Y It Matters—Sex Differences in Fetal Lung Development
Abstract
:1. Background
1.1. Fetal Lung Development
1.2. Perinatal Lung Transition
1.3. Respiratory Distress in Preterm Infants
1.4. Sex Differences in Pulmonary Disorders of Prematurity
2. Causes
2.1. Pulmonary Steroid Receptors
2.2. Steroid Metabolism in the Fetal Lung
2.3. Sex-Specific Differences of Lung Development
2.3.1. Sex-Specific Aspects of Lung Growth
2.3.2. Sex-Specific Aspects of Lung Maturation
Surfactant Synthesis
Alveolar Fluid Clearance
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grenache, D.G.; Gronowski, A.M. Fetal lung maturity. Clin. Biochem. 2006, 39, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Merkus, P.J.; ten Have-Opbroek, A.A.; Quanjer, P.H. Human lung growth: A review. Pediatr. Pulmonol. 1996, 21, 383–397. [Google Scholar] [CrossRef]
- Chang, D.R.; Martinez Alanis, D.; Miller, R.K.; Ji, H.; Akiyama, H.; McCrea, P.D.; Chen, J. Lung epithelial branching program antagonizes alveolar differentiation. Proc. Natl. Acad. Sci. USA 2013, 110, 18042–18051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, R.; Hooper, S.B. Regulation of lung expansion and lung growth before birth. J. Appl. Physiol. 1996, 81, 209–224. [Google Scholar] [CrossRef] [PubMed]
- Walsh, B.K.; Daigle, B.; DiBlasi, R.M.; Restrepo, R.D. AARC Clinical Practice Guideline. Surfactant replacement therapy: 2013. Respir. Care 2013, 58, 367–375. [Google Scholar] [CrossRef] [Green Version]
- O’Brodovich, H.M. Immature epithelial Na+ channel expression is one of the pathogenetic mechanisms leading to human neonatal respiratory distress syndrome. Proc. Assoc. Am. Physicians 1996, 108, 345–355. [Google Scholar]
- Morgan, M.A.; Goldenberg, R.L.; Schulkin, J. Obstetrician-gynecologists’ practices regarding preterm birth at the limit of viability. J. Matern. Fetal. Neonatal. Med. 2008, 21, 115–121. [Google Scholar] [CrossRef]
- Avery, M.E.; Mead, J. Surface properties in relation to atelectasis and hyaline membrane disease. AMA J. Dis. Child. 1959, 97, 517–523. [Google Scholar] [CrossRef]
- Pinette, M.G.; Blackstone, J.; Wax, J.R.; Cartin, A. Fetal lung maturity indices-a plea for gestational age-specific interpretation: A case report and discussion. Am. J. Obstet. Gynecol. 2002, 187, 1721–1722. [Google Scholar] [CrossRef]
- Ishak, N.; Sozo, F.; Harding, R.; de Matteo, R. Does lung development differ in male and female fetuses? Exp. Lung Res. 2014, 40, 30–39. [Google Scholar] [CrossRef]
- Barker, P.M.; Gowen, C.W.; Lawson, E.E.; Knowles, M.R. Decreased sodium ion absorption across nasal epithelium of very premature infants with respiratory distress syndrome. J. Pediatr. 1997, 130, 373–377. [Google Scholar] [CrossRef]
- Miller, H.C.; Futrakul, P. Birth weight, gestational age, and sex as determining factors in the incidence of respiratory distress syndrome of prematurely born infants. J. Pediatr. 1968, 72, 628–635. [Google Scholar] [CrossRef]
- Naeye, R.L.; Burt, L.S.; Wright, D.L.; Blanc, W.A.; Tatter, D. Neonatal mortality, the male disadvantage. Pediatrics 1971, 48, 902–906. [Google Scholar] [CrossRef] [PubMed]
- Anadkat, J.S.; Kuzniewicz, M.W.; Chaudhari, B.P.; Cole, F.S.; Hamvas, A. Increased risk for respiratory distress among white, male, late preterm and term infants. J. Perinatol. 2012, 32, 780–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altman, M.; Vanpee, M.; Cnattingius, S.; Norman, M. Risk factors for acute respiratory morbidity in moderately preterm infants. Paediatr. Perinat. Epidemiol. 2013, 27, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Townsend, E.A.; Miller, V.M.; Prakash, Y.S. Sex Differences and Sex Steroids in Lung Health and Disease. Endocr. Rev. 2012, 33, 1–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peacock, J.L.; Marston, L.; Marlow, N.; Calvert, S.A.; Greenough, A. Neonatal and infant outcome in boys and girls born very prematurely. Pediatr. Res. 2012, 71, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Khoury, M.J.; Marks, J.S.; McCarthy, B.J.; Zaro, S.M. Factors affecting the sex differential in neonatal mortality: The role of respiratory distress syndrome. Am. J. Obstet. Gynecol. 1985, 151, 777–782. [Google Scholar] [CrossRef]
- Pollak, A.; Birnbacher, R. Preterm male infants need more initial respiratory support than female infants. Acta Paediatr. 2004, 93, 447–448. [Google Scholar] [CrossRef]
- Ingemarsson, I. Gender aspects of preterm birth. BJOG 2003, 110 (Suppl. 20), 34–38. [Google Scholar] [CrossRef]
- Elsmén, E.; Hansen Pupp, I.; Hellström-Westas, L. Preterm male infants need more initial respiratory and circulatory support than female infants. Acta Paediatr. 2004, 93, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.R.; Marston, L.; Rafferty, G.F.; Calvert, S.; Marlow, N.; Peacock, J.L.; Greenough, A. Respiratory function of very prematurely born infants at follow up: Influence of sex. Arch. Dis Child. Fetal. Neonatal. Ed. 2006, 91, F197–F201. [Google Scholar] [CrossRef] [PubMed]
- Avery, M.E.; Tooley, W.H.; Keller, J.B.; Hurd, S.S.; Bryan, M.H.; Cotton, R.B.; Epstein, M.F.; Fitzhardinge, P.M.; Hansen, C.B.; Hansen, T.N. Is chronic lung disease in low birth weight infants preventable? A survey of eight centers. Pediatrics 1987, 79, 26–30. [Google Scholar] [CrossRef]
- Stevenson, D.K.; Verter, J.; Fanaroff, A.A.; Oh, W.; Ehrenkranz, R.A.; Shankaran, S.; Donovan, E.F.; Wright, L.L.; Lemons, J.A.; Tyson, J.E.; et al. Sex differences in outcomes of very low birthweight infants: The newborn male disadvantage. Arch. Dis. Child. Fetal. Neonatal. Ed. 2000, 83, F182–F185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kraybill, E.N.; Runyan, D.K.; Bose, C.L.; Khan, J.H. Risk factors for chronic lung disease in infants with birth weights of 751 to 1000 grams. J. Pediatr. 1989, 115, 115–120. [Google Scholar] [CrossRef]
- Tortorolo, L.; Vento, G.; Matassa, P.G.; Zecca, E.; Romagnoli, C. Early changes of pulmonary mechanics to predict the severity of bronchopulmonary dysplasia in ventilated preterm infants. J. Matern. Fetal. Neonatal. Med. 2002, 12, 332–337. [Google Scholar] [CrossRef] [PubMed]
- Gortner, L.; Misselwitz, B.; Milligan, D.; Zeitlin, J.; Kollée, L.; Boerch, K.; Agostino, R.; van Reempts, P.; Chabernaud, J.-L.; Bréart, G.; et al. Rates of bronchopulmonary dysplasia in very preterm neonates in Europe: Results from the MOSAIC cohort. Neonatology 2011, 99, 112–117. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A.; Walsh, M.C.; Vohr, B.R.; Jobe, A.H.; Wright, L.L.; Fanaroff, A.A.; Wrage, L.A.; Poole, K. Validation of the National Institutes of Health consensus definition of bronchopulmonary dysplasia. Pediatrics 2005, 116, 1353–1360. [Google Scholar] [CrossRef] [Green Version]
- Tutdibi, E.; Gries, K.; Bücheler, M.; Misselwitz, B.; Schlosser, R.L.; Gortner, L. Impact of labor on outcomes in transient tachypnea of the newborn: Population-based study. Pediatrics 2010, 125, e577–e583. [Google Scholar] [CrossRef]
- Avery, M.E.; Gatewood, O.B.; Brumley, G. Transient tachypnea of newborn. Possible delayed resorption of fluid at birth. Am. J. Dis. Child. 1966, 111, 380–385. [Google Scholar] [CrossRef]
- Derbent, A.; Tatli, M.M.; Duran, M.; Tonbul, A.; Kafali, H.; Akyol, M.; Turhan, N.O. Transient tachypnea of the newborn: Effects of labor and delivery type in term and preterm pregnancies. Arch. Gynecol. Obstet. 2011, 283, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Demissie, K.; Marcella, S.W.; Breckenridge, M.B.; Rhoads, G.G. Maternal asthma and transient tachypnea of the newborn. Pediatrics 1998, 102, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Vento, M.; Cubells, E.; Escobar, J.J.; Escrig, R.; Aguar, M.; Brugada, M.; Cernada, M.; Saénz, P.; Izquierdo, I. Oxygen saturation after birth in preterm infants treated with continuous positive airway pressure and air: Assessment of gender differences and comparison with a published nomogram. Arch. Dis. Child. Fetal. Neonatal. Ed. 2013, 98, F228–F232. [Google Scholar] [CrossRef] [PubMed]
- Jones, M.; Castile, R.; Davis, S.; Kisling, J.; Filbrun, D.; Flucke, R.; Goldstein, A.; Emsley, C.; Ambrosius, W.; Tepper, R.S. Forced expiratory flows and volumes in infants. Normative data and lung growth. Am. J. Respir. Crit. Care Med. 2000, 161, 353–359. [Google Scholar] [CrossRef]
- Hoo, A.-F.; Dezateux, C.; Hanrahan, J.P.; Cole, T.J.; Tepper, R.S.; Stocks, J. Sex-specific prediction equations for Vmax(FRC) in infancy: A multicenter collaborative study. Am. J. Respir. Crit. Care Med. 2002, 165, 1084–1092. [Google Scholar] [CrossRef]
- Friedrich, L.; Stein, R.T.; Pitrez, P.M.C.; Corso, A.L.; Jones, M.H. Reduced lung function in healthy preterm infants in the first months of life. Am. J. Respir. Crit. Care Med. 2006, 173, 442–447. [Google Scholar] [CrossRef]
- Lum, S.; Hoo, A.F.; Dezateux, C.; Goetz, I.; Wade, A.; DeRooy, L.; Costeloe, K.; Stocks, J. The association between birthweight, sex, and airway function in infants of nonsmoking mothers. Am. J. Respir. Crit. Care Med. 2001, 164, 2078–2084. [Google Scholar] [CrossRef]
- Melamed, N.; Yogev, Y.; Glezerman, M. Effect of fetal sex on pregnancy outcome in twin pregnancies. Obstet. Gynecol. 2009, 114, 1085–1092. [Google Scholar] [CrossRef]
- Allen, M.C.; Donohue, P.K.; Dusman, A.E. The limit of viability--neonatal outcome of infants born at 22 to 25 weeks’ gestation. N. Engl. J. Med. 1993, 329, 1597–1601. [Google Scholar] [CrossRef]
- Martin, J.A.; Hamilton, B.E.; Sutton, P.D.; Ventura, S.J.; Menacker, F.; Kirmeyer, S. Births: Final data for 2004. Natl. Vital. Stat. Rep. 2006, 55, 1–101. [Google Scholar]
- Heljic, S.; Maksic, H.; Kalkan, I.; Krdalic, B. The effects of antenatal corticosteroids and surfactant replacement on neonatal respiratory distress syndrome. Bosn. J. Basic Med. Sci. 2009, 9, 225–228. [Google Scholar] [CrossRef]
- Jobe, A.H.; Bancalari, E. Bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2001, 163, 1723–1729. [Google Scholar] [CrossRef] [PubMed]
- Collaborative group on antenatal steroid therapy. Effect of antenatal dexamethasone administration on the prevention of respiratory distress syndrome. Am. J. Obstet. Gynecol. 1981, 141, 276–287. [Google Scholar] [CrossRef]
- Kauffmann, F. Sex differences in human lung development. Am. J. Respir. Crit. Care Med. 2010, 181, 523. [Google Scholar] [CrossRef] [PubMed]
- Roberge, S.; Lacasse, Y.; Tapp, S.; Tremblay, Y.; Kari, A.; Liu, J.; Fekih, M.; Qublan, H.S.; Amorim, M.M.; Bujold, E. Role of fetal sex in the outcome of antenatal glucocorticoid treatment to prevent respiratory distress syndrome: Systematic review and meta-analysis. J. Obstet. Gynaecol. Can. 2011, 33, 216–226. [Google Scholar] [CrossRef]
- Ballard, P.L.; Ballard, R.A.; Granberg, J.P.; Sniderman, S.; Gluckman, P.D.; Kaplan, S.L.; Grumbach, M.M. Fetal sex and prenatal betamethasone therapy. J. Pediatr. 1980, 97, 451–454. [Google Scholar] [CrossRef]
- Papageorgiou, A.N.; Colle, E.; Farri-Kostopoulos, E.; Gelfand, M.M. Incidence of respiratory distress syndrome following antenatal betamethasone: Role of sex, type of delivery, and prolonged rupture of membranes. Pediatrics 1981, 67, 614–617. [Google Scholar] [CrossRef] [PubMed]
- Hepper, P.G.; Shannon, E.A.; Dornan, J.C. Sex differences in fetal mouth movements. Lancet 1997, 350, 1820. [Google Scholar] [CrossRef]
- Thurlbeck, W.M. Postnatal growth and development of the lung. Am. Rev. Respir. Dis. 1975, 111, 803–844. [Google Scholar] [CrossRef]
- Kotas, R.V.; Avery, M.E. The influence of sex on fetal rabbit lung maturation and on the response to glucocorticoid. Am. Rev. Respir. Dis. 1980, 121, 377–380. [Google Scholar]
- Willet, K.E.; Jobe, A.H.; Ikegami, M.; Polk, D.; Newnham, J.; Kohan, R.; Gurrin, L.; Sly, P.D. Postnatal Lung Function after Prenatal Steroid Treatment in Sheep: Effect of Gender. Pediatr. Res. 1997, 42, 885–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Matteo, R.; Ishak, N.; Hanita, T.; Harding, R.; Sozo, F. Respiratory adaptation and surfactant composition of unanesthetized male and female lambs differ for up to 8 h after preterm birth. Pediatr. Res. 2015, 79, 13–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coarfa, C.; Zhang, Y.; Maity, S.; Perera, D.N.; Jiang, W.; Wang, L.; Couroucli, X.; Moorthy, B.; Lingappan, K. Sexual dimorphism of the pulmonary transcriptome in neonatal hyperoxic lung injury: Identification of angiogenesis as a key pathway. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 313, L991–L1005. [Google Scholar] [CrossRef] [PubMed]
- Lingappan, K.; Jiang, W.; Wang, L.; Couroucli, X.I.; Moorthy, B. Sex-specific differences in hyperoxic lung injury in mice: Role of cytochrome P450 (CYP)1A. Toxicology 2015, 331, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Conly, P.W.; LeMaire, W.J.; Monkus, E.F.; Cleveland, W.W. Plasma estriol concentration in infants with the respiratory distress syndrome. J. Pediatr. 1973, 83, 851–853. [Google Scholar] [CrossRef]
- Khosla, S.S.; Rooney, S.A. Stimulation of fetal lung surfactant production by administration of 17beta-estradiol to the maternal rabbit. Am. J. Obstet. Gynecol. 1979, 133, 213–216. [Google Scholar] [CrossRef]
- Thuresson-Klein, A.; Moawad, A.H.; Hedqvist, P. Estrogen stimulates formation of lamellar bodies and release of surfactant in the rat fetal lung. Am. J. Obstet. Gynecol. 1985, 151, 506–514. [Google Scholar] [CrossRef]
- McCurnin, D.C.; Pierce, R.A.; Willis, B.C.; Chang, L.Y.; Yoder, B.A.; Yuhanna, I.S.; Ballard, P.L.; Clyman, R.I.; Waleh, N.; Maniscalco, W.; et al. Postnatal estradiol up-regulates lung nitric oxide synthases and improves lung function in bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 2009, 179, 492–500. [Google Scholar] [CrossRef] [Green Version]
- Trotter, A.; Maier, L.; Kron, M.; Pohlandt, F. Effect of oestradiol and progesterone replacement on bronchopulmonary dysplasia in extremely preterm infants. Arch. Dis. Child. Fetal. Neonatal. Ed. 2007, 92, F94–F98. [Google Scholar] [CrossRef]
- Thome, U.H.; Bischoff, A.; Maier, L.; Pohlandt, F.; Trotter, A. Amiloride-sensitive nasal potential difference is not changed by estradiol and progesterone replacement but relates to BPD or death in a randomized trial on preterm infants. Pediatr. Res. 2006, 60, 619–623. [Google Scholar] [CrossRef] [Green Version]
- Trotter, A.; Maier, L.; Grill, H.J.; Kohn, T.; Heckmann, M.; Pohlandt, F. Effects of postnatal estradiol and progesterone replacement in extremely preterm infants. J. Clin. Endocrinol. Metab. 1999, 84, 4531–4535. [Google Scholar] [CrossRef] [PubMed]
- Trotter, A.; Pohlandt, F. The replacement of oestradiol and progesterone in very premature infants. Ann. Med. 2000, 32, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Weisz, J.; Ward, I.L. Plasma testosterone and progesterone titers of pregnant rats, their male and female fetuses, and neonatal offspring. Endocrinology 1980, 106, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Mooradian, A.D.; Morley, J.E.; Korenman, S.G. Biological actions of androgens. Endocr. Rev. 1987, 8, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Carey, M.A.; Card, J.W.; Voltz, J.W.; Arbes, S.J.; Germolec, D.R.; Korach, K.S.; Zeldin, D.C. It’s all about sex: Gender, lung development and lung disease. Trends Endocrinol. Metab. 2007, 18, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Carey, M.A.; Card, J.W.; Voltz, J.W.; Germolec, D.R.; Korach, K.S.; Zeldin, D.C. The impact of sex and sex hormones on lung physiology and disease: Lessons from animal studies. Am. J. Physiol. Lung Cell Mol. Physiol. 2007, 293, L272–L278. [Google Scholar] [CrossRef] [Green Version]
- Nilsson, S.; Mäkelä, S.; Treuter, E.; Tujague, M.; Thomsen, J.; Andersson, G.; Enmark, E.; Pettersson, K.; Warner, M.; Gustafsson, J.A. Mechanisms of estrogen action. Physiol. Rev. 2001, 81, 1535–1565. [Google Scholar] [CrossRef]
- Couse, J.F.; Lindzey, J.; Grandien, K.; Gustafsson, J.A.; Korach, K.S. Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse. Endocrinology 1997, 138, 4613–4621. [Google Scholar] [CrossRef]
- Bennett, N.C.; Gardiner, R.A.; Hooper, J.D.; Johnson, D.W.; Gobe, G.C. Molecular cell biology of androgen receptor signalling. Int. J. Biochem. Cell Biol. 2010, 42, 813–827. [Google Scholar] [CrossRef]
- Lindberg, M.K.; Movérare, S.; Skrtic, S.; Gao, H.; Dahlman-Wright, K.; Gustafsson, J.-A.; Ohlsson, C. Estrogen receptor (ER)-beta reduces ERalpha-regulated gene transcription, supporting a “ying yang” relationship between ERalpha and ERbeta in mice. Mol. Endocrinol. 2003, 17, 203–208. [Google Scholar] [CrossRef]
- Swedenborg, E.; Power, K.A.; Cai, W.; Pongratz, I.; Rüegg, J. Regulation of estrogen receptor beta activity and implications in health and disease. Cell. Mol. Life Sci. 2009, 66, 3873–3894. [Google Scholar] [CrossRef] [PubMed]
- Kaltofen, T.; Haase, M.; Thome, U.H.; Laube, M. Male Sex is Associated with a Reduced Alveolar Epithelial Sodium Transport. PLoS ONE 2015, 10, e0136178. [Google Scholar] [CrossRef] [PubMed]
- Patrone, C.; Cassel, T.N.; Pettersson, K.; Piao, Y.-S.; Cheng, G.; Ciana, P.; Maggi, A.; Warner, M.; Gustafsson, J.-A.; Nord, M. Regulation of postnatal lung development and homeostasis by estrogen receptor beta. Mol. Cell Biol. 2003, 23, 8542–8552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, O.; Gonçalves, C. Expression of oestrogen receptors in foetal lung tissue of mice. Anat. Histol. Embryol. 2012, 41, 1–6. [Google Scholar] [CrossRef]
- Sathish, V.; Martin, Y.N.; Prakash, Y.S. Sex steroid signaling: Implications for lung diseases. Pharmacol. Ther. 2015, 150, 94–108. [Google Scholar] [CrossRef] [Green Version]
- Simoncini, T.; Genazzani, A.R. Non-genomic actions of sex steroid hormones. Eur. J. Endocrinol. 2003, 148, 281–292. [Google Scholar] [CrossRef] [Green Version]
- Auger, A.P. Steroid receptor control of reproductive behavior. Horm. Behav. 2004, 45, 168–172. [Google Scholar] [CrossRef]
- Giangrande, P.H.; McDonnell, D.P. The A and B isoforms of the human progesterone receptor: Two functionally different transcription factors encoded by a single gene. Recent. Prog. Horm. Res. 1999, 54, 291–313; discussion 313–314. [Google Scholar]
- Edwards, D.P. Regulation of signal transduction pathways by estrogen and progesterone. Annu. Rev. Physiol. 2005, 67, 335–376. [Google Scholar] [CrossRef]
- Vegeto, E.; Shahbaz, M.M.; Wen, D.X.; Goldman, M.E.; O’Malley, B.W.; McDonnell, D.P. Human progesterone receptor A form is a cell- and promoter-specific repressor of human progesterone receptor B function. Mol. Endocrinol. 1993, 7, 1244–1255. [Google Scholar]
- Migliaccio, A.; Piccolo, D.; Castoria, G.; Di Domenico, M.; Bilancio, A.; Lombardi, M.; Gong, W.; Beato, M.; Auricchio, F. Activation of the Src/p21ras/Erk pathway by progesterone receptor via cross-talk with estrogen receptor. EMBO J. 1998, 17, 2008–2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gellersen, B.; Fernandes, M.S.; Brosens, J.J. Non-genomic progesterone actions in female reproduction. Hum. Reprod. Update 2009, 15, 119–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagowski, C.P.; Myers, J.W.; Ferrell, J.E. The classical progesterone receptor associates with p42 MAPK and is involved in phosphatidylinositol 3-kinase signaling in Xenopus oocytes. J. Biol. Chem. 2001, 276, 37708–37714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, C.; Klammt, J.; Thome, U.H.; Laube, M. The interaction of glucocorticoids and progesterone distinctively affects epithelial sodium transport. Lung 2014, 192, 935–946. [Google Scholar] [CrossRef] [PubMed]
- Shao, R.; Egecioglu, E.; Weijdegard, B.; Ljungstrom, K.; Ling, C.; Fernandez-Rodriguez, J.; Billig, H. Developmental and hormonal regulation of progesterone receptor A-form expression in female mouse lung in vivo: Interaction with glucocorticoid receptors. J. Endocrinol. 2006, 190, 857–870. [Google Scholar] [CrossRef]
- Chakraborty, T.R.; Gore, A.C. Aging-related changes in ovarian hormones, their receptors, and neuroendocrine function. Exp. Biol. Med. 2004, 229, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Giannopoulos, G.; Smith, S.K. Androgen receptors in fetal rabbit lung and the effect of fetal sex on the levels of circulating hormones and pulmonary hormone receptors. J. Steroid. Biochem. 1982, 17, 461–465. [Google Scholar] [CrossRef]
- Gao, T.; McPhaul, M.J. Functional activities of the A and B forms of the human androgen receptor in response to androgen receptor agonists and antagonists. Mol. Endocrinol. 1998, 12, 654–663. [Google Scholar] [CrossRef]
- Liegibel, U.M.; Sommer, U.; Boercsoek, I.; Hilscher, U.; Bierhaus, A.; Schweikert, H.U.; Nawroth, P.; Kasperk, C. Androgen receptor isoforms AR-A and AR-B display functional differences in cultured human bone cells and genital skin fibroblasts. Steroids 2003, 68, 1179–1187. [Google Scholar] [CrossRef]
- Michels, G.; Hoppe, U.C. Rapid actions of androgens. Front. Neuroendocrinol. 2008, 29, 182–198. [Google Scholar] [CrossRef]
- Chang, C.; Saltzman, A.; Yeh, S.; Young, W.; Keller, E.; Lee, H.J.; Wang, C.; Mizokami, A. Androgen receptor: An overview. Crit. Rev. Eukaryot. Gene Expr. 1995, 5, 97–125. [Google Scholar] [CrossRef] [PubMed]
- Kienitz, T.; Allolio, B.; Strasburger, C.; Quinkler, M. Sex-specific Regulation of ENaC and Androgen Receptor in Female Rat Kidney. Horm. Metab. Res. 2009, 41, 356–362. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, J.D.; Suleman, F.; Chou, S.H.; Shapiro, R.A.; Herbert, Z.; Jirikowski, G.F. Emerging roles of steroid-binding globulins. Horm. Metab. Res. 2006, 38, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Kousteni, S.; Bellido, T.; Plotkin, L.I.; O’Brien, C.A.; Bodenner, D.L.; Han, L.; Han, K.; DiGregorio, G.B.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S.; et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: Dissociation from transcriptional activity. Cell 2001, 104, 719–730. [Google Scholar] [CrossRef]
- Migliaccio, A.; Castoria, G.; Di Domenico, M.; de Falco, A.; Bilancio, A.; Lombardi, M.; Barone, M.V.; Ametrano, D.; Zannini, M.S.; Abbondanza, C.; et al. Steroid-induced androgen receptor-oestradiol receptor beta-Src complex triggers prostate cancer cell proliferation. EMBO J. 2000, 19, 5406–5417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tremblay, Y.; Provost, P.R. 17Beta-HSD type 5 expression and the emergence of differentiated epithelial Type II cells in fetal lung: A novel role for androgen during the surge of surfactant. Mol. Cell Endocrinol. 2006, 248, 118–125. [Google Scholar] [CrossRef]
- Simard, M.; Plante, J.; Boucher, M.; Provost, P.R.; Tremblay, Y. Type 2 and 5 17β-hydroxysteroid dehydrogenases and androgen receptor in human fetal lungs. Mol. Cell Endocrinol. 2010, 319, 79–87. [Google Scholar] [CrossRef]
- Wilson, C.M.; McPhaul, M.J. A and B forms of the androgen receptor are expressed in a variety of human tissues. Mol. Cell Endocrinol. 1996, 120, 51–57. [Google Scholar] [CrossRef]
- Sultan, C.; Migeon, B.R.; Rothwell, S.W.; Maes, M.; Zerhouni, N.; Migeon, C.J. Androgen receptors and metabolism in cultured human fetal fibroblasts. Pediatr. Res. 1980, 14, 67–69. [Google Scholar] [CrossRef]
- Kimura, Y.; Suzuki, T.; Kaneko, C.; Darnel, A.D.; Akahira, J.; Ebina, M.; Nukiwa, T.; Sasano, H. Expression of androgen receptor and 5alpha-reductase types 1 and 2 in early gestation fetal lung: A possible correlation with branching morphogenesis. Clin. Sci. 2003, 105, 709–713. [Google Scholar] [CrossRef]
- Plante, J.; Simard, M.; Rantakari, P.; Côté, M.; Provost, P.R.; Poutanen, M.; Tremblay, Y. Epithelial cells are the major site of hydroxysteroid (17β) dehydrogenase 2 and androgen receptor expression in fetal mouse lungs during the period overlapping the surge of surfactant. J. Steroid. Biochem. Mol. Biol. 2009, 117, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Haase, M.; Laube, M.; Thome, U.H. Sex-specific effects of sex steroids on alveolar epithelial Na+ transport. Am. J. Physiol. Lung Cell Mol. Physiol. 2017, 312, L405–L414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pujols, L.; Mullol, J.; Perez, M.; Roca-Ferrer, J.; Juan, M.; Xaubet, A.; Cidlowski, J.A.; Picado, C. Expression of the human glucocorticoid receptor alpha and beta isoforms in human respiratory epithelial cells and their regulation by dexamethasone. Am. J. Respir. Cell Mol. Biol. 2001, 24, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oakley, R.H.; Jewell, C.M.; Yudt, M.R.; Bofetiado, D.M.; Cidlowski, J.A. The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J. Biol. Chem. 1999, 274, 27857–27866. [Google Scholar] [CrossRef] [Green Version]
- Cole, T.J.; Blendy, J.A.; Monaghan, A.P.; Krieglstein, K.; Schmid, W.; Aguzzi, A.; Fantuzzi, G.; Hummler, E.; Unsicker, K.; Schütz, G. Targeted disruption of the glucocorticoid receptor gene blocks adrenergic chromaffin cell development and severely retards lung maturation. Genes Dev. 1995, 9, 1608–1621. [Google Scholar] [CrossRef] [Green Version]
- Laube, M.; Riedel, D.; Ackermann, B.; Haase, M.; Thome, U.H. Glucocorticoids Equally Stimulate Epithelial Na+ Transport in Male and Female Fetal Alveolar Cells. Int. J. Mol. Sci. 2019, 21, 57. [Google Scholar] [CrossRef] [Green Version]
- Kovar, J.; Waddell, B.J.; Sly, P.D.; Willet, K.E. Sex differences in response to steroids in preterm sheep lungs are not explained by glucocorticoid receptor number or binding affinity. Pediatr. Pulmonol. 2001, 32, 8–13. [Google Scholar] [CrossRef]
- Luu-The, V.; Labrie, F. The intracrine sex steroid biosynthesis pathways. Prog. Brain Res. 2010, 181, 177–192. [Google Scholar] [CrossRef]
- Pezzi, V.; Mathis, J.; Rainey, W.E.; Carr, B.R. Profiling transcript levels for steroidogenic enzymes in fetal tissues. J. Steroid. Biochem. Mol. Biol. 2003, 87, 181–189. [Google Scholar] [CrossRef]
- Labrie, F. Intracrinology. Mol. Cell Endocrinol. 1991, 78, C113–C118. [Google Scholar] [CrossRef]
- Provost, P.R.; Blomquist, C.H.; Drolet, R.; Flamand, N.; Tremblay, Y. Androgen inactivation in human lung fibroblasts: Variations in levels of 17 beta-hydroxysteroid dehydrogenase type 2 and 5 alpha-reductase activity compatible with androgen inactivation. J. Clin. Endocrinol. Metab. 2002, 87, 3883–3892. [Google Scholar] [CrossRef] [PubMed]
- Provost, P.R.; Blomquist, C.H.; Godin, C.; Huang, X.F.; Flamand, N.; Luu-The, V.; Nadeau, D.; Tremblay, Y. Androgen formation and metabolism in the pulmonary epithelial cell line A549: Expression of 17beta-hydroxysteroid dehydrogenase type 5 and 3alpha-hydroxysteroid dehydrogenase type 3. Endocrinology 2000, 141, 2786–2794. [Google Scholar] [CrossRef] [PubMed]
- Provost, P.R.; Tremblay, Y. Mouse 3alpha-hydroxysteroid dehydrogenase mRNA: A marker of lung maturity. J. Steroid. Biochem. Mol. Biol. 2007, 103, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Seaborn, T.; Simard, M.; Provost, P.R.; Piedboeuf, B.; Tremblay, Y. Sex hormone metabolism in lung development and maturation. Trends Endocr. Metab. 2010, 21, 729–738. [Google Scholar] [CrossRef]
- Tremblay, Y.; Provost, P.R. Major enzymes controlling the androgenic pressure in the developing lung. J. Steroid. Biochem. Mol. Biol. 2013, 137, 93–98. [Google Scholar] [CrossRef]
- Casey, R.W.; Wilson, J.D. Antiestrogenic action of dihydrotestosterone in mouse breast. Competition with estradiol for binding to the estrogen receptor. J. Clin. Investig. 1984, 74, 2272–2278. [Google Scholar] [CrossRef] [Green Version]
- Quintela, T.; Gonçalves, I.; Baltazar, G.; Alves, C.H.; Saraiva, M.J.; Santos, C.R.A. 17beta-estradiol induces transthyretin expression in murine choroid plexus via an oestrogen receptor dependent pathway. Cell Mol. Neurobiol. 2009, 29, 475–483. [Google Scholar] [CrossRef]
- Chen, J.; Wang, W.-Q.; Lin, S.-X. Interaction of Androst-5-ene-3β,17β-diol and 5α-androstane-3β,17β-diol with estrogen and androgen receptors: A combined binding and cell study. J. Steroid. Biochem. Mol. Biol. 2013, 137, 316–321. [Google Scholar] [CrossRef]
- Massaro, G.D.; Mortola, J.P.; Massaro, D. Sexual dimorphism in the architecture of the lung’s gas-exchange region. Proc. Natl. Acad. Sci. USA 1995, 92, 1105–1107. [Google Scholar] [CrossRef] [Green Version]
- Massaro, G.D.; Mortola, J.P.; Massaro, D. Estrogen modulates the dimensions of the lung’s gas-exchange surface area and alveoli in female rats. Am. J. Physiol. 1996, 270, L110–L114. [Google Scholar] [CrossRef]
- Trotter, A.; Ebsen, M.; Kiossis, E.; Meggle, S.; Kueppers, E.; Beyer, C.; Pohlandt, F.; Maier, L.; Thome, U.H. Prenatal estrogen and progesterone deprivation impairs alveolar formation and fluid clearance in newborn piglets. Pediatr. Res. 2006, 60, 60–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trotter, A.; Hilgendorff, A.; Kipp, M.; Beyer, C.; Kueppers, E.; Kiossis, E.; Stuplich, J.; Pohlandt, F.; Thome, U. Gender-related effects of prenatal administration of estrogen and progesterone receptor antagonists on VEGF and surfactant-proteins and on alveolarisation in the developing piglet lung. Early Hum. Dev. 2009, 85, 353–359. [Google Scholar] [CrossRef] [PubMed]
- Massaro, D.; Massaro, G.D. Estrogen receptor regulation of pulmonary alveolar dimensions: Alveolar sexual dimorphism in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2006, 290, L866–L870. [Google Scholar] [CrossRef] [PubMed]
- Massaro, D.; Massaro, G.D. Estrogen regulates pulmonary alveolar formation, loss, and regeneration in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 2004, 287, L1154–L1159. [Google Scholar] [CrossRef] [PubMed]
- Massaro, D.; Clerch, L.B.; Massaro, G.D. Estrogen receptor-alpha regulates pulmonary alveolar loss and regeneration in female mice: Morphometric and gene expression studies. Am. J. Physiol. Renal. Physiol. 2007, 293, L222–L228. [Google Scholar] [CrossRef]
- Popova, A.P.; Bentley, J.K.; Cui, T.X.; Richardson, M.N.; Linn, M.J.; Lei, J.; Chen, Q.; Goldsmith, A.M.; Pryhuber, G.S.; Hershenson, M.B. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia. Am. J. Physiol. Lung Cell Mol. Physiol. 2014, 307, L231–L239. [Google Scholar] [CrossRef] [Green Version]
- Fulton, C.T.; Cui, T.X.; Goldsmith, A.M.; Bermick, J.; Popova, A.P. Gene Expression Signatures Point to a Male Sex-Specific Lung Mesenchymal Cell PDGF Receptor Signaling Defect in Infants Developing Bronchopulmonary Dysplasia. Sci. Rep. 2018, 8, 17070. [Google Scholar] [CrossRef]
- Trotter, A.; Kipp, M.; Schrader, R.M.; Beyer, C. Combined application of 17beta-estradiol and progesterone enhance vascular endothelial growth factor and surfactant protein expression in cultured embryonic lung cells of mice. Int. J. Pediatr. 2009, 2009, 170491. [Google Scholar] [CrossRef] [Green Version]
- Morani, A.; Warner, M.; Gustafsson, J.-A. Biological functions and clinical implications of oestrogen receptors alfa and beta in epithelial tissues. J. Intern. Med. 2008, 264, 128–142. [Google Scholar] [CrossRef]
- Clarke, C.L.; Sutherland, R.L. Progestin regulation of cellular proliferation. Endocr. Rev. 1990, 11, 266–301. [Google Scholar] [CrossRef]
- Flores-Delgado, G.; Bringas, P.; Buckley, S.; Anderson, K.D.; Warburton, D. Nongenomic estrogen action in human lung myofibroblasts. Biochem. Biophys. Res. Commun. 2001, 283, 661–667. [Google Scholar] [CrossRef] [PubMed]
- McMillan, E.M.; King, G.M.; Adamson, I.Y. Sex hormones influence growth and surfactant production in fetal lung explants. Exp. Lung Res. 1989, 15, 167–179. [Google Scholar] [CrossRef] [PubMed]
- Somjen, D.; Kohen, F.; Jaffe, A.; Amir-Zaltsman, Y.; Knoll, E.; Stern, N. Effects of gonadal steroids and their antagonists on DNA synthesis in human vascular cells. Hypertension 1998, 32, 39–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, H.C.; Kirk, W.O.; Sweezey, N.; Torday, J.S. Coordination of growth and differentiation in the fetal lung. Exp. Cell Res. 1990, 188, 89–96. [Google Scholar] [CrossRef]
- Fujimoto, R.; Morimoto, I.; Morita, E.; Sugimoto, H.; Ito, Y.; Eto, S. Androgen receptors, 5 alpha-reductase activity and androgen-dependent proliferation of vascular smooth muscle cells. J. Steroid. Biochem. Mol. Biol. 1994, 50, 169–174. [Google Scholar] [CrossRef]
- Recchia, A.G.; Musti, A.M.; Lanzino, M.; Panno, M.L.; Turano, E.; Zumpano, R.; Belfiore, A.; Andò, S.; Maggiolini, M. A cross-talk between the androgen receptor and the epidermal growth factor receptor leads to p38MAPK-dependent activation of mTOR and cyclinD1 expression in prostate and lung cancer cells. Int. J. Biochem. Cell Biol. 2009, 41, 603–614. [Google Scholar] [CrossRef] [PubMed]
- Levesque, B.M.; Vosatka, R.J.; Nielsen, H.C. Dihydrotestosterone stimulates branching morphogenesis, cell proliferation, and programmed cell death in mouse embryonic lung explants. Pediatr. Res. 2000, 47, 481–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perelman, R.H.; Palta, M.; Kirby, R.; Farrell, P.M. Discordance between male and female deaths due to the respiratory distress syndrome. Pediatrics 1986, 78, 238–244. [Google Scholar] [CrossRef]
- Mikkonen, L.; Pihlajamaa, P.; Sahu, B.; Zhang, F.-P.; Janne, O.A. Androgen receptor and androgen-dependent gene expression in lung. Mol. Cell Endocrinol. 2010, 317, 14–24. [Google Scholar] [CrossRef] [Green Version]
- Sweezey, N.B.; Ghibu, F.; Gagnon, S.; Schotman, E.; Hamid, Q. Glucocorticoid receptor mRNA and protein in fetal rat lung in vivo: Modulation by glucocorticoid and androgen. Am. J. Physiol. 1998, 275, L103–L109. [Google Scholar] [CrossRef]
- Forest, M.G. Plasma androgens (Testosterone and 4-androstenedione) and 17-hydroxyprogesterone in the neonatal, prepubertal and peripubertal periods in the human and the rat: Differences between species. J. Steroid. Biochem. 1979, 11, 543–548. [Google Scholar] [CrossRef]
- Boucher, E.; Provost, P.R.; Devillers, A.; Tremblay, Y. Levels of Dihydrotestosterone, Testosterone, Androstenedione, and Estradiol in Canalicular, Saccular, and Alveolar Mouse Lungs. Lung 2010, 188, 229–233. [Google Scholar] [CrossRef] [PubMed]
- Habert, R.; Picon, R. Testosterone, dihydrotestos.sterone and estradiol-17 beta levels in maternal and fetal plasma and in fetal testes in the rat. J. Steroid. Biochem. 1984, 21, 193–198. [Google Scholar] [CrossRef]
- Bresson, E.; Seaborn, T.; Cote, M.; Cormier, G.; Provost, P.R.; Piedboeuf, B.; Tremblay, Y. Gene expression profile of androgen modulated genes in the murine fetal developing lung. Reprod. Biol. Endocrinol. 2010, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Fleisher, B.; Kulovich, M.V.; Hallman, M.; Gluck, L. Lung profile: Sex differences in normal pregnancy. Obstet. Gynecol. 1985, 66, 327–330. [Google Scholar] [CrossRef]
- Torday, J.S.; Nielsen, H.C. The sex difference in fetal lung surfactant production. Exp. Lung Res. 1987, 12, 1–19. [Google Scholar] [CrossRef]
- Torday, J.S.; Nielsen, H.C.; de Fencl, M.M.; Avery, M.E. Sex differences in fetal lung maturation. Am. Rev. Respir. Dis. 1981, 123, 205–208. [Google Scholar]
- Nielsen, H.C. Androgen receptors influence the production of pulmonary surfactant in the testicular feminization mouse fetus. J. Clin. Investig. 1985, 76, 177–181. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, H.C. Epidermal growth factor influences the developmental clock regulating maturation of the fetal lung fibroblast. Biochim. Biophys. Acta 1989, 1012, 201–206. [Google Scholar] [CrossRef]
- Nielsen, H.C. The development of surfactant synthesis in fetal rabbit lung organ culture exhibits a sex dimorphism. Biochim. Biophys. Acta 1986, 883, 373–379. [Google Scholar] [CrossRef]
- Nielsen, H.C.; Torday, J.S. Sex differences in fetal rabbit pulmonary surfactant production. Pediatr. Res. 1981, 15, 1245–1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nielsen, H.C.; Zinman, H.M.; Torday, J.S. Dihydrotestosterone inhibits fetal rabbit pulmonary surfactant production. J. Clin. Investig. 1982, 69, 611–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vom Saal, F.S.; Bronson, F.H. Sexual characteristics of adult female mice are correlated with their blood testosterone levels during prenatal development. Science 1980, 208, 597–599. [Google Scholar] [CrossRef] [Green Version]
- Dammann, C.E.; Ramadurai, S.M.; McCants, D.D.; Pham, L.D.; Nielsen, H.C. Androgen regulation of signaling pathways in late fetal mouse lung development. Endocrinology 2000, 141, 2923–2929. [Google Scholar] [CrossRef] [PubMed]
- Provost, P.R.; Boucher, E.; Tremblay, Y. Apolipoprotein A-I, A-II, C-II, and H expression in the developing lung and sex difference in surfactant lipids. J. Endocrinol. 2009, 200, 321–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamson, I.Y.; King, G.M. Sex differences in development of fetal rat lung. I. Autoradiographic and biochemical studies. Lab. Investig. 1984, 50, 456–460. [Google Scholar]
- Catlin, E.A.; Manganaro, T.F.; Donahoe, P.K. Müllerian inhibiting substance depresses accumulation in vitro of disaturated phosphatidylcholine in fetal rat lung. Am. J. Obstet. Gynecol. 1988, 159, 1299–1303. [Google Scholar] [CrossRef]
- Catlin, E.A.; Powell, S.M.; Manganaro, T.F.; Hudson, P.L.; Ragin, R.C.; Epstein, J.; Donahoe, P.K. Sex-specific fetal lung development and müllerian inhibiting substance. Am. Rev. Respir. Dis. 1990, 141, 466–470. [Google Scholar] [CrossRef]
- Catlin, E.A.; Uitvlugt, N.D.; Donahoe, P.K.; Powell, D.M.; Hayashi, M.; MacLaughlin, D.T. Müllerian inhibiting substance blocks epidermal growth factor receptor phosphorylation in fetal rat lung membranes. Metabolism 1991, 40, 1178–1184. [Google Scholar] [CrossRef]
- Fallat, M.E.; Hutson, J.M.; Budzik, G.P.; Donahoe, P.K. Androgen stimulation of nucleotide pyrophosphatase during mullerian duct regression. Endocrinology 1984, 114, 1592–1598. [Google Scholar] [CrossRef]
- Padbury, J.F.; Hobel, C.J.; Lam, R.W.; Fisher, D.A. Sex differences in lung and adrenal neurosympathetic development in rabbits. Am. J. Obstet. Gynecol. 1981, 141, 199–204. [Google Scholar] [CrossRef]
- Warburton, D.; Parton, L.; Buckley, S.; Cosico, L.; Saluna, T. Beta-receptors and surface active material flux in fetal lamb lung: Female advantage. J. Appl. Physiol. 1987, 63, 828–833. [Google Scholar] [CrossRef] [PubMed]
- Torday, J.S.; Kourembanas, S. Fetal rat lung fibroblasts produce a TGFβ homolog that blocks alveolar type II cell maturation. Dev. Biol. 1990, 139, 35–41. [Google Scholar] [CrossRef]
- Shull, S.; Meisler, N.; Absher, M.; Phan, S.; Cutroneo, K. Glucocorticoid-induced down regulation of transforming growth factor-beta 1 in adult rat lung fibroblasts. Lung 1995, 173, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Floros, J.; Nielsen, H.C.; Torday, J.S. Dihydrotestosterone blocks fetal lung fibroblast-pneumonocyte factor at a pretranslational level. J. Biol. Chem. 1987, 262, 13592–13598. [Google Scholar] [CrossRef]
- Torday, J.S. Dihydrotestosterone inhibits fibroblast-pneumonocyte factor-mediated synthesis of saturated phosphatidylcholine by fetal rat lung cells. Biochim. Biophys. Acta 1985, 835, 23–28. [Google Scholar] [CrossRef]
- McCoy, D.M.; Salome, R.G.; Kusner, D.J.; Iyar, S.S.; Mallampalli, R.K. Identification of sex-specific differences in surfactant synthesis in rat lung. Pediatr. Res. 1999, 46, 722–730. [Google Scholar] [CrossRef] [Green Version]
- Lecart, C.; Cayabyab, R.; Buckley, S.; Morrison, J.; Kwong, K.Y.; Warburton, D.; Ramanathan, R.; Jones, C.A.; Minoo, P. Bioactive transforming growth factor-beta in the lungs of extremely low birthweight neonates predicts the need for home oxygen supplementation. Biol. Neonate. 2000, 77, 217–223. [Google Scholar] [CrossRef]
- Sadiq, H.F.; Devaskar, U.P. Glucocorticoids increase pulmonary epidermal growth factor receptors in female and male fetal rabbit. Biochem. Biophys. Res. Commun. 1984, 119, 408–414. [Google Scholar] [CrossRef]
- Klein, J.M.; Nielsen, H.C. Androgen regulation of epidermal growth factor receptor binding activity during fetal rabbit lung development. J. Clin. Investig. 1993, 91, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, H.C. Testosterone regulation of sex differences in fetal lung development. Proc. Soc. Exp. Biol. Med. 1992, 199, 446–452. [Google Scholar] [CrossRef] [PubMed]
- Torday, J.S. The physiologic significance of 11beta-hydroxysteroid dehydrogenase type 1 in fetal lung development redux. Horm. Metab. Res. 2005, 37, 56–57; discussion 58. [Google Scholar] [CrossRef] [PubMed]
- Sweezey, N.; Tchepichev, S.; Gagnon, S.; Fertuck, K.; O’Brodovich, H. Female gender hormones regulate mRNA levels and function of the rat lung epithelial Na channel. Am. J. Physiol. 1998, 274, C379–C386. [Google Scholar] [CrossRef] [PubMed]
- Greenlee, M.M.; Mitzelfelt, J.D.; Yu, L.; Yue, Q.; Duke, B.J.; Harrell, C.S.; Neigh, G.N.; Eaton, D.C. Estradiol activates epithelial sodium channels in rat alveolar cells through the G protein-coupled estrogen receptor. Am. J. Physiol. Lung Cell Mol. Physiol. 2013, 305, L878–L889. [Google Scholar] [CrossRef] [Green Version]
- Yusef, Y.R.; Thomas, W.; Harvey, B.J. Estrogen increases ENaC activity via PKCdelta signaling in renal cortical collecting duct cells. Physiol. Rep. 2014, 2. [Google Scholar] [CrossRef] [Green Version]
- Laube, M.; Küppers, E.; Thome, U.H. Modulation of Sodium Transport in Alveolar Epithelial Cells by Estradiol and Progesterone. Pediatr. Res. 2011, 69, 200–205. [Google Scholar] [CrossRef] [Green Version]
- Kooijman, E.E.; Kuzenko, S.R.; Gong, D.; Best, M.D.; Folkesson, H.G. Phosphatidylinositol 4,5-bisphosphate stimulates alveolar epithelial fluid clearance in male and female adult rats. Am. J. Physiol. Lung Cell Mol. Physiol. 2011, 301, L804–L811. [Google Scholar] [CrossRef]
- Li, Y.; Yang, J.; Li, S.; Zhang, J.; Zheng, J.; Hou, W.; Zhao, H.; Guo, Y.; Liu, X.; Dou, K.; et al. N-myc Downstream-regulated Gene 2, a Novel Estrogen-targeted Gene, Is Involved in the Regulation of Na+/K+-ATPase. J. Biol. Chem. 2011, 286, 32289–32299. [Google Scholar] [CrossRef] [Green Version]
- Laube, M.; Dornis, D.; Wenzel, F.; Thome, U.H. Epidermal growth factor strongly affects epithelial Na+ transport and barrier function in fetal alveolar cells, with minor sex-specific effects. Sci. Rep. 2021, 11, 11. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laube, M.; Thome, U.H. Y It Matters—Sex Differences in Fetal Lung Development. Biomolecules 2022, 12, 437. https://doi.org/10.3390/biom12030437
Laube M, Thome UH. Y It Matters—Sex Differences in Fetal Lung Development. Biomolecules. 2022; 12(3):437. https://doi.org/10.3390/biom12030437
Chicago/Turabian StyleLaube, Mandy, and Ulrich H. Thome. 2022. "Y It Matters—Sex Differences in Fetal Lung Development" Biomolecules 12, no. 3: 437. https://doi.org/10.3390/biom12030437
APA StyleLaube, M., & Thome, U. H. (2022). Y It Matters—Sex Differences in Fetal Lung Development. Biomolecules, 12(3), 437. https://doi.org/10.3390/biom12030437