Quiescence of Human Monocytes after Affinity Purification: A Novel Method Apt for Monocyte Stimulation Assays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethic Statement
2.2. PBMCs Isolation
2.3. CD+14 Monocyte Isolation
2.4. Pan Monocyte Isolation
2.5. Flow Cytometry Analysis
2.6. Impairing Pre-Activation of Isolated Monocytes with the Use of a Cell-Repellent Culture Plate Surface
2.7. Stimulation with Lipopeptides
2.8. ELISA
2.9. Statistical Analysis
3. Results
3.1. Stimulation of Peripheral Blood Mononuclear Cells (PBMCs) with Bacterial Lipopeptides
3.2. Isolation of CD14+ Monocytes with CD14 Microbeads Cause Cell Activation without External Stimuli
3.3. Pan Monocyte Isolation Caused Cell Activation
3.4. Incubating Monocytes with Cell-Repellent Surface Wells Allowed the Cells to Quieten Down after Purification
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chiu, S.; Bharat, A. Role of monocytes and macrophages in regulating immune response following lung transplantation. Curr. Opin. Organ Transplant. 2016, 21, 239–245. [Google Scholar] [CrossRef] [Green Version]
- Shi, C.; Pamer, E.G. Monocyte recruitment during infection and inflammation. Nat. Rev. Immunol. 2011, 11, 762–774. [Google Scholar] [CrossRef] [Green Version]
- van Furth, R.; Cohn, Z.A. The origin and kinetics of mononuclear phagocytes. J. Exp. Med. 1968, 128, 415–435. [Google Scholar] [CrossRef]
- Ziegler-Heitbrock, L.; Ancuta, P.; Crowe, S.; Dalod, M.; Grau, V.; Hart, D.N.; Leenen, P.J.; Liu, Y.J.; MacPherson, G.; Randolph, G.J.; et al. Nomenclature of monocytes and dendritic cells in blood. Blood 2010, 116, e74–e80. [Google Scholar] [CrossRef]
- Collin, M.; Bigley, V. Monocyte, macrophage, and dendritic cell development: The human perspective. Microbiol. Spectr. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Boyum, A. Isolation of mononuclear cells and granulocytes from human blood. Isolation of monuclear cells by one centrifugation, and of granulocytes by combining centrifugation and sedimentation at 1 g. Scand. J. Clin. Lab. Investig. Suppl. 1968, 97, 77–89. [Google Scholar]
- Boyum, A. Isolation of lymphocytes, granulocytes and macrophages. Scand. J. Immunol. 1976, 5, 9–15. [Google Scholar] [CrossRef]
- Ferrante, A.; Thong, Y.H. Optimal conditions for simultaneous purification of mononuclear and polymorphonuclear leucocytes from human blood by the hypaque-ficoll method. J. Immunol. Methods 1980, 36, 109–117. [Google Scholar] [CrossRef]
- Berdel, W.E.; Fink, U.; Thiel, E.; Stunkel, K.; Greiner, E.; Schwarzkopf, G.; Reichert, A.; Rastetter, J. Purification of human monocytes by adherence to polymeric fluorocarbon. Characterization of the monocyte-enriched cell fraction. Immunobiology 1982, 163, 511–520. [Google Scholar] [CrossRef]
- Kumaratilake, L.M.; Ferrante, A. Purification of human monocytes/macrophages by adherence to cytodex microcarriers. J. Immunol. Methods 1988, 112, 183–190. [Google Scholar] [CrossRef]
- Santos, D.O.; Coelho, J.G.; Neri, E.C.L.; Campos-Souza, I.D.C.; Ponte, C.G.G.; Antas, P.R.Z. The differential in vitro presentation of mycobacterium leprae antigens by human dendritic cells is determined by the mechanism of host cell adhesion. J. Clin. Cell Immunol. 2016, 7, 441. [Google Scholar]
- Mentzer, S.J.; Guyre, P.M.; Burakoff, S.J.; Faller, D.V. Spontaneous aggregation as a mechanism for human monocyte purification. Cell. Immunol. 1986, 101, 312–319. [Google Scholar] [CrossRef]
- Meital, L.T.; Coward, A.S.; Windsor, M.T.; Bailey, T.G.; Kuballa, A.; Russell, F.D. A simple and effective method for the isolation and culture of human monocytes from small volumes of peripheral blood. J. Immunol. Methods 2019, 472, 75–78. [Google Scholar] [CrossRef]
- Pickl, W.F.; Majdic, O.; Kohl, P.; Stockl, J.; Riedl, E.; Scheinecker, C.; Bello-Fernandez, C.; Knapp, W. Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes. J. Immunol. 1996, 157, 3850–3859. [Google Scholar]
- Hanley, P.J.; Musset, B.; Renigunta, V.; Limberg, S.H.; Dalpke, A.H.; Sus, R.; Heeg, K.M.; Preisig-Muller, R.; Daut, J. Extracellular atp induces oscillations of intracellular Ca2+ and membrane potential and promotes transcription of il-6 in macrophages. Proc. Natl. Acad. Sci. USA 2004, 101, 9479–9484. [Google Scholar] [CrossRef] [Green Version]
- Verreck, F.A.; de Boer, T.; Langenberg, D.M.; Hoeve, M.A.; Kramer, M.; Vaisberg, E.; Kastelein, R.; Kolk, A.; de Waal-Malefyt, R.; Ottenhoff, T.H. Human il-23-producing type 1 macrophages promote but il-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc. Natl. Acad. Sci. USA 2004, 101, 4560–4565. [Google Scholar] [CrossRef] [Green Version]
- Ryan, E.J.; Marshall, A.J.; Magaletti, D.; Floyd, H.; Draves, K.E.; Olson, N.E.; Clark, E.A. Dendritic cell-associated lectin-1: A novel dendritic cell-associated, c-type lectin-like molecule enhances t cell secretion of il-4. J. Immunol. 2002, 169, 5638–5648. [Google Scholar] [CrossRef] [Green Version]
- Vitale, S.; Schmid-Alliana, A.; Breuil, V.; Pomeranz, M.; Millet, M.A.; Rossi, B.; Schmid-Antomarchi, H. Soluble fractalkine prevents monocyte chemoattractant protein-1-induced monocyte migration via inhibition of stress-activated protein kinase 2/p38 and matrix metalloproteinase activities. J. Immunol. 2004, 172, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, M.T.; Götz, F. Lipoproteins of gram-positive bacteria: Key players in the immune response and virulence. Microbiol. Mol. Biol. Rev. MMBR 2016, 80, 891–903. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, M.; Nguyen, M.T.; Engdahl, C.; Na, M.; Jarneborn, A.; Hu, Z.; Karlsson, A.; Pullerits, R.; Ali, A.; Gotz, F.; et al. The yin and yang of lipoproteins in developing and preventing infectious arthritis by Staphylococcus aureus. PLoS Pathog. 2019, 15, e1007877. [Google Scholar] [CrossRef]
- Mohammad, M.; Na, M.; Hu, Z.; Nguyen, M.T.; Kopparapu, P.K.; Jarneborn, A.; Karlsson, A.; Ali, A.; Pullerits, R.; Gotz, F.; et al. Staphylococcus aureus lipoproteins promote abscess formation in mice, shielding bacteria from immune killing. Commun. Biol. 2021, 4, 432. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, M.C.; Andersen, M.N.; Moller, H.J. Monocyte isolation techniques significantly impact the phenotype of both isolated monocytes and derived macrophages in vitro. Immunology 2020, 159, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Bennett, S.; Por, S.B.; Stanley, E.R.; Breit, S.N. Monocyte proliferation in a cytokine-free, serum-free system. J. Immunol. Methods 1992, 153, 201–212. [Google Scholar] [CrossRef]
- Chometon, T.Q.; Siqueira, M.D.S.; Sant Anna, J.C.; Almeida, M.R.; Gandini, M.; Martins de Almeida Nogueira, A.C.; Antas, P.R.Z. A protocol for rapid monocyte isolation and generation of singular human monocyte-derived dendritic cells. PLoS ONE 2020, 15, e0231132. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Somasundaram, R.; Nederhof, R.F.; Dijkstra, G.; Faber, K.N.; Peppelenbosch, M.P.; Fuhler, G.M. Impact of human granulocyte and monocyte isolation procedures on functional studies. Clin. Vaccine Immunol. 2012, 19, 1065–1074. [Google Scholar] [CrossRef] [Green Version]
- Alves, N.M.; Pashkuleva, I.; Reis, R.L.; Mano, J.F. Controlling cell behavior through the design of polymer surfaces. Small 2010, 6, 2208–2220. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.N.; Yan, C.; Zheng, Z.J. Functional polymer surfaces for controlling cell behaviors. Mater. Today 2018, 21, 38–59. [Google Scholar] [CrossRef]
- Franz, S.; Rammelt, S.; Scharnweber, D.; Simon, J.C. Immune responses to implants—A review of the implications for the design of immunomodulatory biomaterials. Biomaterials 2011, 32, 6692–6709. [Google Scholar] [CrossRef]
- Salthouse, T.N. Some aspects of macrophage behavior at the implant interface. J. Biomed. Mater. Res. 1984, 18, 395–401. [Google Scholar] [CrossRef]
- Kruskal, B.A.; Maxfield, F.R. Cytosolic free calcium increases before and oscillates during frustrated phagocytosis in macrophages. J. Cell Biol. 1987, 105, 2685–2693. [Google Scholar] [CrossRef] [Green Version]
- Haskill, S.; Johnson, C.; Eierman, D.; Becker, S.; Warren, K. Adherence induces selective mrna expression of monocyte mediators and proto-oncogenes. J. Immunol. 1988, 140, 1690–1694. [Google Scholar] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, M.-T.; Schellerhoff, L.H.; Niemann, S.; Schaumburg, F.; Herrmann, M. Quiescence of Human Monocytes after Affinity Purification: A Novel Method Apt for Monocyte Stimulation Assays. Biomolecules 2022, 12, 395. https://doi.org/10.3390/biom12030395
Nguyen M-T, Schellerhoff LH, Niemann S, Schaumburg F, Herrmann M. Quiescence of Human Monocytes after Affinity Purification: A Novel Method Apt for Monocyte Stimulation Assays. Biomolecules. 2022; 12(3):395. https://doi.org/10.3390/biom12030395
Chicago/Turabian StyleNguyen, Minh-Thu, Leonhard Hubert Schellerhoff, Silke Niemann, Frieder Schaumburg, and Mathias Herrmann. 2022. "Quiescence of Human Monocytes after Affinity Purification: A Novel Method Apt for Monocyte Stimulation Assays" Biomolecules 12, no. 3: 395. https://doi.org/10.3390/biom12030395
APA StyleNguyen, M.-T., Schellerhoff, L. H., Niemann, S., Schaumburg, F., & Herrmann, M. (2022). Quiescence of Human Monocytes after Affinity Purification: A Novel Method Apt for Monocyte Stimulation Assays. Biomolecules, 12(3), 395. https://doi.org/10.3390/biom12030395