targets multiple myeloma cells by increasing mitochondrial superoxide production and activating intrinsic apoptosis pathway. | Scutellarein | Biomed Pharmacother 109: 2109–2118. | 10.1016/j.biopha.2018.09.024 |
Fu, R., et al. [26] | 2016 | Wogonin inhibits multiple myeloma-stimulated angiogenesis via c-Myc/VHL/HIF-1α signaling axis. | Wogonin | Oncotarget 7(5): 5715–5727. | 10.18632/ONCOTARGET.6796 |
Gupta, S. C., et al. [27] | 2013 | Morin inhibits STAT3 tyrosine 705 phosphorylation in tumor cells through activation of protein tyrosine phosphatase SHP1. | Morin | Biochem Pharmacol 85(7): 898–912. | 10.1016/J.BCP.2012.12.018 |
Kim, C., et al. [28] | 2018 | Formononetin-induced oxidative stress abrogates the activation of STAT3/5 signaling axis and suppresses the tumor growth in multiple myeloma preclinical model. | Formononetin | Cancer Lett 431: 123–141. | 10.1016/j.canlet.2018.05.038 |
Kim, C., et al. [29] | 2019 | Formononetin Regulates Multiple Oncogenic Signaling Cascades and Enhances Sensitivity to Bortezomib in a Multiple Myeloma Mouse Model. | Formononetin | Biomolecules 9(7): 262. | 10.3390/biom9070262 |
Yang, M. H., et al. [30] | 2019 | Attenuation of STAT3 Signaling Cascade by Daidzin Can Enhance the Apoptotic Potential of Bortezomib against Multiple Myeloma. | Daidzin | Biomolecules 10(1): 23 | 10.3390/biom10010023 |
Tibullo, D., et al. [31] | 2016 | Antiproliferative and Antiangiogenic Effects of Punica granatum Juice (PGJ) in Multiple Myeloma (MM). | PGJ | Nutrients 8(10):611. | 10.3390/nu8100611 |
Geraldes, C., et al. [32] | 2015 | New targeted drugs in multiple myeloma therapy-in vitro studies. | Silibinin | Clinical Lymphoma, and Leukemia 15: e254. | 10.1016/j.clml.2015.07.539 |
Ge, X. P., et al. [33] | 2019 | Curcumin Increases the Chemosensitivity of Multiple Myeloma to Bortezomib by Inhibiting the Notch1 Signaling Pathway. | Curcumin | Zhongguo shi yan xue ye xue za zhi 27(2): 464–471. | 10.19746/j.cnki.issn.1009-2137.2019.02.025 |
Altayli, E., et al. [34] | 2015 | An in vitro and in vivo investigation of the cytotoxic effects of caffeic acid (3,4-dihydroxycinnamic acid) phenethyl ester and bortezomib in multiple myeloma cells. | Caffeic acid | Turk J Med Sci 45(1): 38–46. | 10.3906/SAG-1401-127 |
Jung, Y. Y., et al. [35] | 2018 | Anti-myeloma Effects of Icariin Are Mediated Through the Attenuation of JAK/STAT3-Dependent Signaling Cascade. | Icariin | Front Pharmacol 9: 531. | 10.3389/fphar.2018.00531 |
Wang, Q., et al. [36] | 2009 | Potentiation of (-)-epigallocatechin-3-gallate-induced apoptosis by bortezomib in multiple myeloma cells. | EGCG | Acta Biochim Biophys Sin (Shanghai) 41(12): 1018–1026. | 10.1093/ABBS/GMP094 |
Reis-Sobreiro, M., et al. [37] | 2009 | Involvement of mitochondria and recruitment of Fas/CD95 signaling in lipid rafts in resveratrol-mediated antimyeloma and antileukemia actions. | Resveratrol | ONCOGENE 28(36): 3221–3234. | 10.1038/onc.2009.183 |
Park, J., et al. [38] | 2008 | Curcumin in combination with bortezomib synergistically induced apoptosis in human multiple myeloma U266 cells. | Curcumin | Mol Oncol 2(4): 317–326. | 10.1016/J.MOLONC.2008.09.006 |
Sung, B., et al. [39] | 2009 | Curcumin circumvents chemoresistance in vitro and potentiates the effect of thalidomide and bortezomib against human multiple myeloma in nude mice model. | Curcumin | Mol Cancer Ther 8(4): 959–970. | 10.1158/1535-7163.MCT-08-0905 |
Mujtaba, T., et al. [40] | 2012 | Sensitizing human multiple myeloma cells to the proteasome inhibitor bortezomib by novel curcumin analogs. | Novel curcumin analogs | Int J Mol Med 29(1): 102–106. | 10.3892/ijmm.2011.814 |
Polyphenol | Class | Source | Reference |
---|---|---|---|
Icariin | Flavonol | Dried stems and leaves of arrow leaf Epimedium, pilose Epimedium, Wushan Epimedium, Korean Epimedium. | [22] |
icariside II | Flavonol | Stems and leaves of Epimedium koreanum Nakai (Berberidaceae). | [23] |
(-)-epigallocatechin-3-gallate | Flavan-3-ol | Green tea | [59] |
Scutellarein | Flavone | S. baicalensis or S. barbata | [24,25] |
Wogonin | Flavone | Scutellaria baicalensis | [26] |
Morin | Flavone | Mulberry figs and old fustic (Chlorophora tinctoria) | [27] |
Formononetin | Isoflavone | Roots of Astragalus membranaceus, Trifolium pratense, Glycyrrhiza glabra, and Pueraria lobate | [28,29] |
Daidzin | Isoflavone | Soy and soy products | [30] |
Punica granatum Juice | Plant extract rich in polyphenols | Punica granatum | [31] |
Silibinin | Non-flavonoid polyphenol | Silybum marianum | [32,60] |
Resveratrol | Non-flavonoid polyphenol | Grape, blueberry, raspberry, and mulberries peel and peanut | [61] |
Curcumin | Non-flavonoid polyphenol | Turmeric rhizome | [33] |
Caffeic acid | Non-flavonoid polyphenol | Honey Bee Propolis | [34] |
Flavonoid | Cell Line | Flavonoid Concentration or Dose | Bortezomib Concentration or Dose | Effects | Reference |
---|---|---|---|---|---|
Icariin | Drug-resistant cell line KM3/BTZ | 0, 5, 10, 20, 40 mol/L | 0.08, 0.16, 0. 32, 0.64, 1.28 μg/mL | Increased drug sensitivity and reversed drug resistance | [22] |
Icariin | U266 | 10 μM | 1 nM | Enhanced cytotoxic effect, G0/G1 phase cell cycle arrest, and apoptosis | [35] |
Icariside II | U266 | 0, 25, 50, 100 μM | 20, 40 nM | Enhance cell apoptosis | [23] |
EGCG | KM3 cell line | 0, 25, 50, 100 µM | 20 nM | Synergistically inhibit cell growth and induce cell apoptosis | [36] |
Scutellarein | MM.1R, IM-9, U266B1, RPMI 8226 IM-9 cells injected subcutaneously in BALB/C nude mice | 200 μg/mL 0, 30, 60, 120 mg/kg | 30, 60 mg/kg | Inhibition of cell viability and selective induction of cell apoptosis. The tumor burden of xenograft in nude mice was significantly reduced, and body weight was not affected. | [25] |
Scutellarein | MM.1S cells injected subcutaneously in the BALB/C nude mice | 30, 60 mg/kg | 30, 60 mg/kg | The tumor weight was significantly reduced and Pharmacochemical resistance was reduced | [24] |
Wogonin | RPMI 8226, U266 | 20, 40, 80 μM | 10 nM | Synergistically inhibit tumor-stimulated angiogenesis. | [26] |
Morin | U266, RPMI 8226, MM.1S | 5, 10, 25 µM | 20 nmol/L | Enhanced drug-induced apoptosis | [27] |
Formononetin | U266 | 50 μM | 10 nM | Enhanced drug-induced apoptosis | [28] |
Formononetin | U266, RPMI 8226 U266 cells injected subcutaneously in the athymic nu/nu female mice | 50 μM 20 mg/kg | 10 nM 0.25 mg/kg | Synergistically enhanced anti-tumor and apoptotic effects | [29] |
Daidzin | U266, MM1.S | 10, 20, 30 µM | 1, 2.5, 5 nM | Decreased cell growth, induced higher cell death, increased SubG1 arrest and increased cell apoptosis. | [30] |
Punica granatum juice | KMS26, MM1S, U266 | 3, 6, 12% | 15 nM | Improved the cytotoxic effect | [31] |
Non-Flavonoid Polyphenol | Cell Line | Non-Flavonoid Polyphenol Concentration or Dose | Bortezomib Concentration or Dose | Effects | Reference |
---|---|---|---|---|---|
Silibinin | NCI H929 | Not available | Not available | Increased cytotoxic effects | [32] |
resveratrol | MM1S, MM144, U266 | 10 mM | 10 nM | Enhanced cell apoptosis | [37] |
Curcumin | U266 | 4, 8 μM | 0.5, 4 nM | Synergistically inhibit cell growth and promote apoptosis | [38] |
Curcumin | U266, RPMI-8226, RPMI-8226-Dox-6, RPMI-8226-LR-5, MM.1S, MM.1R U266 cells injected subcutaneously into mice | 5,10 μmol/L 1 g/kg | 0.25 mg/kg, 100 μL | Enhanced anti-tumor effect | [39] |
Curcumin | RPMI-8266, U266 | 0, 20, 40 μM | 5 nmol/L | Enhanced cell apoptosis | [33] |
novel curcumin analogs | RPMI-1640 | 2.5, 5, 10 μM | 10 nM | Enhanced cell proliferation inhibition, apoptosis induction and proteasome inhibition | [40] |
caffeic acid | ARH-77 | 5, 10, 20, 40, 80, 160 g/mL | 1, 10, 20, 30, 50, 100 nM | Synergistically enhance Cytotoxic effects and anti-proliferation | [34] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, K.; Jiang, W.; Jia, H.; Lei, M. Synergistically Anti-Multiple Myeloma Effects: Flavonoid, Non-Flavonoid Polyphenols, and Bortezomib. Biomolecules 2022, 12, 1647. https://doi.org/10.3390/biom12111647
Ding K, Jiang W, Jia H, Lei M. Synergistically Anti-Multiple Myeloma Effects: Flavonoid, Non-Flavonoid Polyphenols, and Bortezomib. Biomolecules. 2022; 12(11):1647. https://doi.org/10.3390/biom12111647
Chicago/Turabian StyleDing, Kaixi, Wei Jiang, Huanan Jia, and Ming Lei. 2022. "Synergistically Anti-Multiple Myeloma Effects: Flavonoid, Non-Flavonoid Polyphenols, and Bortezomib" Biomolecules 12, no. 11: 1647. https://doi.org/10.3390/biom12111647