Obesogens in Foods
Abstract
:1. Introduction
2. Materials
3. Obesity
4. Adipose Tissue
5. Etiology of Obesity
6. Obesogens
6.1. The Obesogen Hypothesises
6.2. Overview of Obesogens
- 1.
- Naturally occurring obesogens
- Fructose
- Genistein
- 2.
- Xenobiotics
- 2.1.
- Contaminants
- Pharmaceuticals
- Diethylstilbesterol
- Estradiol
- Rosiglitazone
- Organic Pollutants (OP’s)
- Industrial Chemicals
- Bisphenol A (BPA)
- Organotins
- Perfluorooctanoic Acid (PFOA)
- Phthalates
- Polybrominated Diphenyl Ethers (PBDEs)
- Polychlorinated Biphenyl Ethers (PCBs)
- Organophosphate Pesticides
- Chlorpyrifos
- Diazinon
- Organophosphate Pesticides
- Dichlordifenyltrichloretan (DDT),
- Dichlordifenyltrichloretan (DDT),
- Other Environmental Pollutants
- Benzo[a]pyrene
- Fine Particulate Matter (PM2.5)
- Triclosan
- 2.2.
- Additives
- 1.
- Naturally occurring obesogens
- 2.
- Xenobiotics
- 2.1. Contaminants
- 2.1.1. Pharmaceuticals
- 2.1.2. Organic pollutants (OPs)
- 2.1.2.1. Industrial chemicals
- 2.1.2.2. Organophosphate Pesticides (OPPs)
- 2.1.2.3. Organochlorinated Pesticides (OCPs)
- 2.1.2.4. Other Environmental Pollutants
- 2.2. Additives
7. Obesogen Elimination Method
8. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Müllerová, D.; Kopecký, J. White Adipose Tissue: Storage and Effector Site for Environmental Pollutants. Physiol. Res. 2007, 56, 375–382. [Google Scholar] [CrossRef] [PubMed]
- D’eon, J.C.; Mabury, S.A. Production of Perfluorinated Carboxylic Acids (PFCAs) from the Biotransformation of Polyfluoroalkyl Phosphate Surfactants (PAPS): Exploring Routes of Human Contamination. Environ. Sci. Technol. 2007, 41, 4799–4805. [Google Scholar] [CrossRef] [PubMed]
- Ellis, D.A.; Martin, J.W.; Silva, A.O.D.; Mabury, S.A.; Hurley, M.D.; Andersen, M.P.S.; Wallington, T.J. Degradation of Fluorotelomer Alcohols: A Likely Atmospheric Source of Perfluorinated Carboxylic Acids. Environ. Sci. Technol. 2004, 38, 3316–3321. [Google Scholar] [CrossRef] [PubMed]
- Fujii, Y.; Harada, K.H.; Koizumi, A. Occurrence of Perfluorinated Carboxylic Acids (PFCAs) in Personal Care Products and Compounding Agents. Chemosphere 2013, 93, 538–544. [Google Scholar] [CrossRef]
- Kimura, O.; Fujii, Y.; Haraguchi, K.; Kato, Y.; Ohta, C.; Koga, N.; Endo, T. Effects of Perfluoroalkyl Carboxylic Acids on the Uptake of Sulfobromophthalein via Organic Anion Transporting Polypeptides in Human Intestinal Caco-2 Cells. Biochem. Biophys. Rep. 2020, 24, 100807. [Google Scholar] [CrossRef]
- Watkins, S.M.; Reifsnyder, P.R.; Pan, H.; German, J.B.; Leiter, E.H. Lipid Metabolome-Wide Effects of the PPARγ Agonist Rosiglitazone. J. Lipid Res. 2002, 43, 1809–1817. [Google Scholar] [CrossRef] [Green Version]
- Bethea, C.L.; Mueller, K.; Reddy, A.P.; Kohama, S.G.; Urbanski, H.F. Effects of Obesogenic Diet and Estradiol on Dorsal Raphe Gene Expression in Old Female Macaques. PLoS ONE 2017, 12, e0178788. [Google Scholar] [CrossRef] [Green Version]
- Grün, F.; Blumberg, B. Minireview: The Case for Obesogens. Mol. Endocrinol. 2009, 23, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Swedenborg, E.; Rüegg, J.; Mäkelä, S.; Pongratz, I. Endocrine Disruptive Chemicals: Mechanisms of Action and Involvement in Metabolic Disorders. J. Mol. Endocrinol. 2009, 43, 1–10. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.-P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-Disrupting Chemicals: An Endocrine Society Scientific Statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Coster, S.D.; Larebeke, N.V. Endocrine-Disrupting Chemicals: Associated Disorders and Mechanisms of Action. J. Environ. Public Health 2012, 2012, 713696. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. J. Clin. Epidemiol. 2009, 62, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Shea, B.J.; Grimshaw, J.M.; Wells, G.A.; Boers, M.; Andersson, N.; Hamel, C.; Porter, A.C.; Tugwell, P.; Moher, D.; Bouter, L.M. Development of AMSTAR: A Measurement Tool to Assess the Methodological Quality of Systematic Reviews. BMC Med. Res. Methodol. 2007, 7, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyn, R.; Heath, E.; Dubhashi, J. Global Implementation of Obesity Prevention Policies: A Review of Progress, Politics, and the Path Forward. Curr. Obes. Rep. 2019, 8, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Flegal, K.M.; Panagiotou, O.A.; Graubard, B.I. Estimating Population Attributable Fractions to Quantify the Health Burden of Obesity. Ann. Epidemiol. 2015, 25, 201–207. [Google Scholar] [CrossRef] [Green Version]
- Cedikova, M.; Kripnerová, M.; Dvorakova, J.; Pitule, P.; Grundmanova, M.; Babuska, V.; Mullerova, D.; Kuncova, J. Mitochondria in White, Brown, and Beige Adipocytes. Stem Cells Int. 2016, 2016, 6067349. [Google Scholar] [CrossRef] [Green Version]
- Heindel, J.J.; Newbold, R.; Schug, T.T. Endocrine Disruptors and Obesity. Nat. Rev. Endocrinol. 2015, 11, 653–661. [Google Scholar] [CrossRef]
- Ouchi, N. Adipocytokines in Cardiovascular and Metabolic Diseases. J. Atheroscler. Thromb. 2016, 23, 645–654. [Google Scholar] [CrossRef] [Green Version]
- Janesick, A.S.; Shioda, T.; Blumberg, B. Transgenerational Inheritance of Prenatal Obesogen Exposure. Mol. Cell. Endocrinol. 2014, 398, 31–35. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization: Regional Office for Europe. European Health Report 2018: More than Numbers, Evidence for All; WHO regional office for Europe: Copenhagen, Denmark, 2019; ISBN 978-92-4-069876-5. [Google Scholar]
- Heindel, J.J.; Blumberg, B. Environmental Obesogens: Mechanisms and Controversies. Annu. Rev. Pharmacol. Toxicol. 2019, 59, 89–106. [Google Scholar] [CrossRef]
- Grün, F.; Blumberg, B. Environmental Obesogens: Organotins and Endocrine Disruption via Nuclear Receptor Signaling. Endocrinology 2006, 147, s50–s55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbold, R.R.; Padilla-Banks, E.; Jefferson, W.N. Environmental Estrogens and Obesity. Mol. Cell. Endocrinol. 2009, 304, 84–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrill, M.L.; Birnbaum, L.S. Childhood Obesity and Environmental Chemicals. Mt. Sinai J. Med. A J. Transl. Pers. Med. 2011, 78, 22–48. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Dhana, K.; Furtado, J.D.; Rood, J.; Zong, G.; Liang, L.; Qi, L.; Bray, G.A.; DeJonge, L.; Coull, B.; et al. Perfluoroalkyl Substances and Changes in Body Weight and Resting Metabolic Rate in Response to Weight-Loss Diets: A Prospective Study. PLOS Med. 2018, 15, e1002502. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M.; Gennings, C.; Hauser, R.; Webster, T.F. What Can Epidemiological Studies Tell Us about the Impact of Chemical Mixtures on Human Health? Environ. Health Perspect. 2016, 124, A6–A9. [Google Scholar] [CrossRef] [Green Version]
- Janesick, A.S.; Blumberg, B. Obesogens: An Emerging Threat to Public Health. Am. J. Obstet. Gynecol. 2016, 214, 559–565. [Google Scholar] [CrossRef] [Green Version]
- Eriksson, D.; Ammann, K.; Chassy, B.; Chawade, A. Comments on Two Recent Publications on GM Maize and Roundup. Sci. Rep. 2018, 8, 13338. [Google Scholar] [CrossRef]
- Angrish, M.M.; McQueen, C.A.; Cohen-Hubal, E.; Bruno, M.; Ge, Y.; Chorley, B.N. Editor’s Highlight: Mechanistic Toxicity Tests Based on an Adverse Outcome Pathway Network for Hepatic Steatosis. Toxicol. Sci. 2017, 159, 159–169. [Google Scholar] [CrossRef] [Green Version]
- Foulds, C.E.; Treviño, L.S.; York, B.; Walker, C.L. Endocrine-Disrupting Chemicals and Fatty Liver Disease. Nat. Rev. Endocrinol. 2017, 13, 445–457. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.-I.; Kwon, H.-Y.; Han, X.; Men, X.; Choi, Y.-E.; Jang, G.-W.; Park, K.-T.; Han, J.; Lee, O.-H. Environmental Obesogens (Bisphenols, Phthalates and Parabens) and Their Impacts on Adipogenic Transcription Factors in the Absence of Dexamethasone in 3T3-L1 Cells. J. Steroid Biochem. Mol. Biol. 2021, 214, 105994. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.; Rupérez, A.; Gomez-Llorente, C.; Gil, A.; Aguilera, C. Cell Models and Their Application for Studying Adipogenic Differentiation in Relation to Obesity: A Review. Int. J. Mol. Sci. 2016, 17, 1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohajer, N.; Du, C.Y.; Checkcinco, C.; Blumberg, B. Obesogens: How They Are Identified and Molecular Mechanisms Underlying Their Action. Front. Endocrinol. 2021, 12, 780888. [Google Scholar] [CrossRef] [PubMed]
- Cipolletta, D.; Feuerer, M.; Li, A.; Kamei, N.; Lee, J.; Shoelson, S.E.; Benoist, C.; Mathis, D. PPAR-γ Is a Major Driver of the Accumulation and Phenotype of Adipose Tissue Treg Cells. Nature 2012, 486, 549–553. [Google Scholar] [CrossRef]
- Zuo, Z.; Chen, S.; Wu, T.; Zhang, J.; Su, Y.; Chen, Y.; Wang, C. Tributyltin Causes Obesity and Hepatic Steatosis in Male Mice. Environ. Toxicol. 2011, 26, 79–85. [Google Scholar] [CrossRef]
- Hines, E.P.; White, S.S.; Stanko, J.P.; Gibbs-Flournoy, E.A.; Lau, C.; Fenton, S.E. Phenotypic Dichotomy Following Developmental Exposure to Perfluorooctanoic Acid (PFOA) in Female CD-1 Mice: Low Doses Induce Elevated Serum Leptin and Insulin, and Overweight in Mid-Life. Mol. Cell. Endocrinol. 2009, 304, 97–105. [Google Scholar] [CrossRef] [Green Version]
- Rubin, D.B. Estimating the Causal Effects of Smoking. Stat. Med. 2001, 20, 1395–1414. [Google Scholar] [CrossRef] [PubMed]
- Petrakis, D.; Vassilopoulou, L.; Mamoulakis, C.; Psycharakis, C.; Anifantaki, A.; Sifakis, S.; Docea, A.; Tsiaoussis, J.; Makrigiannakis, A.; Tsatsakis, A. Endocrine Disruptors Leading to Obesity and Related Diseases. Int. J. Environ. Res. Public Health 2017, 14, 1282. [Google Scholar] [CrossRef]
- Heindel, J.J.; Saal, F.S.V.; Blumberg, B.; Bovolin, P.; Calamandrei, G.; Ceresini, G.; Cohn, B.A.; Fabbri, E.; Gioiosa, L.; Kassotis, C.; et al. Parma Consensus Statement on Metabolic Disruptors. Environ. Health 2015, 14, 54. [Google Scholar] [CrossRef] [Green Version]
- Tappy, L. Fructose-Containing Caloric Sweeteners as a Cause of Obesity and Metabolic Disorders. J. Exp. Biol. 2018, 221, jeb164202. [Google Scholar] [CrossRef] [Green Version]
- Alemán, J.O.; Henderson, W.A.; Walker, J.M.; Ronning, A.; Jones, D.R.; Walter, P.J.; Daniel, S.G.; Bittinger, K.; Vaughan, R.; MacArthur, R.; et al. Excess Dietary Fructose Does Not Alter Gut Microbiota or Permeability in Humans: A Pilot Randomized Controlled Study. J. Clin. Trans. Sci. 2021, 5, e143. [Google Scholar] [CrossRef]
- Ke, H.; Luan, Y.; Wu, S.; Zhu, Y.; Tong, X. The Role of Mondo Family Transcription Factors in Nutrient-Sensing and Obesity. Front. Endocrinol. 2021, 12, 653972. [Google Scholar] [CrossRef]
- Arden, C.; Tudhope, S.J.; Petrie, J.L.; Al-Oanzi, Z.H.; Cullen, K.S.; Lange, A.J.; Towle, H.C.; Agius, L. Fructose 2,6-Bisphosphate Is Essential for Glucose-Regulated Gene Transcription of Glucose-6-Phosphatase and Other ChREBP Target Genes in Hepatocytes. Biochem. J. 2012, 443, 111–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goran, M.I.; Dumke, K.; Bouret, S.G.; Kayser, B.; Walker, R.W.; Blumberg, B. The Obesogenic Effect of High Fructose Exposure during Early Development. Nat. Rev. Endocrinol. 2013, 9, 494–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Jeong, H.J.; Lumen, B.O.D. Contents and Bioactivities of Lunasin, Bowman−Birk Inhibitor, and Isoflavones in Soybean Seed. J. Agric. Food Chem. 2005, 53, 7686–7690. [Google Scholar] [CrossRef] [PubMed]
- Penza, M.; Montani, C.; Romani, A.; Vignolini, P.; Pampaloni, B.; Tanini, A.; Brandi, M.L.; Alonso-Magdalena, P.; Nadal, A.; Ottobrini, L.; et al. Genistein Affects Adipose Tissue Deposition in a Dose-Dependent and Gender-Specific Manner. Endocrinology 2006, 147, 5740–5751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Newbold, R.R.; Padilla-Banks, E.; Jefferson, W.N.; Heindel, J.J. Effects of Endocrine Disruptors on Obesity. Int. J. Androl. 2008, 31, 201–208. [Google Scholar] [CrossRef]
- Harris, R.M.; Waring, R.H. Diethylstilboestrol—A Long-Term Legacy. Maturitas 2012, 72, 108–112. [Google Scholar] [CrossRef]
- Nunes, H.C.; Scarano, W.R.; Deffune, E.; Felisbino, S.L.; Porreca, I.; Delella, F.K. Bisphenol a and Mesenchymal Stem Cells: Recent Insights. Life Sci. 2018, 206, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Calafat, A.M.; Ye, X.; Wong, L.-Y.; Reidy, J.A.; Needham, L.L. Exposure of the U.S. Population to Bisphenol A and 4- Tertiary -Octylphenol: 2003–2004. Environ. Health Perspect. 2008, 116, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Grant, K.L. Sample Organization Environmental Contributions to Obesity and Type 2 Diabetes. J. Enviromental Immunol. Toxicol. 2013, 1, 80. [Google Scholar] [CrossRef]
- Darbre, P.D. Endocrine Disruptors and Obesity. Curr. Obes. Rep. 2017, 6, 18–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legeay, S.; Faure, S. Is Bisphenol A an Environmental Obesogen? Fundam. Clin. Pharmacol. 2017, 31, 594–609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, W.; Li, M.; Liu, A.; Wu, C.; Li, D.; Deng, Q.; Zhang, B.; Du, J.; Gao, X.; Hong, Y. Bisphenol A and the Risk of Obesity a Systematic Review With Meta-Analysis of the Epidemiological Evidence. Dose-Response 2020, 18, 155932582091694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Rui, M.; Nie, Y.; Lu, G. Influence of Gastrointestinal Tract on Metabolism of Bisphenol A as Determined by in Vitro Simulated System. J. Hazard. Mater. 2018, 355, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, M.H.; Woodward, M.; Bao, W.; Liu, B.; Trasande, L. Urinary Bisphenols and Obesity Prevalence Among U.S. Children and Adolescents. J. Endocr. Soc. 2019, 3, 1715–1726. [Google Scholar] [CrossRef] [PubMed]
- Marques, V.B.; Faria, R.A.; Santos, L.D. Overview of the Pathophysiological Implications of Organotins on the Endocrine System. Front. Endocrinol. 2018, 9, 101. [Google Scholar] [CrossRef] [PubMed]
- Grün, F. Obesogens. Curr. Opin. Endocrinol. Diabetes Obes. 2010, 17, 453–459. [Google Scholar] [CrossRef]
- Hoch, M. Organotin Compounds in the Environment—An Overview. Appl. Geochem. 2001, 16, 719–743. [Google Scholar] [CrossRef]
- Gadd, G.M. Microbial Interactions with Tributyltin Compounds: Detoxification, Accumulation, and Environmental Fate. Sci. Total Environ. 2000, 258, 119–127. [Google Scholar] [CrossRef]
- Chamorro-García, R.; Blumberg, B. Transgenerational Effects of Obesogens and the Obesity Epidemic. Curr. Opin. Pharmacol. 2014, 19, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Rantakokko, M.; Iwarsson, S.; Portegijs, E.; Viljanen, A.; Rantanen, T. Associations Between Environmental Characteristics and Life-Space Mobility in Community-Dwelling Older People. J. Aging Health 2015, 27, 606–621. [Google Scholar] [CrossRef] [PubMed]
- Okoro, H.K.; Fatoki, O.S.; Adekola, F.A.; Ximba, B.J.; Snyman, R.G.; Opeolu, B. Human Exposure, Biomarkers, and Fate of Organotins in the Environment. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2011; Volume 213, pp. 27–54. ISBN 978-1-4419-9859-0. [Google Scholar]
- Kannan, K.; Takahashi, S.; Fujiwara, N.; Mizukawa, H.; Tanabe, S. Organotin Compounds, Including Butyltins and Octyltins, in House Dust from Albany, New York, USA. Arch. Environ. Contam. Toxicol. 2010, 58, 901–907. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yu, Z.; Gao, P.; Yin, D. Multigenerational Effects of Perfluorooctanoic Acid on Lipid Metabolism of Caenorhabditis Elegans and Its Potential Mechanism. Sci. Total Environ. 2020, 703, 134762. [Google Scholar] [CrossRef]
- Bloom, M.S.; Commodore, S.; Ferguson, P.L.; Neelon, B.; Pearce, J.L.; Baumer, A.; Newman, R.B.; Grobman, W.; Tita, A.; Roberts, J.; et al. Association between Gestational PFAS Exposure and Children’s Adiposity in a Diverse Population. Environ. Res. 2022, 203, 111820. [Google Scholar] [CrossRef]
- Giuliani, A.; Zuccarini, M.; Cichelli, A.; Khan, H.; Reale, M. Critical Review on the Presence of Phthalates in Food and Evidence of Their Biological Impact. Int. J. Environ. Res. Public Health 2020, 17, 5655. [Google Scholar] [CrossRef] [PubMed]
- Stahlhut, R.W.; Wijngaarden, E.V.; Dye, T.D.; Cook, S.; Swan, S.H. Concentrations of Urinary Phthalate Metabolites Are Associated with Increased Waist Circumference and Insulin Resistance in Adult U.S. Males. Environ. Health Perspect. 2007, 115, 876–882. [Google Scholar] [CrossRef] [Green Version]
- Hao, C.; Cheng, X.; Xia, H.; Ma, X. The Endocrine Disruptor Mono-(2-Ethylhexyl)Phthalate Promotes Adipocyte Differentiation and Induces Obesity in Mice. Biosci. Rep. 2012, 32, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Berman, Y.E.; Doherty, D.A.; Main, K.M.; Frederiksen, H.; Keelan, J.A.; Newnham, J.P.; Hart, R.J. The Influence of Prenatal Exposure to Phthalates on Subsequent Male Growth and Body Composition in Adolescence. Environ. Res. 2021, 195, 110313. [Google Scholar] [CrossRef]
- Pallotti, F.; Pelloni, M.; Gianfrilli, D.; Lenzi, A.; Lombardo, F.; Paoli, D. Mechanisms of Testicular Disruption from Exposure to Bisphenol A and Phtalates. J. Clin. Med. 2020, 9, 471. [Google Scholar] [CrossRef] [Green Version]
- Mezcua, M.; Martínez-Uroz, M.A.; Gómez-Ramos, M.M.; Gómez, M.J.; Navas, J.M.; Fernández-Alba, A.R. Analysis of Synthetic Endocrine-Disrupting Chemicals in Food: A Review. Talanta 2012, 100, 90–106. [Google Scholar] [CrossRef]
- Guo, W.; Holden, A.; Smith, S.C.; Gephart, R.; Petreas, M.; Park, J.-S. PBDE Levels in Breast Milk Are Decreasing in California. Chemosphere 2016, 150, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Wong, K.H.; Durrani, T.S. Exposures to Endocrine Disrupting Chemicals in Consumer Products—A Guide for Pediatricians. Curr. Probl. Pediatric Adolesc. Health Care 2017, 47, 107–118. [Google Scholar] [CrossRef]
- Vuong, A.M.; Braun, J.M.; Wang, Z.; Yolton, K.; Xie, C.; Sjodin, A.; Webster, G.M.; Lanphear, B.P.; Chen, A. Exposure to Polybrominated Diphenyl Ethers (PBDEs) during Childhood and Adiposity Measures at Age 8 Years. Environ. Int. 2019, 123, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Wen, Q.; Xie, X.; Ren, Q.; Du, Y. Polybrominated Diphenyl Ether Congener 99 (PBDE 99) Promotes Adipocyte Lineage Commitment of C3H10T1/2 Mesenchymal Stem Cells. Chemosphere 2022, 290, 133312. [Google Scholar] [CrossRef] [PubMed]
- Tung, E.W.Y.; Boudreau, A.; Wade, M.G.; Atlas, E. Induction of Adipocyte Differentiation by Polybrominated Diphenyl Ethers (PBDEs) in 3T3-L1 Cells. PLoS ONE 2014, 9, e94583. [Google Scholar] [CrossRef] [Green Version]
- Lv, Q.-X.; Wang, W.; Li, X.-H.; Yu, L.; Zhang, Y.; Tian, Y. Polychlorinated Biphenyls and Polybrominated Biphenyl Ethers in Adipose Tissue and Matched Serum from an E-Waste Recycling Area (Wenling, China). Environ. Pollut. 2015, 199, 219–226. [Google Scholar] [CrossRef]
- Martí-Cid, R.; Llobet, J.M.; Castell, V.; Domingo, J.L. Human Exposure to Polychlorinated Naphthalenes and Polychlorinated Diphenyl Ethers from Foods in Catalonia, Spain: Temporal Trend. Environ. Sci. Technol. 2008, 42, 4195–4201. [Google Scholar] [CrossRef]
- Brown, R.H.; Ng, D.K.; Steele, K.; Schweitzer, M.; Groopman, J.D. Mobilization of Environmental Toxicants Following Bariatric Surgery. Obesity 2019, 27, 1865–1873. [Google Scholar] [CrossRef]
- Valvi, D.; Mendez, M.A.; Martinez, D.; Grimalt, J.O.; Torrent, M.; Sunyer, J.; Vrijheid, M. Prenatal Concentrations of Polychlorinated Biphenyls, DDE, and DDT and Overweight in Children: A Prospective Birth Cohort Study. Environ. Health Perspect. 2012, 120, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Tang-Péronard, J.L.; Heitmann, B.L.; Andersen, H.R.; Steuerwald, U.; Grandjean, P.; Weihe, P.; Jensen, T.K. Association between Prenatal Polychlorinated Biphenyl Exposure and Obesity Development at Ages 5 and 7 y: A Prospective Cohort Study of 656 Children from the Faroe Islands. Am. J. Clin. Nutr. 2014, 99, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Bhattu, M.; Verma, M.; Kathuria, D. Recent Advancements in the Detection of Organophosphate Pesticides: A Review. Anal. Methods 2021, 13, 4390–4428. [Google Scholar] [CrossRef] [PubMed]
- Suratman, S.; Edwards, J.W.; Babina, K. Organophosphate Pesticides Exposure among Farmworkers: Pathways and Risk of Adverse Health Effects. Rev. Environ. Health 2015, 30, 65–79. [Google Scholar] [CrossRef] [PubMed]
- Blanco, J.; Guardia-Escote, L.; Mulero, M.; Basaure, P.; Biosca-Brull, J.; Cabré, M.; Colomina, M.T.; Domingo, J.L.; Sánchez, D.J. Obesogenic Effects of Chlorpyrifos and Its Metabolites during the Differentiation of 3T3-L1 Preadipocytes. Food Chem. Toxicol. 2020, 137, 111171. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.H. Chlorpyrifos and Δ9 Tetrahydrocannabinol Exposure and Effects on Parameters Associated with the Endocannabinoid System and Risk Factors for Obesity. Curr. Res. Toxicol. 2021, 2, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, V.; Deng, X.; Tuli, A.; Goh, K.S. Diazinon—Chemistry and Environmental Fate: A California Perspective. In Reviews of Environmental Contamination and Toxicology; Whitacre, D.M., Ed.; Springer: New York, NY, USA, 2013; Volume 223, pp. 107–140. ISBN 978-1-4614-5576-9. [Google Scholar]
- Smith, A.; Yu, X.; Yin, L. Diazinon Exposure Activated Transcriptional Factors CCAAT-Enhancer-Binding Proteins α (C/EBPα) and Peroxisome Proliferator-Activated Receptor γ (PPARγ) and Induced Adipogenesis in 3T3-L1 Preadipocytes. Pestic. Biochem. Physiol. 2018, 150, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Cano-Sancho, G.; Salmon, A.G.; Merrill, M.A.L. Association between Exposure to p,p′-DDT and Its Metabolite p,p ′-DDE with Obesity: Integrated Systematic Review and Meta-Analysis. Environ. Health Perspect. 2017, 125, 096002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, D.-H.; Porta, M.; Jacobs, D.R.; Vandenberg, L.N. Chlorinated Persistent Organic Pollutants, Obesity, and Type 2 Diabetes. Endocr. Rev. 2014, 35, 557–601. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.K. Mitochondrial Dysfunction and Insulin Resistance: The Contribution of Dioxin-Like Substances. Diabetes Metab. J. 2011, 35, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Kladnicka, I.; Cedikova, M.; Jedlicka, J.; Kohoutova, M.; Muller, L.; Plavinova, I.; Kripnerova, M.; Bludovska, M.; Kuncova, J.; Mullerova, D. Chronic DDE Exposure Modifies Mitochondrial Respiration during Differentiation of Human Adipose-Derived Mesenchymal Stem Cells into Mature Adipocytes. Biomolecules 2021, 11, 1068. [Google Scholar] [CrossRef]
- Ghosh, N.; Roy, S.; Mondal, J.A. On the Behavior of Perfluorinated Persistent Organic Pollutants (POPs) at Environmentally Relevant Aqueous Interfaces: An Interplay of Hydrophobicity and Hydrogen Bonding. Langmuir 2020, 36, 3720–3729. [Google Scholar] [CrossRef]
- Elmore, S.E.; Merrill, M.A.L. Oxidative Phosphorylation Impairment by DDT and DDE. Front. Endocrinol. 2019, 10, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Juan, P. Arrebola y Beatriz González Alzaga—Exposición a contaminantes ambientales por vía alimentaria y repercusiones metabólicas. Nutricion Clinica En Medicina 2016, 10, 164–174. [Google Scholar] [CrossRef]
- Podechard, N.; Fardel, O.; Corolleur, M.; Bernard, M.; Lecureur, V. Inhibition of Human Mesenchymal Stem Cell-Derived Adipogenesis by the Environmental Contaminant Benzo(a)Pyrene. Toxicol. Vitr. 2009, 23, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- González-Casanova, J.E.; Pertuz-Cruz, S.L.; Caicedo-Ortega, N.H.; Rojas-Gomez, D.M. Adipogenesis Regulation and Endocrine Disruptors: Emerging Insights in Obesity. BioMed Res. Int. 2020, 2020, 7453786. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Wang, Y.; Tang, C.; Fang, H.; Yang, D.; Wu, J.; Wang, H.; Chen, Y.; Jiang, Q. Association of Triclosan and Triclocarban in Urine with Obesity Risk in Chinese School Children. Environ. Int. 2021, 157, 106846. [Google Scholar] [CrossRef]
- Ha, N.-Y.; Kim, D.H.; Ryu, J.Y. Relationship between Triclosan Exposure and Thyroid Hormones: The Second Korean National Environmental Health Survey (2012–2014). Ann. Occup. Environ. Med. 2019, 31, e22. [Google Scholar] [CrossRef]
- He, M.; Zeng, X.; Zhang, K.; Kinney, P. Fine Particulate Matter Concentrations in Urban Chinese Cities, 2005–2016: A Systematic Review. Int. J. Environ. Res. Public Health 2017, 14, 191. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.; Agrawal, M. A Global Perspective of Fine Particulate Matter Pollution and Its Health Effects. In Reviews of Environmental Contamination and Toxicology; de Voogt, P., Ed.; Springer International Publishing: Cham, Switzerland, 2017; Volume 244, pp. 5–51. ISBN 978-3-319-66874-1. [Google Scholar]
- Bowe, B.; Gibson, A.K.; Xie, Y.; Yan, Y.; Donkelaar, A.V.; Martin, R.V.; Al-Aly, Z. Ambient Fine Particulate Matter Air Pollution and Risk of Weight Gain and Obesity in United States Veterans: An Observational Cohort Study. Environ. Health Perspect. 2021, 129, 047003. [Google Scholar] [CrossRef]
- Matsuyama, S.; Oki, Y.; Yokoki, Y. Obesity Induced by Monosodium Glutamate in Mice. Natl. Inst. Anim. Health. Q 1973, 13, 91–101. [Google Scholar]
- Sun, Z.; Yang, X.; Liu, Q.S.; Li, C.; Zhou, Q.; Fiedler, H.; Liao, C.; Zhang, J.; Jiang, G. Butylated Hydroxyanisole Isomers Induce Distinct Adipogenesis in 3T3-L1 Cells. J. Hazard. Mater. 2019, 379, 120794. [Google Scholar] [CrossRef]
- Sun, Z.; Tang, Z.; Yang, X.; Liu, Q.S.; Liang, Y.; Fiedler, H.; Zhang, J.; Zhou, Q.; Jiang, G. Perturbation of 3-Tert-Butyl-4-Hydroxyanisole in Adipogenesis of Male Mice with Normal and High Fat Diets. Sci. Total Environ. 2020, 703, 135608. [Google Scholar] [CrossRef] [PubMed]
- Shannon, M.; Green, B.; Willars, G.; Wilson, J.; Matthews, N.; Lamb, J.; Gillespie, A.; Connolly, L. The Endocrine Disrupting Potential of Monosodium Glutamate (MSG) on Secretion of the Glucagon-like Peptide-1 (GLP-1) Gut Hormone and GLP-1 Receptor Interaction. Toxicol. Lett. 2017, 265, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, M.; Wilson, J.; Xie, Y.; Connolly, L. In Vitro Bioassay Investigations of Suspected Obesogen Monosodium Glutamate at the Level of Nuclear Receptor Binding and Steroidogenesis. Toxicol. Lett. 2019, 301, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matysková, R.; Maletínská, L.; Maixnerová, J.; Pirník, Z.; Kiss, A.; Zelezná, B. Comparison of the Obesity Phenotypes Related to Monosodium Glutamate Effect on Arcuate Nucleus and/or the High Fat Diet Feeding in C57BL/6 and NMRI Mice. Physiol. Res. 2008, 57, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Maletínská, L.; Toma, R.S.; Pirnik, Z.; Kiss, A.; Slaninová, J.; Haluzík, M.; Zelezná, B. Effect of Cholecystokinin on Feeding Is Attenuated in Monosodium Glutamate Obese Mice. Regul. Pept. 2006, 136, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; O-Sullivan, I.; Katyal, S.; Unterman, T.; Tobacman, J.K. Exposure to the Common Food Additive Carrageenan Leads to Glucose Intolerance, Insulin Resistance and Inhibition of Insulin Signalling in HepG2 Cells and C57BL/6J Mice. Diabetologia 2012, 55, 194–203. [Google Scholar] [CrossRef]
- Zhang, H.; Cao, W.; Liu, F.; Gao, Y.; Chang, Y.; Xue, C.; Tang, Q. The Mechanism Exploration of the Non-colonic Toxicity and Obesity Inhibition of Food-grade Κ-carrageenan by Transcriptome. Food Sci. Nutr. 2021, 9, 6232–6244. [Google Scholar] [CrossRef]
- Mangge, H.; Ciardi, C.; Becker, K.; Strasser, B.; Fuchs, D.; Gostner, J.M. Influence of Antioxidants on Leptin Metabolism and Its Role in the Pathogenesis of Obesity. In Obesity and Lipotoxicity; Engin, A.B., Engin, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 399–413. ISBN 978-3-319-48380-1. [Google Scholar]
- Mangge, H.; Summers, K.; Almer, G.; Prassl, R.; Weghuber, D.; Schnedl, W.; Fuchs, D. Antioxidant Food Supplements and Obesity-Related Inflammation. Curr. Med. Chem. 2013, 20, 2330–2337. [Google Scholar] [CrossRef]
- Shao, W.; Xu, J.; Xu, C.; Weng, Z.; Liu, Q.; Zhang, X.; Liang, J.; Li, W.; Zhang, Y.; Jiang, Z.; et al. Early-Life Perfluorooctanoic Acid Exposure Induces Obesity in Male Offspring and the Intervention Role of Chlorogenic Acid. Environ. Pollut. 2021, 272, 115974. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, W.; Duan, X.; Duan, Y.; Sun, H. Promoting Differentiation and Lipid Metabolism Are the Primary Effects for DINP Exposure on 3T3-L1 Preadipocytes. Environ. Pollut. 2019, 255, 113154. [Google Scholar] [CrossRef]
- Hoppe, A.A.; Carey, G.B. Polybrominated Diphenyl Ethers as Endocrine Disruptors of Adipocyte Metabolism. Obesity 2007, 15, 2942–2950. [Google Scholar] [CrossRef] [PubMed]
- Helaleh, M.; Diboun, I.; Al-Tamimi, N.; Al-Sulaiti, H.; Al-Emadi, M.; Madani, A.; Mazloum, N.A.; Latiff, A.; Elrayess, M.A. Association of Polybrominated Diphenyl Ethers in Two Fat Compartments with Increased Risk of Insulin Resistance in Obese Individuals. Chemosphere 2018, 209, 268–276. [Google Scholar] [CrossRef] [PubMed]
- Jackson, E.; Shoemaker, R.; Larian, N.; Cassis, L. Adipose Tissue as a Site of Toxin Accumulation. Compr. Physiol. 2017, 7, 1085–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Y.; Gu, P.; Wang, W.; Cao, L.; Zhang, L.; Li, J.; Mu, W.; Wang, H. Benzo[a]Pyrene Stimulates MiR-650 Expression to Promote the Pathogenesis of Fatty Liver Disease and Hepatocellular Carcinoma via SOCS3/JAK/STAT3 Cascades. J. Mol. Cell Biol. 2021, 13, 556–564. [Google Scholar] [CrossRef] [PubMed]
- Allard, J.; Guillou, D.L.; Begriche, K.; Fromenty, B. Drug-Induced Liver Injury in Obesity and Nonalcoholic Fatty Liver Disease. In Advances in Pharmacology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 75–107. ISBN 978-0-12-816759-5. [Google Scholar]
- Qiao, L.; Chu, K.; Wattez, J.-S.; Lee, S.; Gao, H.; Feng, G.-S.; Hay, W.W.; Shao, J. High-Fat Feeding Reprograms Maternal Energy Metabolism and Induces Long-Term Postpartum Obesity in Mice. Int. J. Obes. 2019, 43, 1747–1758. [Google Scholar] [CrossRef]
- Li, X.; Pham, H.T.; Janesick, A.S.; Blumberg, B. Triflumizole Is an Obesogen in Mice That Acts through Peroxisome Proliferator Activated Receptor Gamma (PPAR γ). Environ. Health Perspect. 2012, 120, 1720–1726. [Google Scholar] [CrossRef] [Green Version]
- Regnier, S.M.; Kirkley, A.G.; Ye, H.; El-Hashani, E.; Zhang, X.; Neel, B.A.; Kamau, W.; Thomas, C.C.; Williams, A.K.; Hayes, E.T.; et al. Dietary Exposure to the Endocrine Disruptor Tolylfluanid Promotes Global Metabolic Dysfunction in Male Mice. Endocrinology 2015, 156, 896–910. [Google Scholar] [CrossRef]
- Benbrook, C.M. Impacts of Genetically Engineered Crops on Pesticide Use in the U.S.—The First Sixteen Years. Environ. Sci. Eur. 2012, 24, 24. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, F.; Nejati, R.; Sayadi, M.; Nematollahi, A. Diazinon Reduction in Apple Juice Using Probiotic Bacteria during Fermentation and Storage under Refrigeration. Environ. Sci. Pollut. Res. 2021, 28, 61213–61224. [Google Scholar] [CrossRef]
Obesogens | Obesogenic Effect | Health Impact | |||
---|---|---|---|---|---|
Naturally occurring obesogens | Fructose | Different fructose metabolism and high lipogenic potential = excessive fat storage in the liver, weight gain of visceral adipose tissue. In fetal, neonatal and infant development, high exposure to fructose as an obesogen can affect lifelong neuroendocrine function, appetite control, eating behavior, adipogenesis, fat distribution [45]. | obesity, insulin resistance, metabolic and cardiovascular diseases | ||
Genistein | At high (pharmacological) doses it inhibits adipose tissue deposition, but at low doses (normal concentration in soy) it induces adipose tissue deposition, especially in men. The genistein regulate estrogen and progesterone receptors [47]. | Obesity, mild peripheral insulin resistance | |||
Xenobiotics | Contaminants | Pharmaceuticals | Diethylstilbesterol | Endocrine disruptor with abnormal programming of various differentiating estrogen-target tissues [49]. | Potential obesogen |
Estradiol | Estradiol in combination with a diet rich in fats and sugars causes variability in estrogen-induced gene expression in the dorsal raphe [7]. | Potential obesogen | |||
Rosiglitazone | Rosiglitazone reduces hyperlipidemia and hyperglycemia, improves insulin sensitivity and decreases serum lipids, but does increase adipogenesis and lipid accumulation in tissues including liver triglyceride accumulation and hepatic steatosis [6]. | Potential obesogen | |||
Industrial chemicals | Bisphenol A (BPA) | Endocrine disruptor, it is able to affect regulation of leptin and insulin secretion (PPARy agonist and antagonist) [50]. | Supports adipogenesis, dysregulation of adipocytes and glucose, inflammation of adipose tissue → obesity | ||
Organotins (OTs) | OTs can damage the endocrine glands, interfering with neurohumoral control of endocrine function involves changes in the mechanism of adipose tissue [58]. | Predisposition to obesity, metabolic disorders, and effects on reproductive organs | |||
Perfluorooctanoic Acid (PFOA) | PFOA can cause aberrant lipid metabolism in male offspring, insulin resistance, non-alcoholic fatty liver disease, with influencing PPARy signaling pathway [66,115]. | Obesity, hepatic inflammation, disorders of lipid metabolism, disruption of gut barrier integrity in male offspring | |||
Phthalates (di-(2-ethylhexyl) phthalate (DEHP), di-butyl phthalate (DBP), benzylbutyl phthalate (BBP) and possibly also di-isononyl phthalate (DINP), di-isodecyl phthalate (DIDP) and di(n-octyl)- phthalate (DNOP) | Phthalates can cause insulin resistance, increase endoplasmic reticulum expression, disruption of glucocorticoid signaling in mesangial cells and preadipocytes [70]. | Predisposition to obesity and metabolic diseases can influence metabolic regulation by disrupting the homeostasis of thyroid hormones | |||
Polybrominated Diphenyl Ethers (PBDEs) | PBDEs are insulin disruptors, isoproterenol stimulates the metabolism of adipocytes [116,117,118]. | Predisposition to obesity, insulin resistance in obese individuals | |||
Polychlorinated Biphenyl Ethers (PCBs) | PCBs are lipophilic toxicants into adipocytes. In particular, the degree of halogenation or the number and position of chlorine substituents on PCBs affects their uptake and accumulation in adipocytes [119]. | Predisposition to obesity, metabolic disorders (disruption of adipose tissue function) | |||
Organophosphate pesticides | Chlorpyrifos | Chlorpyrifos can cause an increasing number of differentiate 3T3-L1 adipocytes and the capacity for storage of lipid droplets due to up-regulation of transcription factors CCAAT/enhancer binding protein α (C/EBP α) and PPARγ, which is accompanied by significantly higher expression of fatty acid-binding protein 4 (FABP4) adipokin [86]. | Metabolic disorders, obesity | ||
Diazinon | Via inhibition of acetylcholinesterase, diazinon elicits neurotoxicity, significantly induces protein expression of transcription factors CCAAT-enhancer-binding proteins α (C/EBP α) and PPARγ as well as their downstream proteins, fatty-acid synthase (FASN), acetyl CoA carboxylase, lipoprotein lipase, adiponectin, perilipin, and fatty-acid binding protein 4 [89]. | Obesity, neurotoxicity | |||
Organochlorinated pesticides | Dichlordifenyltrichloretan (DDT), Dichlorenthylendichlordiphenyldichlorethylen (DDE) | DDT, DDE can cause disruption of endocrine control, glucose intolerance, dyslipidemia, and hyperinsulinemia [120]. | Acute exposure causes harm to the central nervous system, while chronic exposure can result in liver cancer, obesity, harm for the fetus and fertility and increased risk of Type 2 diabetes | ||
Other environmental pollutants | Benzo[a]pyrene | It can be originator cytotoxicity and expression of inflammation markers [121]. | Predisposition to obesity, non-alcoholic fatty acid disease, asthma, hepatic steatosis | ||
Fine Particulate Matter (PM2.5) | PM2.5 may cause adipose tissue inflammation [103]. | Risk of obesity, predominantly in the male population | |||
Triclosan | Animal studies show a correlation between high levels of triclosan and estrogens, androgens and thyroid hormones [100]. | Risk of obesity | |||
Additives | Monosodium glutamate | It induces the secretion of glucagon-like peptide-1, a hormone controlling appetite and satiety, and/or antagonization of the androgen receptor, act as a neurotoxic agent on hypothalamic arcuate nucleus and lead to obesity [107,108]. | Obesity | ||
Carrageenan | Is able to affect glucose tolerance, increase insulin resistance and inhibit insulin signaling in in vivo mouse liver cells and human HepG2 cells, promote significant changes in gene expression related to metabolism and lowering of adipokine genes, as well as lipogenesis, absorption, and transport of lipids. Adipolysis and oxidation increase [111,112]. | Predisposition to obesity | |||
Antioxidants | Consuming antioxidant additives might lead to lower leptin secretion and contribute to the obesogenic environment [113,114]. | Predisposition to obesity |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kladnicka, I.; Bludovska, M.; Plavinova, I.; Muller, L.; Mullerova, D. Obesogens in Foods. Biomolecules 2022, 12, 680. https://doi.org/10.3390/biom12050680
Kladnicka I, Bludovska M, Plavinova I, Muller L, Mullerova D. Obesogens in Foods. Biomolecules. 2022; 12(5):680. https://doi.org/10.3390/biom12050680
Chicago/Turabian StyleKladnicka, Iva, Monika Bludovska, Iveta Plavinova, Ludek Muller, and Dana Mullerova. 2022. "Obesogens in Foods" Biomolecules 12, no. 5: 680. https://doi.org/10.3390/biom12050680
APA StyleKladnicka, I., Bludovska, M., Plavinova, I., Muller, L., & Mullerova, D. (2022). Obesogens in Foods. Biomolecules, 12(5), 680. https://doi.org/10.3390/biom12050680