SNARE Modulators and SNARE Mimetic Peptides
Abstract
1. Introduction
1.1. Overview of Intracellular Membrane Fusion
1.2. Native SNARE Protein Structure and Function
1.3. Molecular Manipulations of SNARE Proteins
2. Peptides Modifying SNARE-Protein Functional Interfaces
2.1. SNARE Complex
2.2. SNAREs/SM Proteins
2.3. Other Functional Interfaces in SNARE Proteins Involved in Membrane Fusion
2.4. SNAREs/ion Channels and Transporters
3. SNARE-Mimetics, Functional Peptides Mediating Membrane Fusion
3.1. Overview of SNARE-Mimicry-based Fusogenic Systems
3.2. Peptide-nucleic acid (PNA) Fusogens
3.3. Coiled coil Peptides, True SNARE-Mimetics
4. SNARE-Inspired Polypeptide-based Binary Protein Assembly Systems
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Brunger, A.T.; Choi, U.B.; Lai, Y.; Leitz, J.; Zhou, Q. Molecular Mechanisms of Fast Neurotransmitter Release. Annu. Rev. Biophys. 2018, 47, 469–497. [Google Scholar] [CrossRef] [PubMed]
- Chernomordik, L.V.; Kozlov, M.M. Protein-Lipid Interplay in Fusion and Fission of Biological Membranes. Annu. Rev. Biochem. 2003, 72, 175–207. [Google Scholar] [CrossRef]
- Jahn, R.; Scheller, R.H. SNAREs--engines for membrane fusion. Nat. Rev. Mol. Cell. Biol. 2006, 7, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, T.; Dulubova, I.; Min, S.W.; Chen, X.; Rizo, J.; Südhof, T.C. Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev. Cell. 2002, 2, 295–305. [Google Scholar] [CrossRef]
- Sauvola, C.W.; Littleton, J.T. SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Front. Mol. Neurosci. 2021, 14, 733138. [Google Scholar] [CrossRef] [PubMed]
- Baker, R.W.; Hughson, F.M. Chaperoning SNARE assembly and disassembly. Nat. Rev. Mol. Cell. Biol. 2016, 17, 465–479. [Google Scholar] [CrossRef] [PubMed]
- Brunger, A.T.; Weninger, K.; Bowen, M.; Chu, S. Single-molecule studies of the neuronal SNARE fusion machinery. Annu. Rev. Biochem. 2009, 78, 903–928. [Google Scholar] [CrossRef]
- Mohrmann, R.; de Wit, H.; Verhage, M.; Neher, E.; Sørensen, J.B. Fast vesicle fusion in living cells requires at least three SNARE complexes. Science 2010, 330, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Ahmed, S.; Jahn, R.; Klingauf, J. Two synaptobrevin molecules are sufficient for vesicle fusion in central nervous system synapses. Proc. Natl. Acad. Sci. USA 2011, 108, 14318–14323. [Google Scholar] [CrossRef] [PubMed]
- Kweon, D.H.; Kim, C.S.; Shin, Y.K. Insertion of the membrane-proximal region of the neuronal SNARE coiled coil into the membrane. J. Biol. Chem. 2003, 278, 12367–12373. [Google Scholar] [CrossRef]
- Van Komen, J.S.; Bai, X.; Rodkey, T.L.; Schaub, J.; McNew, J.A. The polybasic juxtamembrane region of Sso1p is required for SNARE function in vivo. Eukaryot. Cell. 2005, 4, 2017–2028. [Google Scholar] [CrossRef][Green Version]
- Dhara, M.; Yarzagaray, A.; Makke, M.; Schindeldecker, B.; Schwarz, Y.; Shaaban, A.; Sharma, S.; Böckmann, R.A.; Lindau, M.; Mohrmann, R.; et al. v-SNARE transmembrane domains function as catalysts for vesicle fusion. Elife 2016, 5, e17571. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.W.; Peplowska, K.; Rohde, J.; Poschner, B.C.; Ungermann, C.; Langosch, D. Self-interaction of a SNARE transmembrane domain promotes the hemifusion-to-fusion transition. J. Mol. Biol. 2006, 364, 1048–1060. [Google Scholar] [CrossRef]
- Sharma, S.; Lindau, M. t-SNARE Transmembrane Domain Clustering Modulates Lipid Organization and Membrane Curvature. J. Am. Chem. Soc. 2017, 139, 18440–18443. [Google Scholar] [CrossRef]
- Wang, F.; Chan, C.; Weir, N.R.; Denic, V. The Get1/2 transmembrane complex is an endoplasmic-reticulum membrane protein insertase. Nature 2014, 512, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.W.; Chiang, C.W.; Gaffaney, J.D.; Chapman, E.R.; Jackson, M.B. Lipid-anchored Synaptobrevin Provides Little or No Support for Exocytosis or Liposome Fusion. J. Biol. Chem. 2016, 291, 2848–2857. [Google Scholar] [CrossRef]
- Zhou, P.; Bacaj, T.; Yang, X.; Pang, Z.P.; Südhof, T.C. Lipid-anchored SNAREs lacking transmembrane regions fully support membrane fusion during neurotransmitter release. Neuron 2013, 80, 470–483. [Google Scholar] [CrossRef]
- Xu, H.; Zick, M.; Wickner, W.T.; Jun, Y. A lipid-anchored SNARE supports membrane fusion. Proc. Natl. Acad. Sci. USA 2011, 108, 17325–17330. [Google Scholar] [CrossRef] [PubMed]
- Daste, F.; Galli, T.; Tareste, D. Structure and function of longin SNAREs. J. Cell. Sci. 2015, 128, 4263–4272. [Google Scholar] [CrossRef]
- Rizo, J. Molecular Mechanisms Underlying Neurotransmitter Release. Annu. Rev. Biophys. 2022, 51, 377–408. [Google Scholar] [CrossRef]
- Dulubova, I.; Yamaguchi, T.; Arac, D.; Li, H.; Huryeva, I.; Min, S.W.; Rizo, J.; Sudhof, T.C. Convergence and divergence in the mechanism of SNARE binding by Sec1/Munc18-like proteins. Proc. Natl. Acad. Sci. USA 2003, 100, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Dulubova, I.; Sugita, S.; Hill, S.; Hosaka, M.; Fernandez, I.; Südhof, T.C.; Rizo, J. A conformational switch in syntaxin during exocytosis: Role of munc18. Embo J. 1999, 18, 4372–4382. [Google Scholar] [CrossRef] [PubMed]
- Rickman, C.; Jiménez, J.L.; Graham, M.E.; Archer, D.A.; Soloviev, M.; Burgoyne, R.D.; Davletov, B. Conserved prefusion protein assembly in regulated exocytosis. Mol. Biol. Cell 2006, 17, 283–294. [Google Scholar] [CrossRef] [PubMed]
- Atlas, D. Functional and physical coupling of voltage-sensitive calcium channels with exocytotic proteins: Ramifications for the secretion mechanism. J. Neurochem. 2001, 77, 972–985. [Google Scholar] [CrossRef]
- Jarvis, S.E.; Zamponi, G.W. Interactions between presynaptic Ca2+ channels, cytoplasmic messengers and proteins of the synaptic vesicle release complex. Trends. Pharmacol. Sci. 2001, 22, 519–525. [Google Scholar] [CrossRef]
- Verhage, M.; Sørensen, J.B. SNAREopathies: Diversity in Mechanisms and Symptoms. Neuron 2020, 107, 22–37. [Google Scholar] [CrossRef]
- Melland, H.; Carr, E.M.; Gordon, S.L. Disorders of synaptic vesicle fusion machinery. J. Neurochem. 2021, 157, 130–164. [Google Scholar] [CrossRef]
- Margiotta, A. Role of SNAREs in Neurodegenerative Diseases. Cells 2021, 10, 991. [Google Scholar] [CrossRef]
- Tang, B.L. SNAREs and developmental disorders. J. Cell. Physiol. 2021, 236, 2482–2504. [Google Scholar] [CrossRef]
- Pirazzini, M.; Montecucco, C.; Rossetto, O. Toxicology and pharmacology of botulinum and tetanus neurotoxins: An update. Arch. Toxicol. 2022, 96, 1521–1539. [Google Scholar] [CrossRef]
- Arsenault, J.; Ferrari, E.; Niranjan, D.; Cuijpers, S.A.; Gu, C.; Vallis, Y.; O’Brien, J.; Davletov, B. Stapling of the botulinum type A protease to growth factors and neuropeptides allows selective targeting of neuroendocrine cells. J. Neurochem. 2013, 126, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Riley, L.G.; Roufogalis, B.D.; Li, G.Q.; Weiss, A.S. A radioassay for synaptic core complex assembly: Screening of herbal extracts for effectors. Anal. Biochem. 2006, 357, 50–57. [Google Scholar] [CrossRef]
- Heo, P.; Yang, Y.; Han, K.Y.; Kong, B.; Shin, J.H.; Jung, Y.; Jeong, C.; Shin, J.; Shin, Y.K.; Ha, T.; et al. A Chemical Controller of SNARE-Driven Membrane Fusion That Primes Vesicles for Ca2+-Triggered Millisecond Exocytosis. J. Am. Chem. Soc. 2016, 138, 4512–4521. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Shin, J.Y.; Oh, J.M.; Jung, C.H.; Hwang, Y.; Kim, S.; Kim, J.S.; Yoon, K.J.; Ryu, J.Y.; Shin, J.; et al. Dissection of SNARE-driven membrane fusion and neuroexocytosis by wedging small hydrophobic molecules into the SNARE zipper. Proc. Natl. Acad. Sci. USA 2010, 107, 22145–22150. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, S.H.; Heo, P.; Kong, B.; Shin, J.; Jung, Y.H.; Yoon, K.; Chung, W.J.; Shin, Y.K.; Kweon, D.H. SNARE zippering is hindered by polyphenols in the neuron. Biochem. Biophys. Res. Commun. 2014, 450, 831–836. [Google Scholar] [CrossRef][Green Version]
- Nagele, P.; Mendel, J.B.; Placzek, W.J.; Scott, B.A.; D’Avignon, D.A.; Crowder, C.M. Volatile anesthetics bind rat synaptic snare proteins. Anesthesiology 2005, 103, 768–778. [Google Scholar] [CrossRef] [PubMed]
- van Swinderen, B.; Saifee, O.; Shebester, L.; Roberson, R.; Nonet, M.L.; Crowder, C.M. A neomorphic syntaxin mutation blocks volatile-anesthetic action in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1999, 96, 2479–2484. [Google Scholar] [CrossRef]
- Herring, B.E.; Xie, Z.; Marks, J.; Fox, A.P. Isoflurane inhibits the neurotransmitter release machinery. J. Neurophysiol. 2009, 102, 1265–1273. [Google Scholar] [CrossRef]
- Davletov, B.; Connell, E.; Darios, F. Regulation of SNARE fusion machinery by fatty acids. Cell. Mol. Life Sci. 2007, 64, 1597–1608. [Google Scholar] [CrossRef]
- Darios, F.; Wasser, C.; Shakirzyanova, A.; Giniatullin, A.; Goodman, K.; Munoz-Bravo, J.L.; Raingo, J.; Jorgacevski, J.; Kreft, M.; Zorec, R.; et al. Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. Neuron 2009, 62, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Lauwers, E.; Goodchild, R.; Verstreken, P. Membrane Lipids in Presynaptic Function and Disease. Neuron 2016, 90, 11–25. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Guha, S.; Diederichsen, U. SNARE protein analog-mediated membrane fusion. J. Pept. Sci. 2015, 21, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Apland, J.P.; Adler, M.; Oyler, G.A. Inhibition of neurotransmitter release by peptides that mimic the N-terminal domain of SNAP-25. J. Protein. Chem. 2003, 22, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Wheeler, M.B.; Kang, Y.H.; Sheu, L.; Lukacs, G.L.; Trimble, W.S.; Gaisano, H.Y. Truncated SNAP-25 (1-197), like botulinum neurotoxin A, can inhibit insulin secretion from HIT-T15 insulinoma cells. Mol. Endocrinol. 1998, 12, 1060–1070. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Chen, Y.A.; Scales, S.J.; Jagath, J.R.; Scheller, R.H. A discontinuous SNAP-25 C-terminal coil supports exocytosis. J. Biol. Chem. 2001, 276, 28503–28508. [Google Scholar] [CrossRef]
- Cornille, F.; Deloye, F.; Fournié-Zaluski, M.C.; Roques, B.P.; Poulain, B. Inhibition of neurotransmitter release by synthetic proline-rich peptides shows that the N-terminal domain of vesicle-associated membrane protein/synaptobrevin is critical for neuro-exocytosis. J. Biol. Chem. 1995, 270, 16826–16832. [Google Scholar] [CrossRef]
- Guček, A.; Jorgačevski, J.; Singh, P.; Geisler, C.; Lisjak, M.; Vardjan, N.; Kreft, M.; Egner, A.; Zorec, R. Dominant negative SNARE peptides stabilize the fusion pore in a narrow, release-unproductive state. Cell. Mol. Life Sci. 2016, 73, 3719–3731. [Google Scholar] [CrossRef]
- Weber, T.; Zemelman, B.V.; McNew, J.A.; Westermann, B.; Gmachl, M.; Parlati, F.; Söllner, T.H.; Rothman, J.E. SNAREpins: Minimal machinery for membrane fusion. Cell 1998, 92, 759–772. [Google Scholar] [CrossRef] [PubMed]
- Arsenault, J.; Cuijpers, S.A.; Ferrari, E.; Niranjan, D.; Rust, A.; Leese, C.; O’Brien, J.A.; Binz, T.; Davletov, B. Botulinum protease-cleaved SNARE fragments induce cytotoxicity in neuroblastoma cells. J. Neurochem. 2014, 129, 781–791. [Google Scholar] [CrossRef]
- Fournier, K.M.; Robinson, M.B. A dominant-negative variant of SNAP-23 decreases the cell surface expression of the neuronal glutamate transporter EAAC1 by slowing constitutive delivery. Neurochem. Int. 2006, 48, 596–603. [Google Scholar] [CrossRef]
- Gutiérrez, L.M.; Cànaves, J.M.; Ferrer-Montiel, A.V.; Reig, J.A.; Montal, M.; Viniegra, S. A peptide that mimics the carboxy-terminal domain of SNAP-25 blocks Ca2+-dependent exocytosis in chromaffin cells. FEBS Lett. 1995, 372, 39–43. [Google Scholar] [CrossRef] [PubMed]
- Ferrer-Montiel, A.V.; Gutiérrez, L.M.; Apland, J.P.; Canaves, J.M.; Gil, A.; Viniegra, S.; Biser, J.A.; Adler, M.; Montal, M. The 26-mer peptide released from SNAP-25 cleavage by botulinum neurotoxin E inhibits vesicle docking. FEBS Lett. 1998, 435, 84–88. [Google Scholar] [CrossRef]
- Apland, J.P.; Biser, J.A.; Adler, M.; Ferrer-Montiel, A.V.; Montal, M.; Canaves, J.M.; Filbert, M.G. Peptides that mimic the carboxy-terminal domain of SNAP-25 block acetylcholine release at an Aplysia synapse. J. Appl. Toxicol. 1999, 19 (Suppl. 1), S23–S26. [Google Scholar] [CrossRef]
- Blanes-Mira, C.; Merino, J.M.; Valera, E.; Fernández-Ballester, G.; Gutiérrez, L.M.; Viniegra, S.; Pérez-Payá, E.; Ferrer-Montiel, A. Small peptides patterned after the N-terminus domain of SNAP25 inhibit SNARE complex assembly and regulated exocytosis. J. Neurochem. 2004, 88, 124–135. [Google Scholar] [CrossRef] [PubMed]
- Blanes-Mira, C.; Clemente, J.; Jodas, G.; Gil, A.; Fernández-Ballester, G.; Ponsati, B.; Gutierrez, L.; Pérez-Payá, E.; Ferrer-Montiel, A. A synthetic hexapeptide (Argireline) with antiwrinkle activity. Int. J. Cosmet. Sci. 2002, 24, 303–310. [Google Scholar] [CrossRef]
- Martin, F.; Salinas, E.; Vazquez, J.; Soria, B.; Reig, J.A. Inhibition of insulin release by synthetic peptides shows that the H3 region at the C-terminal domain of syntaxin-1 is crucial for Ca2+- but not for guanosine 5’-[γ-thio]triphosphate-induced secretion. Biochem. J. 1996, 320, 201–205. [Google Scholar] [CrossRef]
- Martin, F.; Salinas, E.; Barahona, F.; Vázquez, J.; Soria, B.; Reig, J.A. Engineered peptides corresponding to segments of the H3 domain of syntaxin inhibit insulin release both in intact and permeabilized mouse pancreatic β cells. Biochem. Biophys. Res. Commun. 1998, 248, 83–86. [Google Scholar] [CrossRef]
- Mishima, T.; Fujiwara, T.; Akagawa, K. Reduction of neurotransmitter release by the exogenous H3 domain peptide of HPC-1/syntaxin 1A in cultured rat hippocampal neurons. Neurosci. Lett. 2002, 329, 273–276. [Google Scholar] [CrossRef]
- Ohara-Imaizumi, M.; Nakamichi, Y.; Nishiwaki, C.; Nagamatsu, S. Transduction of MIN6 β cells with TAT-syntaxin SNARE motif inhibits insulin exocytosis in biphasic insulin release in a distinct mechanism analyzed by evanescent wave microscopy. J. Biol. Chem. 2002, 277, 50805–50811. [Google Scholar] [CrossRef]
- Fujiwara, T.; Yamamori, T.; Akagawa, K. Suppression of transmitter release by Tat HPC-1/syntaxin 1A fusion protein. Biochim. Biophys. Acta. 2001, 1539, 225–232. [Google Scholar] [CrossRef][Green Version]
- Yang, Y.; Kong, B.; Jung, Y.; Park, J.B.; Oh, J.M.; Hwang, J.; Cho, J.Y.; Kweon, D.H. Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor-Derived Peptides for Regulation of Mast Cell Degranulation. Front. Immunol. 2018, 9, 725. [Google Scholar] [CrossRef] [PubMed]
- Melia, T.J.; Weber, T.; McNew, J.A.; Fisher, L.E.; Johnston, R.J.; Parlati, F.; Mahal, L.K.; Sollner, T.H.; Rothman, J.E. Regulation of membrane fusion by the membrane-proximal coil of the t-SNARE during zippering of SNAREpins. J. Cell. Biol. 2002, 158, 929–940. [Google Scholar] [CrossRef] [PubMed]
- Blanes-Mira, C.; Pastor, M.T.; Valera, E.; Fernández-Ballester, G.; Merino, J.M.; Gutierrez, L.M.; Perez-Payá, E.; Ferrer-Montiel, A. Identification of SNARE complex modulators that inhibit exocytosis from an α-helix-constrained combinatorial library. Biochem. J. 2003, 375, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Gerst, J.E. SNARE regulators: Matchmakers and matchbreakers. Biochim. Biophys. Acta. 2003, 1641, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Rizo, J.; Südhof, T.C. The membrane fusion enigma: SNAREs, Sec1/Munc18 proteins, and their accomplices--guilty as charged? Annu. Rev. Cell. Dev. Biol. 2012, 28, 279–308. [Google Scholar] [CrossRef]
- Zhang, Y.; Hughson, F.M. Chaperoning SNARE Folding and Assembly. Annu. Rev. Biochem. 2021, 90, 581–603. [Google Scholar] [CrossRef]
- Johnson, J.R.; Ferdek, P.; Lian, L.Y.; Barclay, J.W.; Burgoyne, R.D.; Morgan, A. Binding of UNC-18 to the N-terminus of syntaxin is essential for neurotransmission in Caenorhabditis elegans. Biochem. J. 2009, 418, 73–80. [Google Scholar] [CrossRef]
- Park, S.; Bin, N.R.; Rajah, M.; Kim, B.; Chou, T.C.; Kang, S.Y.; Sugita, K.; Parsaud, L.; Smith, M.; Monnier, P.P.; et al. Conformational states of syntaxin-1 govern the necessity of N-peptide binding in exocytosis of PC12 cells and Caenorhabditis elegans. Mol. Biol. Cell. 2016, 27, 669–685. [Google Scholar] [CrossRef]
- Vardar, G.; Salazar-Lázaro, A.; Brockmann, M.; Weber-Boyvat, M.; Zobel, S.; Kumbol, V.W.; Trimbuch, T.; Rosenmund, C. Reexamination of N-terminal domains of syntaxin-1 in vesicle fusion from central murine synapses. Elife 2021, 10, e69498. [Google Scholar] [CrossRef]
- Khvotchev, M.; Dulubova, I.; Sun, J.; Dai, H.; Rizo, J.; Südhof, T.C. Dual modes of Munc18-1/SNARE interactions are coupled by functionally critical binding to syntaxin-1 N terminus. J. Neurosci. 2007, 27, 12147–12155. [Google Scholar] [CrossRef]
- Khvotchev, M.; Südhof, T.C. Proteolytic processing of amyloid-β precursor protein by secretases does not require cell surface transport. J. Biol. Chem. 2004, 279, 47101–47108. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Shen, C.; Liu, Y.; Menasche, B.L.; Ouyang, Y.; Stowell, M.H.B.; Shen, J. SNARE zippering requires activation by SNARE-like peptides in Sec1/Munc18 proteins. Proc. Natl. Acad. Sci. USA 2018, 115, E8421–E8429. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.S.; Liu, Y.; Yu, H.; Wan, C.; Lee, M.; Yin, Q.; Stowell, M.H.B.; Shen, J. Intracellular Vesicle Fusion Requires a Membrane-Destabilizing Peptide Located at the Juxtamembrane Region of the v-SNARE. Cell. Rep. 2019, 29, 4583–4592.e4583. [Google Scholar] [CrossRef] [PubMed]
- Al-Abdul-Wahid, M.S.; Demill, C.M.; Serwin, M.B.; Prosser, R.S.; Stewart, B.A. Effect of juxtamembrane tryptophans on the immersion depth of Synaptobrevin, an integral vesicle membrane protein. Biochim. Biophys. Acta 2012, 1818, 2994–2999. [Google Scholar] [CrossRef]
- Tarafdar, P.K.; Chakraborty, H.; Bruno, M.J.; Lentz, B.R. Phosphatidylserine-Dependent Catalysis of Stalk and Pore Formation by Synaptobrevin JMR-TMD Peptide. Biophys. J. 2015, 109, 1863–1872. [Google Scholar] [CrossRef]
- Matsushita, K.; Morrell, C.N.; Lowenstein, C.J. A novel class of fusion polypeptides inhibits exocytosis. Mol. Pharmacol. 2005, 67, 1137–1144. [Google Scholar] [CrossRef]
- Burré, J.; Sharma, M.; Tsetsenis, T.; Buchman, V.; Etherton, M.R.; Südhof, T.C. A-synuclein promotes SNARE-complex assembly in vivo and in vitro. Science 2010, 329, 1663–1667. [Google Scholar] [CrossRef]
- Yoo, G.; Yeou, S.; Son, J.B.; Shin, Y.K.; Lee, N.K. Cooperative inhibition of SNARE-mediated vesicle fusion by α-synuclein monomers and oligomers. Sci. Rep. 2021, 11, 10955. [Google Scholar] [CrossRef]
- Chapman, E.R. A Ca2+ Sensor for Exocytosis. Trends. Neurosci. 2018, 41, 327–330. [Google Scholar] [CrossRef]
- Zhou, Q.; Lai, Y.; Bacaj, T.; Zhao, M.; Lyubimov, A.Y.; Uervirojnangkoorn, M.; Zeldin, O.B.; Brewster, A.S.; Sauter, N.K.; Cohen, A.E.; et al. Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis. Nature 2015, 525, 62–67. [Google Scholar] [CrossRef]
- Lai, Y.; Fois, G.; Flores, J.R.; Tuvim, M.J.; Zhou, Q.; Yang, K.; Leitz, J.; Peters, J.; Zhang, Y.; Pfuetzner, R.A.; et al. Inhibition of calcium-triggered secretion by hydrocarbon-stapled peptides. Nature 2022, 603, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Tuvim, M.J.; Leitz, J.; Peters, J.; Pfuetzner, R.A.; Esquivies, L.; Zhou, Q.; Czako, B.; Cross, J.B.; Jones, P.; et al. Screening of Hydrocarbon-Stapled Peptides for Inhibition of Calcium-Triggered Exocytosis. Front. Pharmacol. 2022, 13, 891041. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.K.; Calakos, N.; Scheller, R.H. Syntaxin: A synaptic protein implicated in docking of synaptic vesicles at presynaptic active zones. Science 1992, 257, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, A.; Oho, C.; Omori, A.; Kuwahara, R.; Ito, T.; Takahashi, M. HPC-1 is associated with synaptotagmin and omega-conotoxin receptor. J. Biol. Chem. 1992, 267, 24925–24928. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Z.H.; Rettig, J.; Takahashi, M.; Catterall, W.A. Identification of a syntaxin-binding site on N-type calcium channels. Neuron 1994, 13, 1303–1313. [Google Scholar] [CrossRef]
- Sheng, Z.H.; Rettig, J.; Cook, T.; Catterall, W.A. Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 1996, 379, 451–454. [Google Scholar] [CrossRef]
- Kim, D.K.; Catterall, W.A. Ca2+-dependent and -independent interactions of the isoforms of the α1A subunit of brain Ca2+ channels with presynaptic SNARE proteins. Proc. Natl. Acad. Sci. USA 1997, 94, 14782–14786. [Google Scholar] [CrossRef]
- Mochida, S.; Sheng, Z.H.; Baker, C.; Kobayashi, H.; Catterall, W.A. Inhibition of neurotransmission by peptides containing the synaptic protein interaction site of N-type Ca2+ channels. Neuron 1996, 17, 781–788. [Google Scholar] [CrossRef]
- Rettig, J.; Heinemann, C.; Ashery, U.; Sheng, Z.H.; Yokoyama, C.T.; Catterall, W.A.; Neher, E. Alteration of Ca2+ dependence of neurotransmitter release by disruption of Ca2+ channel/syntaxin interaction. J. Neurosci. 1997, 17, 6647–6656. [Google Scholar] [CrossRef]
- Serra, S.A.; Cuenca-León, E.; Llobet, A.; Rubio-Moscardo, F.; Plata, C.; Carreño, O.; Fernàndez-Castillo, N.; Corominas, R.; Valverde, M.A.; Macaya, A.; et al. A mutation in the first intracellular loop of CACNA1A prevents P/Q channel modulation by SNARE proteins and lowers exocytosis. Proc. Natl. Acad. Sci. USA 2010, 107, 1672–1677. [Google Scholar] [CrossRef]
- Leung, Y.M.; Kang, Y.; Gao, X.; Xia, F.; Xie, H.; Sheu, L.; Tsuk, S.; Lotan, I.; Tsushima, R.G.; Gaisano, H.Y. Syntaxin 1A binds to the cytoplasmic C terminus of Kv2.1 to regulate channel gating and trafficking. J. Biol. Chem. 2003, 278, 17532–17538. [Google Scholar] [CrossRef]
- Singer-Lahat, D.; Chikvashvili, D.; Lotan, I. Direct interaction of endogenous Kv channels with syntaxin enhances exocytosis by neuroendocrine cells. PLoS ONE 2008, 3, e1381. [Google Scholar] [CrossRef]
- Tsuk, S.; Michaelevski, I.; Bentley, G.N.; Joho, R.H.; Chikvashvili, D.; Lotan, I. Kv2.1 channel activation and inactivation is influenced by physical interactions of both syntaxin 1A and the syntaxin 1A/soluble N-ethylmaleimide-sensitive factor-25 (t-SNARE) complex with the C terminus of the channel. Mol. Pharmacol. 2005, 67, 480–488. [Google Scholar] [CrossRef]
- MacDonald, P.E.; Wang, G.; Tsuk, S.; Dodo, C.; Kang, Y.; Tang, L.; Wheeler, M.B.; Cattral, M.S.; Lakey, J.R.; Salapatek, A.M.; et al. Synaptosome-associated protein of 25 kilodaltons modulates Kv2.1 voltage-dependent K+ channels in neuroendocrine islet β-cells through an interaction with the channel N terminus. Mol. Endocrinol. 2002, 16, 2452–2461. [Google Scholar] [CrossRef]
- Zhuang, G.Q.; Wu, W.; Liu, F.; Ma, J.L.; Luo, Y.X.; Xiao, Z.X.; Liu, Y.; Wang, W.; He, Y. SNAP-25(1-180) enhances insulin secretion by blocking Kv2.1 channels in rat pancreatic islet β-cells. Biochem. Biophys. Res. Commun. 2009, 379, 812–816. [Google Scholar] [CrossRef] [PubMed]
- Condliffe, S.B.; Carattino, M.D.; Frizzell, R.A.; Zhang, H. Syntaxin 1A regulates ENaC via domain-specific interactions. J. Biol. Chem. 2003, 278, 12796–12804. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, S.; Bowden, S.E.; Marrion, N.V. False interaction of syntaxin 1A with a Ca2+-activated K+ channel revealed by co-immunoprecipitation and pull-down assays: Implications for identification of protein-protein interactions. Neuropharmacology 2003, 44, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Dolphin, A.C.; Lee, A. Presynaptic calcium channels: Specialized control of synaptic neurotransmitter release. Nat. Rev. Neurosci. 2020, 21, 213–229. [Google Scholar] [CrossRef]
- Söllner, T.H. Intracellular and viral membrane fusion: A uniting mechanism. Curr. Opin. Cell. Biol. 2004, 16, 429–435. [Google Scholar] [CrossRef]
- Hu, C.; Ahmed, M.; Melia, T.J.; Söllner, T.H.; Mayer, T.; Rothman, J.E. Fusion of cells by flipped SNAREs. Science 2003, 300, 1745–1749. [Google Scholar] [CrossRef]
- Parlati, F.; Weber, T.; McNew, J.A.; Westermann, B.; Söllner, T.H.; Rothman, J.E. Rapid and efficient fusion of phospholipid vesicles by the α-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl. Acad. Sci. USA 1999, 96, 12565–12570. [Google Scholar] [CrossRef] [PubMed]
- Wesolowski, J.; Paumet, F. SNARE motif: A common motif used by pathogens to manipulate membrane fusion. Virulence 2010, 1, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Halder, P.; Yavuz, H.; Jahn, R.; Shuman, H.A. Direct targeting of membrane fusion by SNARE mimicry: Convergent evolution of Legionella effectors. Proc. Natl. Acad. Sci. USA 2016, 113, 8807–8812. [Google Scholar] [CrossRef] [PubMed]
- King, N.P.; Newton, P.; Schuelein, R.; Brown, D.L.; Petru, M.; Zarsky, V.; Dolezal, P.; Luo, L.; Bugarcic, A.; Stanley, A.C.; et al. Soluble NSF attachment protein receptor molecular mimicry by a Legionella pneumophila Dot/Icm effector. Cell. Microbiol. 2015, 17, 767–784. [Google Scholar] [CrossRef] [PubMed]
- Delevoye, C.; Nilges, M.; Dehoux, P.; Paumet, F.; Perrinet, S.; Dautry-Varsat, A.; Subtil, A. SNARE protein mimicry by an intracellular bacterium. PLoS Pathog. 2008, 4, e1000022. [Google Scholar] [CrossRef] [PubMed]
- Paumet, F.; Wesolowski, J.; Garcia-Diaz, A.; Delevoye, C.; Aulner, N.; Shuman, H.A.; Subtil, A.; Rothman, J.E. Intracellular bacteria encode inhibitory SNARE-like proteins. PLoS ONE 2009, 4, e7375. [Google Scholar] [CrossRef]
- Ma, M.; Bong, D. Controlled Fusion of Synthetic Lipid Membrane Vesicles. Acc. Chem. Res. 2013, 46, 2988–2997. [Google Scholar] [CrossRef]
- Sadek, M.; Berndt, D.; Milovanovic, D.; Jahn, R.; Diederichsen, U. Distance Regulated Vesicle Fusion and Docking Mediated by β-Peptide Nucleic Acid SNARE Protein Analogues. Chembiochem 2016, 17, 479–485. [Google Scholar] [CrossRef]
- Hubrich, B.E.; Kumar, P.; Neitz, H.; Grunwald, M.; Grothe, T.; Walla, P.J.; Jahn, R.; Diederichsen, U. PNA Hybrid Sequences as Recognition Units in SNARE-Protein-Mimicking Peptides. Angew. Chem. Int. Ed. Engl. 2018, 57, 14932–14936. [Google Scholar] [CrossRef]
- Lygina, A.S.; Meyenberg, K.; Jahn, R.; Diederichsen, U. Transmembrane domain peptide/peptide nucleic acid hybrid as a model of a SNARE protein in vesicle fusion. Angew. Chem. Int. Ed. Engl. 2011, 50, 8597–8601. [Google Scholar] [CrossRef]
- Langosch, D.; Crane, J.M.; Brosig, B.; Hellwig, A.; Tamm, L.K.; Reed, J. Peptide mimics of SNARE transmembrane segments drive membrane fusion depending on their conformational plasticity. J. Mol. Biol. 2001, 311, 709–721. [Google Scholar] [CrossRef] [PubMed]
- Ollesch, J.; Poschner, B.C.; Nikolaus, J.; Hofmann, M.W.; Herrmann, A.; Gerwert, K.; Langosch, D. Secondary structure and distribution of fusogenic LV-peptides in lipid membranes. Eur. Biophys. J. 2008, 37, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Litowski, J.R.; Hodges, R.S. Designing heterodimeric two-stranded α-helical coiled-coils. Effects of hydrophobicity and α-helical propensity on protein folding, stability, and specificity. J. Biol. Chem. 2002, 277, 37272–37279. [Google Scholar] [CrossRef] [PubMed]
- Robson Marsden, H.; Elbers, N.A.; Bomans, P.H.; Sommerdijk, N.A.; Kros, A. A reduced SNARE model for membrane fusion. Angew. Chem. Int. Ed. Engl. 2009, 48, 2330–2333. [Google Scholar] [CrossRef]
- Versluis, F.; Dominguez, J.; Voskuhl, J.; Kros, A. Coiled-coil driven membrane fusion: Zipper-like vs. non-zipper-like peptide orientation. Faraday. Discuss. 2013, 166, 349–359. [Google Scholar] [CrossRef]
- Pähler, G.; Panse, C.; Diederichsen, U.; Janshoff, A. Coiled-coil formation on lipid bilayers--implications for docking and fusion efficiency. Biophys. J. 2012, 103, 2295–2303. [Google Scholar] [CrossRef][Green Version]
- Rabe, M.; Aisenbrey, C.; Pluhackova, K.; de Wert, V.; Boyle, A.L.; Bruggeman, D.F.; Kirsch, S.A.; Böckmann, R.A.; Kros, A.; Raap, J.; et al. A Coiled-Coil Peptide Shaping Lipid Bilayers upon Fusion. Biophys. J. 2016, 111, 2162–2175. [Google Scholar] [CrossRef]
- Koukalová, A.; Pokorná, Š.; Boyle, A.L.; Lopez Mora, N.; Kros, A.; Hof, M.; Šachl, R. Distinct roles of SNARE-mimicking lipopeptides during initial steps of membrane fusion. Nanoscale 2018, 10, 19064–19073. [Google Scholar] [CrossRef]
- Wagle, S.; Georgiev, V.N.; Robinson, T.; Dimova, R.; Lipowsky, R.; Grafmüller, A. Interaction of SNARE Mimetic Peptides with Lipid bilayers: Effects of Secondary Structure, Bilayer Composition and Lipid Anchoring. Sci. Rep. 2019, 9, 7708. [Google Scholar] [CrossRef]
- Marsden, H.R.; Korobko, A.V.; Zheng, T.; Voskuhl, J.; Kros, A. Controlled liposome fusion mediated by SNARE protein mimics. Biomater. Sci. 2013, 1, 1046–1054. [Google Scholar] [CrossRef]
- Zheng, T.; Voskuhl, J.; Versluis, F.; Zope, H.R.; Tomatsu, I.; Marsden, H.R.; Kros, A. Controlling the rate of coiled coil driven membrane fusion. Chem. Commun. 2013, 49, 3649–3651. [Google Scholar] [CrossRef] [PubMed]
- Meyenberg, K.; Lygina, A.S.; van den Bogaart, G.; Jahn, R.; Diederichsen, U. SNARE derived peptide mimic inducing membrane fusion. Chem. Commun. 2011, 47, 9405–9407. [Google Scholar] [CrossRef] [PubMed]
- Daudey, G.A.; Schwieger, C.; Rabe, M.; Kros, A. Influence of Membrane-Fusogen Distance on the Secondary Structure of Fusogenic Coiled Coil Peptides. Langmuir 2019, 35, 5501–5508. [Google Scholar] [CrossRef] [PubMed]
- Crone, N.S.A.; Kros, A.; Boyle, A.L. Modulation of Coiled-Coil Binding Strength and Fusogenicity through Peptide Stapling. Bioconjug. Chem. 2020, 31, 834–843. [Google Scholar] [CrossRef]
- Versluis, F.; Voskuhl, J.; van Kolck, B.; Zope, H.; Bremmer, M.; Albregtse, T.; Kros, A. In Situ Modification of Plain Liposomes with Lipidated Coiled Coil Forming Peptides Induces Membrane Fusion. J. Am. Chem. Soc. 2013, 135, 8057–8062. [Google Scholar] [CrossRef] [PubMed]
- Mora, N.L.; Boyle, A.L.; Kolck, B.J.V.; Rossen, A.; Pokorná, Š.; Koukalová, A.; Šachl, R.; Hof, M.; Kros, A. Controlled Peptide-Mediated Vesicle Fusion Assessed by Simultaneous Dual-Colour Time-Lapsed Fluorescence Microscopy. Sci. Rep. 2020, 10, 3087. [Google Scholar] [CrossRef] [PubMed]
- Mora, N.L.; Bahreman, A.; Valkenier, H.; Li, H.; Sharp, T.H.; Sheppard, D.N.; Davis, A.P.; Kros, A. Targeted anion transporter delivery by coiled-coil driven membrane fusion. Chem. Sci. 2016, 7, 1768–1772. [Google Scholar] [CrossRef] [PubMed]
- Daudey, G.A.; Shen, M.; Singhal, A.; van der Est, P.; Sevink, G.J.A.; Boyle, A.L.; Kros, A. Liposome fusion with orthogonal coiled coil peptides as fusogens: The efficacy of roleplaying peptides. Chem. Sci. 2021, 12, 13782–13792. [Google Scholar] [CrossRef] [PubMed]
- Fasshauer, D.; Margittai, M. A transient N-terminal interaction of SNAP-25 and syntaxin nucleates SNARE assembly. J. Biol. Chem. 2004, 279, 7613–7621. [Google Scholar] [CrossRef]
- Pobbati, A.V.; Stein, A.; Fasshauer, D. N- to C-terminal SNARE complex assembly promotes rapid membrane fusion. Science 2006, 313, 673–676. [Google Scholar] [CrossRef] [PubMed]
- Südhof, T.C. Neurotransmitter release: The last millisecond in the life of a synaptic vesicle. Neuron 2013, 80, 675–690. [Google Scholar] [CrossRef]
- Zhang, X.; Rebane, A.A.; Ma, L.; Li, F.; Jiao, J.; Qu, H.; Pincet, F.; Rothman, J.E.; Zhang, Y. Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex. Proc. Natl. Acad. Sci. USA 2016, 113, E8031–E8040. [Google Scholar] [CrossRef] [PubMed]
- Darios, F.; Niranjan, D.; Ferrari, E.; Zhang, F.; Soloviev, M.; Rummel, A.; Bigalke, H.; Suckling, J.; Ushkaryov, Y.; Naumenko, N.; et al. SNARE tagging allows stepwise assembly of a multimodular medicinal toxin. Proc. Natl. Acad. Sci. USA 2010, 107, 18197–18201. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E.; Gu, C.; Niranjan, D.; Restani, L.; Rasetti-Escargueil, C.; Obara, I.; Geranton, S.M.; Arsenault, J.; Goetze, T.A.; Harper, C.B.; et al. Synthetic self-assembling clostridial chimera for modulation of sensory functions. Bioconjug. Chem. 2013, 24, 1750–1759. [Google Scholar] [CrossRef]
- Ferrari, E.; Maywood, E.S.; Restani, L.; Caleo, M.; Pirazzini, M.; Rossetto, O.; Hastings, M.H.; Niranjan, D.; Schiavo, G.; Davletov, B. Re-assembled botulinum neurotoxin inhibits CNS functions without systemic toxicity. Toxins 2011, 3, 345–355. [Google Scholar] [CrossRef] [PubMed]
- Mangione, A.S.; Obara, I.; Maiarú, M.; Geranton, S.M.; Tassorelli, C.; Ferrari, E.; Leese, C.; Davletov, B.; Hunt, S.P. Nonparalytic botulinum molecules for the control of pain. Pain 2016, 157, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, E.; Soloviev, M.; Niranjan, D.; Arsenault, J.; Gu, C.; Vallis, Y.; O’Brien, J.; Davletov, B. Assembly of protein building blocks using a short synthetic peptide. Bioconjug. Chem. 2012, 23, 479–484. [Google Scholar] [CrossRef]
- Saccardo, A.; Soloviev, M.; Ferrari, E. A thermo-responsive, self-assembling biointerface for on demand release of surface-immobilised proteins. Biomater. Sci. 2020, 8, 2673–2681. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khvotchev, M.; Soloviev, M. SNARE Modulators and SNARE Mimetic Peptides. Biomolecules 2022, 12, 1779. https://doi.org/10.3390/biom12121779
Khvotchev M, Soloviev M. SNARE Modulators and SNARE Mimetic Peptides. Biomolecules. 2022; 12(12):1779. https://doi.org/10.3390/biom12121779
Chicago/Turabian StyleKhvotchev, Mikhail, and Mikhail Soloviev. 2022. "SNARE Modulators and SNARE Mimetic Peptides" Biomolecules 12, no. 12: 1779. https://doi.org/10.3390/biom12121779
APA StyleKhvotchev, M., & Soloviev, M. (2022). SNARE Modulators and SNARE Mimetic Peptides. Biomolecules, 12(12), 1779. https://doi.org/10.3390/biom12121779