Colocalization Analysis of Peripheral Myelin Protein-22 and Lamin-B1 in the Schwann Cell Nuclei of Wt and TrJ Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals
2.2. Mice Phenotyping
2.3. Whole Sciatic Nerve Fibers Preparations
2.4. Immunolabelling of H3K4m3, PMP22 and Lamin B1 in Schwann Cell Nuclei
2.5. Confocal Microscopy Procedure
2.6. Image Analysis
2.6.1. Quantification of Sciatic Fiber and Schwann Cell Nuclei
2.6.2. Quantification of DAPI, H3K4m3, PMP22, and Lamin B1 Signals and Volumes of Schwann Cell Nuclei
2.6.3. Nuclear Distributions of PMP22, H3K4m3, DAPI, and Lamin-B1 Signals
2.6.4. Colocalization Analysis Rationale
2.6.5. Colocalization Analysis of PMP22, with eu-, Heterochromatin and Lamin B1
- (i)
- M1: The fraction of EC (H3K4me3 signal) in the TC area (DAPI-light + DAPI-dark signals), and M2: the fraction of TC area (DAPI signal) in EC (H3K4me3 signal).
- (ii)
- M1: The fraction of EC (H3K4me3 mask) in HC (DAPI-dark mask), and M2: the fraction of HC (DAPI-dark mask) in EC (H3K4me3 mask).
- (iii)
- M1: The fraction of EC (H3K4me3 signal) in PMP22 area (PMP22 signal), and M2: the fraction of PMP22 area (PMP22 signal) in EC (H3K4me3 signal).
- (iv)
- M1: The fraction of HC (DAPI-dark mask) in PMP22 area (PMP22 mask), and M2: the fraction of PMP22 area (PMP22 mask) in HC (DAPI-dark mask).
- (v)
- M1: The fraction of Lamin-B1 area (Lamin-B1 signal) in PMP22 area (PMP22 signal), and M2: the fraction of PMP22 area (PMP22 signal) in Lamin-B1 area (Lamin-B1 signal).
- (i)
- EC (H3K4m3 signal) and TC (DAPI-light + DAPI-dark signals)
- (ii)
- EC (H3K4me3 mask) and HC (DAPI-dark mask)
- (iii)
- PMP22 (PMP22 signal or mask) and EC (H3K4me3 signal or mask)
- (iv)
- PMP22 (PMP22 signal or mask) and HC (DAPI-dark mask)
- (v)
- PMP22 (PMP22 signal) and Lamin-B1 (Lamin-B1 signal).
2.7. Statistical Analysis
3. Results
3.1. Wt and TrJ Differences between Nerve Fibers and Schwann Cell Nuclei
3.2. Distinctive Intensity and Nuclear Distributions of DAPI, H3K4m3, and PMP22 Signals in Wt and TrJ Schwann Cell
3.3. Peripheral Prevailing Location of PMP22 Signals in Wt and TrJ Schwann Cell Nuclei
3.4. Peripheral Location of PMP22 and Lamin B1 and Distinctive Intensity of Lamin B1 in Nuclei of Wt and TrJ Schwann Cell
3.5. Eu- and Heterochromatin of Wt and TrJ Schwann Cell Nuclei
3.6. Relationship of PMP22 with Eu- and Heterochromatin of Wt and TrJ Schwann Cell Nuclei
3.7. Relationship between PMP22 and Lamin B1 of Wt and TrJ Schwann Cell Nuclei
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Snipes, G.J.; Suter, U.; Welcher, A.A.; Shooter, E.M. Characterization of a novel peripheral nervous system myelin protein (PMP-22/SR13). J. Cell Biol. 1992, 117, 225–238. [Google Scholar] [CrossRef] [PubMed]
- Haney, C.; Snipes, G.J.; Shooter, E.M.; Suter, U.; Garcia, C.; Griffin, J.W.; Trapp, B.D. Ultrastructural distribution of PMP22 in 2. Charcot-MarieTooth disease type 1A. J. Neuropathol. Exp. Neurol. 1996, 55, 290–299. [Google Scholar] [CrossRef] [Green Version]
- Bronstein, J.M. Function of tetraspan proteins in the myelin sheath. Curr. Opin. Neurobiol. 2000, 10, 552–557. [Google Scholar] [CrossRef]
- Quarles, R.H. Myelin sheaths: Glycoproteins involved in their formation, maintenance, and degeneration. Cell. Mol. Life Sci. 2002, 59, 1851–1871. [Google Scholar] [CrossRef]
- Manfioletti, G.; Ruaro, M.E.; Del, S.G.; Philipson, L.; Schneider, C. A growth arrest-specific (gas) gene codes for a membrane protein. Mol. Cell Biol. 1990, 10, 2924–2930. [Google Scholar] [PubMed] [Green Version]
- Spreyer, P.; Kuhn, G.; Hanemann, C.O.; Gillen, C.; Schaal, H.; Kuhn, R.; Lemke, G.; Muller, H.W. Axon regulated expression of a Schwann cell transcript that is homologous to a ’growth arrest-specific’ gene. EMBO J. 1991, 10, 3661–3668. [Google Scholar] [CrossRef]
- Welcher, A.A.; Suter, U.; De Leon, M.; Snipes, G.J.; Shooter, E.M. A myelin protein is encoded by the homologue of a growth arrest specific gene. Proc. Natl. Acad. Sci. USA 1991, 88, 7195–7199. [Google Scholar] [CrossRef] [Green Version]
- Kitamura, K.; Suzuki, M.; Uyemura, K. Purification and partial characterization of two glycoproteins in bovine peripheral myelin membrane. Biochim. Biophys. Acta 1976, 455, 806–816. [Google Scholar] [CrossRef]
- Pareek, S.; Notterpek, L.; Snipes, G.J.; Naef, R.; Sossin, W.; Laliberte, J.; Iacampo, S.; Suter, U.; Shooter, E.M.; Murphy, R.A. Neurons promote the translocation of peripheral myelin protein 22 into myelin. J. Neurosci. 1997, 17, 7754–7762. [Google Scholar] [CrossRef]
- Pareek, S.; Suter, U.; Snipes, G.J.; Welcher, A.A.; Shooter, E.M.; Murphy, R.A. Detection and processing of peripheral myelin protein PMP22 in cultured Schwann cells. J. Biol. Chem. 1993, 268, 10372–10379. [Google Scholar] [CrossRef]
- Taylor, V.; Zgraggen, C.; Naef, R.; Suter, U. Membrane topology of peripheral myelin protein 22. J. Neurosci. Res. 2000, 62, 15–27. [Google Scholar] [CrossRef]
- Jetten, A.M.; Suter, U. The peripheral myelin protein 22 and epithelial membrane protein family. Prog. Nucleic Acid. Res. Mol. Biol. 2000, 64, 97–12913. [Google Scholar] [PubMed] [Green Version]
- Suter, U.; Moskow, J.J.; Welcher, A.A.; Snipes, G.J.; Kosaras, B.; Sidman, R.I.; Buchberg, A.M.; Shooter, E.M. A leucine-to-proline mutation in the putative first transmembrane domain of the 22-kDa peripheral myelin protein in the trembler-J. mouse. Proc. Natl. Acad. Sci. USA 1992, 89, 4382–4386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Wetering, R.A.C.; Gabreëls-Festen, A.A.W.M.; Kremer, H.; Kalscheuer, V.M.; Gabreëls, F.J.M.; Mariman, E.C. Regulation and expression of the murine pmp22 gene. Mamm. Genome 1999, 10, 419–422. [Google Scholar] [CrossRef]
- Parmantier, E.; Braun, C.; Thomas, J.L.; Peyron, F.; Martinez, S.; Zalc, B. PMP-22 expression in the central nervous system of the embryonic mouse defines potential transverse segments and longitudinal columns. J. Comp. Neurol. 1997, 378, 159–172. [Google Scholar] [CrossRef]
- Parmantier, E.; Cabon, F.; Braun, C.; D’Urso, D.; Muller, H.W.; Zalc, B. Peripheral myelin protein-22 is expressed in rat and mouse brain and spinal cord motoneurons. Eur. J. Neurosci. 1995, 7, 1080–1088. [Google Scholar] [CrossRef]
- Huehne, K.; Rautenstrauss, B. Transcriptional startpoints and methylation patterns in the PMP22 promoters of peripheral nerve, leukocytes and tumor cell lines. Int. J. Mol. Med. 2001, 7, 669–675. [Google Scholar] [CrossRef]
- Adlkofer, K.; Martini, R.; Aguzzi, A.; Zielasek, J.; Toyka, K.V.; Suter, U. Hypermyelination and demyelinating peripheral neuropathy in Pmp22-deficient mice. Nat. Genet. 1995, 11, 274–280. [Google Scholar] [CrossRef]
- Li, J.; Parker, B.; Martyn, C.; Natarajan, C.; Guo, J. The PMP22 gene and its related diseases. Mol. Neurobiol. 2013, 47, 673–698. [Google Scholar] [CrossRef] [Green Version]
- Dyck, P.J.; Chance, P.; Lebo, R.; Carney, J.A. Hereditary motor and sensory neuropathies. In PNP; Dyck, P.J., Thomas, P.K., Griffin, J.W., Low, P.A., Poduslo, J.F., Eds.; W.B. Saunders Company: Philadelphia, PA, USA, 1993; pp. 1094–1136. [Google Scholar]
- Krajewski, K.M.; Lewis, R.A.; Fuerst, D.R.; Turansky, C.; Hinderer, S.R.; Garbern, J.; Kamholz, J.; Shy, M.E. Neurological dysfunction and axonal degeneration in Charcot–Marie–Tooth disease type 1A. Brain 2000, 123, 1516–1527. [Google Scholar] [CrossRef] [Green Version]
- Schröder, J.M. Neuropathology of Charcot-Marie-Tooth and related disorders. Neuromol. Med. 2006, 8, 23–42. [Google Scholar] [CrossRef]
- Lupski, J.R.; Montes de Oca Luna, R.; Slugenhaupt, S.; Pentao, L.; Guzzetta, V.; Trask, B.J.; Saucedo-Cordenas, O.; Barker, D.F.; Killlian, J.M.; Garcia, C.A.; et al. DNA duplication associated with Charcot-Marie-Tooth disease type 1A. Cell 1991, 66, 219–232. [Google Scholar] [CrossRef]
- Matsunami, N.; Smith, B.; Ballard, L.; Lensch, M.W.; Robertson, M.; Albertsen, H.; Hanemann, C.O.; Müller, H.W.; Bird, T.D.; White, R.; et al. Peripheral myelin protein-22 gene maps in the duplication in chromosome 17p11.2 associated with Charcot Marie-Tooth type 1A. Nat. Genet. 1992, 1, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Timmerman, V.; Nelis, E.; Van Hul, W.; Nieuwenhuijsen, B.W.; Chen, K.L.; Wang, S.; Ben Othman, K.; Cullen, B.; Leach, R.J.; Hanemann, C.O.; et al. The peripheral myelin protein gene PMP22 is contained within the Charcot-Marie-Tooth disease type 1A duplication. Nat. Genet. 1992, 1, 171–175. [Google Scholar] [CrossRef] [PubMed]
- Chance, P.F.; Alderson, M.K.; Leppig, K.A.; Lensch, M.W.; Matsunami, N.; Smith, B.; Swanson, P.D.; Odelberg, S.J.; Disteche, C.M.; Bird, T.D. DNA deletion associated with hereditary neuropathy with liability to pressure palsies. Cell 1993, 72, 143–151. [Google Scholar] [CrossRef]
- Shy, M.E.; Scavina, M.T.; Clark, A.; Krajewski, K.M.; Li, J.; Kamholz, J.; Kolodny, E.; Szigeti, K.; Fischer, R.A.; Saifi, G.M.; et al. T118M PMP22 mutation causes partial loss of function and HNPP-like neuropathy. Ann. Neurol. 2006, 59, 358–364. [Google Scholar] [CrossRef]
- Valentijn, L.J.; Baas, F.; Wolterman, R.A.; Hoogendijk, J.E.; van den Bosch, N.H.A.; Zorn, I.; Gabreëls-Festen, A.A.W.M.; de Visser, M.; Bolhuis, P.A. Identical point mutations of PMP-22 in Trembler-J mouse and Charcot-Marie-Tooth disease type 1A. Nat. Genet. 1992, 2, 288–291. [Google Scholar] [CrossRef]
- Bird, T.D. Charcot-Marie-Tooth (CMT) Hereditary Neuropathy Overview; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Mirzaa, G., Amemiya, A., Eds.; GeneReviews®; University of Washington: Seattle, WA, USA, 1998; updated 2021. [Google Scholar]
- Low, P.A. Hereditary hypertrophic neuropathy in the trembler mouse. Part 1. Histopathological studies: Light microscopy. J. Neurol. Sci. 1976, 30, 327–341. [Google Scholar] [CrossRef]
- Low, P.A. Hereditary hypertrophic neuropathy in the trembler mouse. Part 2. Histopathological studies: Electron microscopy. J. Neurol. Sci. 1976, 30, 343–368. [Google Scholar] [CrossRef]
- Jouaud, M.; Mathis, S.; Richard, L.; Lia, A.S.; Magy, L.; Vallat, J.M. Rodent models with the expression of PMP22: Relevance to dysmyelinating CMT and HNPP. J. Neurol. Sci. 2019, 398, 79–90. [Google Scholar] [CrossRef]
- Henry, E.W.; Sidman, R.L. The murine mutation trembler-j: Proof of semidominant expression by use of the linked vestigial tail marker. J. Neurogenet. 1983, 1, 39–52. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.M.; Huxley, C.; King, R.H.M.; Thomas, P.K. Development of early postnatal peripheral nerve abnormalities in Trembler-J and PMP22 transgenic mice. J. Anat. 1999, 195, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Bouhy, D.; Timmerman, V. Animal models and therapeutic prospects for Charcot-Marie-Tooth disease. Ann. Neurol. 2013, 74, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Ayers, M.M.; Anderson, R.M. Development of onion bulb neuropathy in the Trembler mouse. Comparison with normal nerve maturation. Acta Neuropathol. 1975, 32, 43–59. [Google Scholar] [CrossRef]
- Henry, E.W.; Cowen, J.S.; Sidman, R.L. Comparison of trembler and trembler-j mouse phenotypes: Varying severity of peripheral hypomyelination. J. Neuropathol. Exp. Neurol. 1983, 42, 688–706. [Google Scholar] [CrossRef]
- Sakakura, M.; Hadziselimovic, A.; Wang, Z.; Schey, K.L.; Sanders, C.R. Structural basis for the Trembler-J phenotype of Charcot-Marie-Tooth disease. Structure 2011, 19, 1160–1169. [Google Scholar] [CrossRef] [Green Version]
- Colby, J.; Nicholson, R.; Dickson, K.M.; Orfali, W.; Naef, R.; Suter, U.; Snipes, G.J. PMP22 carrying the trembler or trembler-J mutation is intracellularly retained in myelinating Schwann cells. Neurobiol. Dis. 2000, 7, 561–573. [Google Scholar] [CrossRef] [Green Version]
- Mirsky, R.; Jessen, K.R. Schwann cell development, differentiation and myelination. Curr. Opin. Neurobiol. 1996, 6, 89–96. [Google Scholar] [CrossRef]
- Salzer, J.L. Schwann cell myelination. Cold Spring Harb. Perspect. Biol. 2015, 7, a020529. [Google Scholar] [CrossRef] [Green Version]
- Monk, K.R.; Feltri, M.L.; Taveggia, C. New insights on Schwann cell development. Glia 2015, 63, 1376–1393. [Google Scholar] [CrossRef] [Green Version]
- Zoidl, G.; Blass-Kampmann, S.; D’Ursol, D.; Schmalenbach, C.; MuIler, H.W. Retroviral-mediated gene transfer of the peripheral myelin protein PMP22 in SCs: Modulation of cell growth. EMBO J. 1995, 14, 1122–1128. [Google Scholar] [CrossRef] [PubMed]
- De Sandre-Giovannoli, A.; Chaouch, M.; Kozlov, S.; Vallat, J.M.; Tazir, M.; Kassouri, N.; Szepetowski, P.; Hammadouche, T.; Vandenberghe, A.; Stewart, C.L.; et al. Homozygous defects in LMNA, encoding lamin A/C nuclear-envelope proteins, cause autosomal recessive axonal neuropathy in human (Charcot-Marie-Tooth disor- der type 2) and mouse. Am. J. Hum. Genet. 2002, 70, 726–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouhouche, A.; Benomar, A.; Birouk, N.; Mularoni, A.; Meggouh, F.; Tassin, J.; Grid, D.; Vandenberghe, A.; Yahyaoui, M.; Chkili, T.; et al. A locus for an axonal form of autosomal recessive Charcot-Marie-Tooth disease maps to chromosome 1q21. 2-q21. 3. Am. J. Hum. Genet. 1999, 65, 722–727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, J.; Sundblom, J.; Thuresson, A.C.; Hassin-Baer, S.; Klopstock, T.; Dichgans, M.; Cohen, O.S.; Raininko, R.; Melberg, A.; Dahl, N. Genomic duplications mediate overexpression of lamin B1 in adult onset autosomal dominant leukodystrophy (ADLD) with autonomic symptoms. Neurogenetics 2011, 12, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Padiath, Q.S.; Saigoh, K.; Schiffmann, R.; Asahara, H.; Yamada, T.; Koeppen, A.; Hogan, K.; Ptácˇek, L.; Fu, Y.-H. Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat. Genet. 2006, 38, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- DeLuca, R.R.; Alexandre, S.R.; Marques, T.; Lopez de Souza, N.; Merusse, J.L.B.; Neves, S.P. In Manual Para Técnicos em Bioterismo; Winner Graph: São Paulo, Brazil, 1996; p. 259. [Google Scholar]
- Rosso, G.; Cal, K.; Canclini, L.; Damián, J.P.; Ruiz, P.; Rodríguez, H.; Sotelo, J.R.; Vazquez, C.; Kun, A. Early phenotypical diagnoses in Trembler-J mice model. J. Neurosci. Methods 2010, 190, 14–19. [Google Scholar] [CrossRef] [PubMed]
- AVMA Guidelines for the Euthanasia of Animals: 2020 Edition. Available online: https://www.avma.org/sites/default/files/2020-01/2020-Euthanasia-Final-1-17-20.pdf (accessed on 10 March 2021).
- Kun, A.; Rosso, G.; Canclini, L.; Bresque, M.; Romeo, C.; Cal, K.; Calliari, A.; Hanuz, A.; Roberto, J.; Roberto, J. The Schwann Cell-Axon Link in Normal Condition or Neuro-Degenerative Diseases: An Immunocytochemical Approach. In Applications of Immunocytochemistry; Dehghani, H., Ed.; InTech: London, Switzerland, 2012; pp. 249–266. [Google Scholar]
- Manders, E.M.M.; Verbeek, F.J.; Aten, J.A. Measurement of co-localization objects in dual-colour confocal images. J. Microsc. 1993, 169, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Aaron, J.S.; Taylor, A.B.; Chew, T.L. Image co-localization, co-occurrence versus correlation. J. Cell Sci. 2018, 131, jcs211847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearson, K., VII. Mathematical Contributions to the Theovy of Evolution-III. Regression, Heredity, and Panmixia; University College: London, UK, 1896; pp. 254–518. [Google Scholar]
- Costes, S.V.; Daelemans, D.; Cho, E.H.; Dobbin, Z.; Pavlakis, G.; Lockett, S. Automatic and quantitative measurement of protein-protein colocalization in live cells. Biophys. J. 2004, 86, 3993–4003. [Google Scholar] [CrossRef] [Green Version]
- Kitamoto, T.; Ogomori, K.; Tateishi, J.; Prusiner, S.B. Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab. Investig. 1987, 57, 230–236. [Google Scholar]
- Rosso, G.; Negreira, C.; Sotelo, J.R.; Kun, A. Myelinating and demyelinating phenotype of Trembler-J mouse (a model of 1009 Charcot-Marie-Tooth human disease) analyzed by atomic force microscopy and confocal microscopy. J. Mol. Recognit. 2012, 1010, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Gruenbaum, Y.; Foisner, R. Lamins: Nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu. Rev. Biochem. 2015, 84, 131–164. [Google Scholar] [CrossRef] [PubMed]
- Baron, O.; Boudi, A.; Dias, C.; Schilling, M.; Nölle, A.; Vizcay-Barrena, G.; Rattray, I.; Jungbluth, H.; Scheper, W.; Fleck, R.A.; et al. Stall in Canonical autophagy-lysosome pathways prompts nucleophagy-based nuclear breakdown in neurodegeneration. Curr. Biol. 2017, 27, 3626–3642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moir, R.D.; Montag-Lowy, M.; Goldman, R.D. Dynamic properties of nuclear lamins: Lamin B is associated with sites of DNA replication. J. Cell Biol. 1994, 125, 1201–1212. [Google Scholar] [CrossRef] [Green Version]
- Belmont, A.S.; Zhai, Y.; Thilenius, A. Lamin B Distribution and association with peripheral chromatin revealed by optical sectioning and electron microscopy tomography. J. Cell Biol. 1993, 123 Pt 2, 1671–1685. [Google Scholar] [CrossRef] [Green Version]
- Shah, P.P.; Donahue, G.; Otte, G.L.; Capell, B.C.; Nelson, D.M.; Cao, K.; Aggarwala, V.; Cruickshanks, H.A.; Rai, T.S.; McBryan, T.; et al. Lamin B1 depletion in senescent cells triggers large-scale changes in gene expression and the chromatin landscape. Genes Dev. 2013, 27, 1787–1799. [Google Scholar] [CrossRef] [Green Version]
- Kopito, R.R. Aggresomes, inclusion bodies and protein aggregation. Trend Cell Biol. 2000, 10, 524–530. [Google Scholar] [CrossRef]
- Hyttinen, J.; Amadio, M.; Viir, J.; Pascale, A.; Salminenc, A.; Kaarnirantaa, K. Clearance of misfolded and aggregated proteins by aggrephagy and implications for aggregations diseases. Ageing Res. Rev. 2014, 16, 16–28. [Google Scholar] [CrossRef]
- Giambonini-Brugnoli, G.; Buchstaller, J.; Sommer, L.; Suter, U.; Mantei, N. Distinct disease mechanisms in peripheral neuropathies due to altered peripheral myelin protein 22 gene dosage or a Pmp22 point mutation. Neurobiol. Dis. 2005, 18, 656–668. [Google Scholar] [CrossRef]
- Magyar, J.P.; Martini, R.; Ruelicke, T.; Aguzzi, A.; Adlkofer, K.; Dembic, Z.; Zielasek, J.; Toyka, K.V.; Suter, U. Impaired differentiation of Schwann cells in transgenic mice with increased PMP22 gene dosage. J. Neurosci. 1996, 16, 5351–5360. [Google Scholar] [CrossRef] [Green Version]
- Robertson, A.M.; King, R.H.M.; Muddle, J.R.; Thomas, P.K. Abnormal Schwann cell/axon interactions in the Trembler-J mouse. J. Anat. 1997, 190, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Robertson, A.M.; Perea, J.; McGuigan, A.; King, R.H.M.; Muddle, J.R.; Gabreëls-Festen, A.A.; Thomas, P.K.; Huxley, C. Comparison of a new pmp22 transgenic mouse line with other mouse models and human patients with CMT1A. J. Anat. 2002, 200, 377–390. [Google Scholar] [CrossRef] [PubMed]
- Suter, U.; Snipes, G.J. Peripheral Myelin Protein 22: Facts and Hypotheses. J. Neurosci. Res. 1995, 40, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Bosse, F.; Zoid, l.; Wilms, G.S.; Gillen, C.P.; Kuhn, H.G.; Müller, H.W. Differential expression of two mRNA species indicates a dual function of peripheral myelin protein PMP22 in cell growth and myelination. J. Neurosci. Res. 1994, 37, 529–537. [Google Scholar] [CrossRef] [PubMed]
- Bullions, L.C.; Levine, A.J. The role of beta-catenin in cell adhesion, signal transduction and cancer. Curr. Opin. Oncol. 1998, 10, 81–87. [Google Scholar] [CrossRef]
- McCrea, P.; Gottardi, C. Beyond β-catenin: Prospects for a larger catenin network in the nucleus. Nat. Rev. Mol. Cell Biol. 2016, 17, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, R.P.; Jacob, J.T.; Coulombe, P.A. Keratins are going nuclear. Dev. Cell 2016, 38, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Alber, F.S.; Dokudovskaya, L.M.; Veenhoff, W.; Zhang, J.; Kipper, D.; Devos Suprapto, A.; Karni-Schmidt, O.; Williams, R.; Chait, B.T.; Sali, A.; et al. The molecular architecture of the nuclear pore complex. Nature 2007, 450, 695–701. [Google Scholar] [CrossRef]
- Hoelz, A.; Debler, E.W.; Blobel, G. The structure of the nuclear pore complex. Annu. Rev. Biochem. 2011, 80, 613–643. [Google Scholar] [CrossRef] [Green Version]
- Ribbeck, K.; Görlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 2001, 20, 1320–1330. [Google Scholar] [CrossRef]
- Timney, B.L.; Raveh, B.; Mironska, R.; Trivedi, J.M.; Kim, S.J.; Russel, D.; Wente, S.R.; Sali, A.; Rout, M.P. Simple rules for passive diffusion through the nuclear pore complex. J. Cell Biol. 2016, 215, 57–76. [Google Scholar] [CrossRef] [PubMed]
- Naim, B.; Zbaid, D.; Dagan, S.; Kapon, R.; Reich, Z. Cargo surface hydrophobicity is sufficient to overcome the nuclear pore complex selectivity barrier. EMBO J. 2009, 28, 2697–2705. [Google Scholar] [CrossRef]
- Frey, S.; Rees, R.; Schünemann, J.; Ng, S.C.; Fünfgeld, K.; Huyton, T.; Görlich, D. Surface properties determining passage rates of proteins through nuclear pores. Cell 2018, 174, 202–217.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, A.; Mills, R.E.; Lange, C.J.; Stewart, M.; Devine, S.E.; Corbett, A.H. Classical nuclear localization signals: Definition, function, and interaction with importin alpha. J. Biol. Chem. 2007, 282, 5101–5105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soniat, M.; Chook, Y.M. Nuclear localization signals for four distinct karyopherin-β nuclear import systems. Biochem. J. 2015, 468, 353–362. [Google Scholar] [CrossRef]
- Fagotto, F.; Gluck, U.; Gumbiner, B.M. Nuclear localization signaling dependent and importin/karyopherin-independent nuclear import of beta-catenin. Curr. Biol. 1998, 8, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M.; Jamieson, C.; Lui, C.; Henderson, B.R. Distinct hydrophobic “patches” in the N- and Ctails of beta-catenin contribute to nuclear transport. Exp. Cell. Res. 2016, 348, 132–145. [Google Scholar] [CrossRef]
- Argentaro, A.; Sim, H.; Kelly, S.; Preiss, S.; Clayton, A.; Jans, D.A.; Harley, V.R.A. SOX9 defect of calmodulin-dependent nuclear import in campomelic dysplasia/autosomal sex reversal. J. Biol. Chem. 2003, 278, 33839–33847. [Google Scholar] [CrossRef] [Green Version]
- Forwood, J.K.; Kaur, G.; Jans, D.A. Nuclear import properties of the sex determining factor SRY. Methods Mol. Biol. 2007, 390, 83–89. [Google Scholar]
Coefficients | Values | Meanings |
---|---|---|
M1 and M2 | 1 | Co-occurrence |
0 | No co-occurrence | |
rho and tau | 1 | Positive correlation |
0 | No correlation | |
−1 | Negative correlation | |
±0.5–±1 | Strong | |
±0.3–±0.49 | Moderate | |
±0.1–±0.29 | Weak |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Tomaso, M.V.; Vázquez Alberdi, L.; Olsson, D.; Cancela, S.; Fernández, A.; Rosillo, J.C.; Reyes Ábalos, A.L.; Álvarez Zabaleta, M.; Calero, M.; Kun, A. Colocalization Analysis of Peripheral Myelin Protein-22 and Lamin-B1 in the Schwann Cell Nuclei of Wt and TrJ Mice. Biomolecules 2022, 12, 456. https://doi.org/10.3390/biom12030456
Di Tomaso MV, Vázquez Alberdi L, Olsson D, Cancela S, Fernández A, Rosillo JC, Reyes Ábalos AL, Álvarez Zabaleta M, Calero M, Kun A. Colocalization Analysis of Peripheral Myelin Protein-22 and Lamin-B1 in the Schwann Cell Nuclei of Wt and TrJ Mice. Biomolecules. 2022; 12(3):456. https://doi.org/10.3390/biom12030456
Chicago/Turabian StyleDi Tomaso, María Vittoria, Lucía Vázquez Alberdi, Daniela Olsson, Saira Cancela, Anabel Fernández, Juan Carlos Rosillo, Ana Laura Reyes Ábalos, Magdalena Álvarez Zabaleta, Miguel Calero, and Alejandra Kun. 2022. "Colocalization Analysis of Peripheral Myelin Protein-22 and Lamin-B1 in the Schwann Cell Nuclei of Wt and TrJ Mice" Biomolecules 12, no. 3: 456. https://doi.org/10.3390/biom12030456
APA StyleDi Tomaso, M. V., Vázquez Alberdi, L., Olsson, D., Cancela, S., Fernández, A., Rosillo, J. C., Reyes Ábalos, A. L., Álvarez Zabaleta, M., Calero, M., & Kun, A. (2022). Colocalization Analysis of Peripheral Myelin Protein-22 and Lamin-B1 in the Schwann Cell Nuclei of Wt and TrJ Mice. Biomolecules, 12(3), 456. https://doi.org/10.3390/biom12030456