Correlation of Occupational Exposure to Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Blood Levels of p53 and p21 Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Exposure to External cPAHs
2.3. Blood Sample Preparation and Storage
2.4. Measurement of Serum p53 and p21 Protein Concentrations
2.5. Statistical Evaluations
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United States Environment Protection Agency. Framework for Metals Risk Assessment. Office of the Science Advisor Risk Assessment Forum. US EPA 120/R-07/001; 2007. Available online: https://www.epa.gov/sites/default/files/2013-09/documents/metals-risk-assessment-final.pdf (accessed on 14 January 2022).
- Alharbi, B.; Shareef, M.M.; Husain, T. Study of chemical characteristics of particulate matter concentrations in Riyadh, Saudi Arabia. Atmospheric Pollut. Res. 2015, 6, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Nayebare, S.R.; Aburizaiza, O.S.; Khwaja, H.A.; Siddique, A.; Hussain, M.M.; Zeb, J.; Khatib, F.; Carpenter, D.O.; Blake, D.R. Chemical characterization and source apportionment of PM25 in Rabigh, Saudi Arabia. Aerosol Air Qual. Res. 2016, 16, 3114–3129. [Google Scholar] [CrossRef] [Green Version]
- General Authority for Statistics (GAStat). Population in Makkah Al-Mokarramah Region by Gender, Age Group—Mid 2019 A.D. 2019. Available online: https://www.stats.gov.sa/en/1007-0 (accessed on 14 January 2022).
- Adly, H.M.; Saleh, S.A.K.; Saati, A.A.; Fatani, S.H. Airborne Carcinogenic Trace Elements Distribution Associated with Long Term Exposure in Makkah Population. Open Environ. Res. J. 2019, 12, 7–14. [Google Scholar] [CrossRef] [Green Version]
- General Authority for Statistics (GAStat). The Total Number of Pilgrims in 1439H Hajj Season. 2017. Available online: https://www.stats.gov.sa/en/news/280 (accessed on 14 January 2022).
- Habeebullah, T. Chemical Composition of Particulate Matters in Makkah—Focusing on Cations, Anions and Heavy Metals. Aerosol Air Qual. Res. 2016, 16, 336–347. [Google Scholar] [CrossRef] [Green Version]
- Simpson, I.J.; Aburizaiza, O.S.; Siddique, A.; Barletta, B.; Blake, N.J.; Gartner, A.; Khwaja, H.; Meinardi, S.; Zeb, J.; Blake, D.R. Air Quality in Mecca and Surrounding Holy Places in Saudi Arabia During Hajj: Initial Survey. Environ. Sci. Technol. 2014, 48, 8529–8537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. International Agency for Research on Cancer, World Health Organization: Global Cancer Observatory (GCO). Available online: https://gco.iarc.fr/today/data/factsheets/populations/900-world-fact-sheets.pdf (accessed on 14 January 2022).
- WHO. International Agency for Research on Cancer, World Health Organization: Global Cancer Observatory (GCO). Available online: https://gco.iarc.fr/tomorrow/en (accessed on 14 January 2022).
- Saleh, S.A.; Adly, H.M.; Abdelkhaliq, A.A.; Nassir, A.M. Serum Levels of Selenium, Zinc, Copper, Manganese, and Iron in Prostate Cancer Patients. Curr. Urol. 2020, 14, 44–49. [Google Scholar] [CrossRef] [PubMed]
- American Cancer Society. Cancer Facts & Figures Atlanta: American Cancer Society. Available online: https://www.cancer.org/content/dam/cancer-org/research/cancer-facts-and-statistics/annual-cancer-facts-and-figures/2021/cancer-facts-and-figures-2021.pdf (accessed on 14 January 2022).
- Srivastava, M.; Srivastava, A.; Yadav, A.; Rawat, V. Source and Control of Hydrocarbon Pollution. In Hydrocarbon Pollution and its Effect on the Environment, 1st ed.; Ince, M., Ince, O.K., Eds.; IntechOpen: London, UK, 2019; Available online: https://www.intechopen.com/chapters/67349 (accessed on 14 January 2022).
- Yang, Q.; Chen, H.; Li, B. Polycyclic Aromatic Hydrocarbons (PAHs) in Indoor Dusts of Guizhou, Southwest of China: Status, Sources and Potential Human Health Risk. PLoS ONE 2015, 10, e0118141. [Google Scholar] [CrossRef] [PubMed]
- Tian, F.-L.; Li, F.-Y.; Wang, D.-G.; Wang, Y.-J. Source Apportionment of Polycyclic Aromatic Hydrocarbons in Sediment by the Application of Non-Negative Factor Analysis: A Case Study of Dalian Bay. Int. J. Environ. Res. Public Health 2018, 15, 761. [Google Scholar] [CrossRef] [Green Version]
- Enander, R.T. Carcinogenic Polycyclic Aromatic Hydrocarbons: An Analysis of Screening Values, Guidelines, and Standards in the Northeast. Risk Anal. 2014, 34, 2035–2052. [Google Scholar] [CrossRef]
- Koukoulakis, K.G.; Kanellopoulos, P.G.; Chrysochou, E.; Costopoulou, D.; Vassiliadou, I.; Leondiadis, L.; Bakeas, E. Atmospheric Concentrations and Health Implications of PAHs, PCBs and PCDD/Fs in the Vicinity of a Heavily Industrialized Site in Greece. Appl. Sci. 2020, 10, 9023. [Google Scholar] [CrossRef]
- Chang, R.; Wood, A.; Huang, M.; Xie, J.; Cui, X.; Reuhl, K.; Boyd, D.; Lin, Y.; Shih, W.; Balani, S.; et al. Mu-tagenicity and tumorigenicity of the four enantiopure bay-region 3,4-diol-1,2-epoxide isomers of dibenz[a,h]anthracene. Carcinogenesis 2013, 34, 2184–2191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crowell, S.; Hanson-Drury, S.; Williams, D.; Corley, R. In vitro metabolism of benzo[a]pyrene and dibenzo[def,p]chrysene in rodent and human hepatic microsomes. Toxicol. Lett. 2014, 228, 48–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemieux, C.L.; Douglas, G.R.; Gingerich, J.; Phonethepswath, S.; Torous, D.K.; Dertinger, S.D.; Phillips, D.; Arlt, V.M.; White, P. Simultaneous measurement of benzo[ a ]pyrene-induced Pig-a and lacZ mutations, micronuclei and dna adducts in muta TM mouse. Environ. Mol. Mutagen. 2011, 52, 756–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siddens, L.K.; Larkin, A.; Krueger, S.K.; Bradfield, C.A.; Waters, K.; Tilton, S.C.; Pereira, C.B.; Löhr, C.V.; Arlt, V.M.; Phillips, D.; et al. Polycyclic aromatic hydrocarbons as skin carcinogens: Comparison of benzo[a]pyrene, dibenzo[def,p]chrysene and three environmental mixtures in the FVB/N mouse. Toxicol. Appl. Pharmacol. 2012, 264, 377–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sekar, A.; Varghese, G.K.; Varma, M.R. Analysis of benzene air quality standards, monitoring methods and concentrations in indoor and outdoor environment. Heliyon 2019, 5, e02918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taioli, E.; Sram, R.; Garte, S.; Kalina, I.; Popov, T.; Farmer, P. Effects of polycyclic aromatic hydrocarbons (PAHs) in environ-mental pollution on exogenous and oxidative DNA damage (EXPAH project): Description of the population under study. Mutat. Res. 2007, 620, 1–6. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Luch, A.; Baird, W.M. Metabolic Activation and Detoxification of Polycyclic Aromatic Hydrocarbons; Imperial College Press: London, UK, 2005; pp. 19–96. [Google Scholar]
- Baird, W.; Hooven, L.; Mahadevan, B. Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action. Environ. Mol. Mutagen. 2005, 45, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Vineis, P.; Husgafvel-Pursiainen, K. Air pollution and cancer: Biomarker studies in human populations. Carcinogenesis 2005, 26, 1846–1855. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Sram, R.J.; Binkova, B.; Kalina, I.; Popov, T.A.; Georgieva, T.; Garte, S.; Taioli, E.; Farmer, P.B. The relationship between biomarkers of oxidative DNA damage, polycyclic aromatic hydrocarbon DNA adducts, antioxidant status and genetic susceptibility following exposure to environmental air pollution in humans. Mutat. Res. Mol. Mech. Mutagen. 2007, 620, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.-E.; Pan, Y.-R.; Yeh, C.-N.; Lunec, J. Targeting P53 as a Future Strategy to Overcome Gemcitabine Resistance in Biliary Tract Cancers. Biomolecules 2020, 10, 1474. [Google Scholar] [CrossRef] [PubMed]
- Harris, S.L.; Levine, A.J. The p53 pathway: Positive and negative feedback loops. Oncogene 2005, 24, 2899–2908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivier, M.; Hollstein, M.; Hainaut, P. TP53 Mutations in Human Cancers: Origins, Consequences, and Clinical Use. Cold Spring Harb. Perspect. Biol. 2010, 2, a001008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ianni, A.; Kumari, P.; Tarighi, S.; Simonet, N.G.; Popescu, D.; Guenther, S.; Hölper, S.; Schmidt, A.; Smolka, C.; Yue, S.; et al. SIRT7-dependent deacetylation of NPM promotes p53 stabilization following UV-induced genotoxic stress. Proc. Natl. Acad. Sci. USA 2021, 118, e2015339118. [Google Scholar] [CrossRef] [PubMed]
- Shamloo, B.; Usluer, S. p21 in Cancer Research. Cancers 2019, 11, 1178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balogh, G.; Mailo, D.A.; Corte, M.M.; Roncoroni, P.; Nardi, H.; Vincent, E.; Martinez, D.; Cafasso, M.E.; Frizza, A.; Ponce, G.; et al. Mutant p53 protein in serum could be used as a molecular marker in human breast cancer. Int. J. Oncol. 2006, 28, 995–1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charuruks, N.; Tangkijvanich, P.; Voravud, N.; Chatsantikul, R.; Theamboonlers, A.; Poovorawan, Y. Clinical significance of p53 antigen and anti-p53 antibodies in the sera of hepatocellular carcinoma patients. J. Gastroenterol. 2002, 36, 830–836. [Google Scholar] [CrossRef] [PubMed]
- Evans, C.P. p53 Immunodetection in urine samples successful and predictive of bladder tumor progression. Br. J. Cancer 2005, 93, 242–247. [Google Scholar]
- Borska, L.; Andrys, C.; Krejsek, J.; Hamakova, K.; Kremlacek, J.; Ranna, D.; Kotingova, L.; Fiala, Z. Plasma levels of p53 protein and chromosomal aberrations in patients with psoriasis treated with the Goeckerman regimen. Clin. Exp. Dermatol. 2009, 34, e881–e883. [Google Scholar] [CrossRef] [PubMed]
- Shimada, T.; Guengerich, F. Inhibition of human cytochrome P450 1A1-, 1A2-, and 1B1-mediated activation of procarcin-ogens to genotoxic metabolites by polycyclic aromatic hydrocarbons. Chem. Res. Toxicol. 2006, 19, 288–294. [Google Scholar] [CrossRef]
- Lacroix, M.; Riscal, R.; Arena, G.; Linares, L.K.; Le Cam, L. Metabolic functions of the tumor suppressor p53: Implications in normal physiology, metabolic disorders, and cancer. Mol. Metab. 2020, 33, 2–22. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.-J.; Eastman, A. Differential regulation of p21waf1 protein half-life by DNA damage and Nutlin-3 in p53 wild-type tumors and its therapeutic implications. Cancer Biol. Ther. 2012, 13, 1047–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Suardet, L.; Little, J. Potential Role of WAF1 /Cip1/p21 as a Mediator of TGF-Cytoinhibitory E ect. J. Biol. Chem. 1995, 270, 4971–4974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massagué, J. TGF_ in Cancer. Cell 2008, 134, 215–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbas, T.; Dutta, A. p21 in cancer: Intricate networks and multiple activities. Nat. Rev. Cancer 2009, 9, 400–414. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Chen, X. Tumor suppression by p53: Making cells senescent. Histol. Histopathol. 2010, 25, 515–526. [Google Scholar] [CrossRef] [PubMed]
- Romanov, V.S.; Rudolph, K.L. p21 shapes cancer evolution. Nat. Cell Biol. 2016, 18, 722–724. [Google Scholar] [CrossRef]
- Marhenke, S.; Buitrago-Molina, L.E.; Endig, J.; Orlik, J.; Schweitzer, N.; Klett, S.; Longerich, T.; Geffers, R.; Muñoz, A.S.; Dorrell, C.; et al. p21 promotes sustained liver regeneration and hepatocarcinogenesis in chronic cholestatic liver injury. Gut 2013, 63, 1501–1512. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, W.; Chen, Y.; Huang, Y.; Zhang, J.; He, S.; Tan, Y.; Qiang, F.; Li, A.; Røe, O.; et al. The opposite prognostic signif-icance of nuclear and cytoplasmic p21 expression in resectable gastric cancer patients. J. Gastroenterol. 2014, 49, 1441–1452. [Google Scholar] [CrossRef]
- Rossner, P.; Binkova, B.; Milcova, A.; Solansky, I.; Zidzik, J.; Lyubomirova, K.; Farmer, P.; Sram, R. Air pollution by carcinogenic PAHs and plasma levels of p53 and p21WAF1 proteins. Mutat. Res. Fundam. Mol. Mech. Mutagenes. 2007, 620, 34–40. [Google Scholar] [CrossRef]
- Rossner, P.; Binkova, B.; Sram, R. The influence of occupational exposure to PAHs on the blood plasma levels of p53 and p21WAF1 proteins. Mutat. Res. Genet. Toxicol. Environ. Mutagenes. 2003, 535, 87–94. [Google Scholar] [CrossRef]
- Zare, M.; Shahtaheri, S.J.; Mehdipur, P.; Shekari, M.; Zare, S. Levels of p53 protein as biomarker in plasma of workers exposed to carcinogenic polycyclic aromatic hydrocarbons. Toxicol. Environ. Chem. 2013, 95, 187–196. [Google Scholar] [CrossRef]
- Mordukhovich, I.; Rossner, P.; Terry, M.; Santella, R.; Zhang, Y.; Hibshoosh, H.; Memeo, L.; Mansukhani, M.; Long, C.; Garbowski, G.; et al. Associations between Polycyclic Aromatic Hydrocarbon–Related Exposures and p53 Mutations in Breast Tumors. Environ. Health Perspect. 2010, 118, 511–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moorthy, B.; Chu, C.; Carlin, D.J. Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer. Toxicol. Sci. 2015, 145, 5–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Haritash, A.; Kaushik, C. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. J. Hazard. Mater. 2009, 169, 1–15. [Google Scholar] [CrossRef]
- El-Shahawi, M.; Hamza, A.; Bashammakh, A.; Al-Saggaf, W. An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 2010, 80, 1587–1597. [Google Scholar] [CrossRef]
- Petrovic, M.; Sremacki, M.; Radonic, J.; Mihajlovic, I.; Obrovski, B.; Miloradov, M.V. Health risk assessment of PAHs, PCBs and OCPs in atmospheric air of municipal solid waste landfill in Novi Sad, Serbia. Sci. Total Environ. 2018, 644, 1201–1206. [Google Scholar] [CrossRef]
- Weber, R.; Watson, A.; Forter, M.; Oliaei, F. Persistent organic pollutants and landfills—A review of past experiences and future challenges. Waste Manag. Res. 2011, 29, 107–121. [Google Scholar] [CrossRef]
- Baccarelli, A.; Bollati, V. Epigenetics and environmental chemicals. Curr. Opin. Pediatr. 2009, 21, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Turner, M.C.; Andersen, Z.J.; Baccarelli, A.; Diver, W.R.; Gapstur, S.M.; Pope, C.A.; Prada, D.; Samet, J.; Thurston, G.; Cohen, A. Outdoor air pollution and cancer: An overview of the current evidence and public health recommendations. CA: A Cancer J. Clin. 2020, 70, 460–479. [Google Scholar] [CrossRef]
- Peluso, M.; Hainaut, P.; Airoldi, L.; Autrup, H.; Dunning, A.; Garte, S.; Gormally, E.; Malaveille, C.; Matullo, G.; Munnia, A.; et al. Methodology of laboratory measurements in prospective studies on gene–environment interactions: The experience of Genair. Mutat. Res. 2005, 574, 92–104. [Google Scholar] [CrossRef]
- Boström, C.; Gerde, P.; Hanberg, A.; Jernström, B.; Johansson, C.; Kyrklund, T.; Rannug, A.; Törnqvist, M.; Victorin, K.; Westerholm, R. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ. Health Perspect. 2002, 110, 451–488. [Google Scholar] [PubMed] [Green Version]
- Aubrey, B.J.; Kelly, G.L.; Janic, A.; Herold, M.J.; Strasser, A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2018, 25, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Gábelová, A.; Valovičová, Z.; Bačová, G.; Lábaj, J.; Binková, B.; Topinka, J.; Sevastyanova, O.; Šrám, R.J.; Kalina, I.; Habalová, V.; et al. Sensitivity of different endpoints for in vitro measurement of genotoxicity of extractable organic matter associated with ambient airborne particles (PM10). Mutat. Res. 2007, 620, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Topinka, J.; Marvanová, S.; Vondráček, J.; Sevastyanova, O.; Nováková, Z.; Krčmář, P.; Pěnčíková, K.; Machala, M. DNA adducts formation and induction of apoptosis in rat liver epithelial ‘stem-like’ cells exposed to carcinogenic polycyclic aromatic hydrocarbons. Mutat. Res. Mol. Mech. Mutagen. 2008, 638, 122–132. [Google Scholar] [CrossRef]
- Binkova, B.; Sram, R. The genotoxic effect of carcinogenic PAHs, their artificial and environmental mixtures (EOM) on human diploid lung fibroblasts. Mutat. Res. Toxicol. Environ. Mutagen. 2004, 547, 109–121. [Google Scholar] [CrossRef]
- Gao, M.; Li, Y.; Sun, Y.; Long, J.; Kong, Y.; Yang, S.; Wang, Y. A common carcinogen benzo[a]pyrene causes p53 overexpression in mouse cervix via DNA damage. Mutat. Res. Toxicol. Environ. Mutagen. 2011, 724, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Indulski, J.; Lutz, W.; Krajewska, B. Serum and urine p53 protein in bladder cancer patients and in workers occupationally exposed to genotoxic and mutagenic dyes. Cent. Eur. J. Occup. Environ. Med. 1999, 5, 17–25. [Google Scholar]
- Labib, S.; Yauk, C.; Williams, A.; Arlt, V.M.; Phillips, D.H.; White, P.A.; Halappanavar, S. Subchronic Oral Exposure to Benzo(a)pyrene Leads to Distinct Transcriptomic Changes in the Lungs That Are Related to Carcinogenesis. Toxicol. Sci. 2012, 129, 213–224. [Google Scholar] [CrossRef]
- Ohno, K.; Ishihata, K.; Tanaka-Azuma, Y.; Yamada, T. A genotoxicity test system based on p53R2 gene expression in human cells: Assessment of its reactivity to various classes of genotoxic chemicals. Mutat. Res. Toxicol. Environ. Mutagen. 2008, 656, 27–35. [Google Scholar] [CrossRef] [PubMed]
Studied Groups | Occupationally Exposed Group | Unexposed Control Group | p-Value |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Number | 60 | 45 | |
Age (y) | 34.5 ± 4.2 | 36.5 ± 5.1 | >0.05 |
Studied Groups | Occupationally Exposed Group | Unexposed Control Group | p-Value |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
BaA (ng/m3) | 54.63 ± 8.12 | 19.30 ± 4.03 | <0.001 |
BbF (ng/m3) | 19.7 ± 2.44 | 4.75 ± 1.01 | <0.001 |
BaP (ng/m3) | 0.082 ± 0.032 | 0.044 ± 0.006 | <0.001 |
DBA (ng/m3) | 0.111 ± 0.025 | 0.050 ± 0.009 | <0.001 |
IND (ng/m3) | 0.181 ± 0.059 | 0.057 ± 0.009 | <0.001 |
CRY (ng/m3) | 16.05 ± 3.68 | 5.32 ± 0.88 | <0.001 |
Total cPAHs (ng/m3) | 90.25 ± 14.1 | 30.12 ± 5.56 | <0.001 |
Studied Groups | Occupationally Exposed Group | Unexposed Control Group | p-Value |
---|---|---|---|
Mean ± SD | Mean ± SD | ||
Serum p53 protein (ng/mL) | 2.2 ± 0.5 | 1.7 ± 0.3 | <0.05 |
Serum p21 protein (ng/mL) | 1.4 ± 0.3 | 1.1 ± 0.2 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, S.A.K.; Adly, H.M.; Aljahdali, I.A.; Khafagy, A.A. Correlation of Occupational Exposure to Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Blood Levels of p53 and p21 Proteins. Biomolecules 2022, 12, 260. https://doi.org/10.3390/biom12020260
Saleh SAK, Adly HM, Aljahdali IA, Khafagy AA. Correlation of Occupational Exposure to Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Blood Levels of p53 and p21 Proteins. Biomolecules. 2022; 12(2):260. https://doi.org/10.3390/biom12020260
Chicago/Turabian StyleSaleh, Saleh A. K., Heba M. Adly, Imad A. Aljahdali, and Abdullah A. Khafagy. 2022. "Correlation of Occupational Exposure to Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Blood Levels of p53 and p21 Proteins" Biomolecules 12, no. 2: 260. https://doi.org/10.3390/biom12020260
APA StyleSaleh, S. A. K., Adly, H. M., Aljahdali, I. A., & Khafagy, A. A. (2022). Correlation of Occupational Exposure to Carcinogenic Polycyclic Aromatic Hydrocarbons (cPAHs) and Blood Levels of p53 and p21 Proteins. Biomolecules, 12(2), 260. https://doi.org/10.3390/biom12020260