Dietary Phytoestrogen Intake and Cognitive Status in Southern Italian Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Data Collection
2.3. Dietary Assessment
2.4. Estimation of Dietary Phytoestrogen Intake
2.5. Cognitive Status Evaluation
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Christensen, K.; Doblhammer, G.; Rau, R.; Vaupel, J.W. Ageing populations: The challenges ahead. Lancet 2009, 374, 1196–1208. [Google Scholar] [CrossRef] [Green Version]
- GBD. 2017 Disease and Injury Incidence and Prevalence Collaborators Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [Green Version]
- GBD. Collaborators Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [Google Scholar] [CrossRef]
- Murman, D.L. The Impact of Age on Cognition. Semin. Hearing 2015, 36, 111–121. [Google Scholar] [CrossRef] [PubMed]
- GBD. 2019 Risk Factors Collaborators Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1223–1249. [Google Scholar] [CrossRef]
- Grosso, G. Nutritional Psychiatry: How Diet Affects Brain through Gut Microbiota. Nutrients 2021, 13, 1282. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Laudisio, D.; Frias-Toral, E.; Barrea, L.; Muscogiuri, G.; Savastano, S.; Colao, A. Anti-Inflammatory Nutrients and Obesity-Associated Metabolic-Inflammation: State of the Art and Future Direction. Nutrients 2022, 14, 1137. [Google Scholar] [CrossRef]
- Godos, J.; Currenti, W.; Angelino, D.; Mena, P.; Castellano, S.; Caraci, F.; Galvano, F.; Del Rio, D.; Ferri, R.; Grosso, G. Diet and mental health: Review of the recent updates on molecular mechanisms. Antioxidants 2020, 9, 346. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G. Nutrition and aging: Is there a link to cognitive health? Int. J. Food Sci. Nutr. 2020, 71, 265–266. [Google Scholar] [CrossRef] [Green Version]
- Rajaram, S.; Jones, J.; Lee, G.J. Plant-Based Dietary Patterns, Plant Foods, and Age-Related Cognitive Decline. Adv. Nutr. 2019, 10, S422–S436. [Google Scholar] [CrossRef] [Green Version]
- Caruso, G.; Torrisi, S.A.; Mogavero, M.P.; Currenti, W.; Castellano, S.; Godos, J.; Ferri, R.; Galvano, F.; Leggio, G.M.; Grosso, G.; et al. Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. Pharmacol. Ther. 2022, 232, 108013. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Grosso, G. Dietary antioxidants and brain health: Focus on cognitive and affective disorders. Antioxidants 2021, 10, 1659. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G. Effects of Polyphenol-Rich Foods on Human Health. Nutrients 2018, 10, 1089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tham, D.M.; Gardner, C.D.; Haskell, W.L. Clinical review 97: Potential health benefits of dietary phytoestrogens: A review of the clinical, epidemiological, and mechanistic evidence. J. Clin. Endocrinol. Metab. 1998, 83, 2223–2235. [Google Scholar] [CrossRef] [Green Version]
- Rietjens, I.M.C.M.; Louisse, J.; Beekmann, K. The potential health effects of dietary phytoestrogens. Br. J. Pharmacol. 2017, 174, 1263–1280. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Godos, J.; Lamuela-Raventos, R.; Ray, S.; Micek, A.; Pajak, A.; Sciacca, S.; D’Orazio, N.; Del Rio, D.; Galvano, F. A comprehensive meta-analysis on dietary flavonoid and lignan intake and cancer risk: Level of evidence and limitations. Mol. Nutr. Food Res. 2017, 61, 930. [Google Scholar] [CrossRef]
- Micek, A.; Godos, J.; Brzostek, T.; Gniadek, A.; Favari, C.; Mena, P.; Libra, M.; Del Rio, D.; Galvano, F.; Grosso, G. Dietary phytoestrogens and biomarkers of their intake in relation to cancer survival and recurrence: A comprehensive systematic review with meta-analysis. Nutr. Rev. 2021, 79, 42–65. [Google Scholar] [CrossRef]
- Grosso, G.; Micek, A.; Godos, J.; Pajak, A.; Sciacca, S.; Galvano, F.; Giovannucci, E.L. Dietary Flavonoid and Lignan Intake and Mortality in Prospective Cohort Studies: Systematic Review and Dose-Response Meta-Analysis. Am. J. Epidemiol. 2017, 185, 1304–1316. [Google Scholar] [CrossRef]
- Pan, M.; Han, H.; Zhong, C.; Geng, Q. Effects of genistein and daidzein on hippocampus neuronal cell proliferation and BDNF expression in H19-7 neural cell line. J. Nutr. Health Aging 2012, 16, 389–394. [Google Scholar] [CrossRef]
- Çalışkan, G.; Raza, S.A.; Demiray, Y.E.; Kul, E.; Sandhu, K.V.; Stork, O. Depletion of dietary phytoestrogens reduces hippocampal plasticity and contextual fear memory stability in adult male mouse. Nutr. Neurosci. 2021, 24, 951–962. [Google Scholar] [CrossRef]
- Subedi, L.; Ji, E.; Shin, D.; Jin, J.; Yeo, J.H.; Kim, S.Y. Equol, a dietary daidzein gut metabolite attenuates microglial activation and potentiates neuroprotection in vitro. Nutrients 2017, 9, 207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neu, P.; Schlattmann, P.; Schilling, A.; Hartmann, A. Cerebrovascular reactivity in major depression: A pilot study. Psychosom. Med. 2004, 66, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Xia, N.; Förstermann, U.; Li, H. Resveratrol and endothelial nitric oxide. Molecules 2014, 19, 16102–16121. [Google Scholar] [CrossRef]
- Nakamoto, M.; Otsuka, R.; Nishita, Y.; Tange, C.; Tomida, M.; Kato, Y.; Imai, T.; Sakai, T.; Ando, F.; Shimokata, H. Soy food and isoflavone intake reduces the risk of cognitive impairment in elderly Japanese women. Eur. J. Clin. Nutr. 2018, 72, 1458–1462. [Google Scholar] [CrossRef]
- Talaei, M.; Feng, L.; Yuan, J.-M.; Pan, A.; Koh, W.-P. Dairy, soy, and calcium consumption and risk of cognitive impairment: The Singapore Chinese Health Study. Eur. J. Nutr. 2020, 59, 1541–1552. [Google Scholar] [CrossRef] [PubMed]
- Kreijkamp-Kaspers, S.; Kok, L.; Grobbee, D.E.; de Haan, E.H.F.; Aleman, A.; van der Schouw, Y.T. Dietary phytoestrogen intake and cognitive function in older women. J. Gerontol. A Biol. Sci. Med. Sci. 2007, 62, 556–562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwerdt, J.; Patterson, A.D.; Sliwinski, M.J. Gender Differences in Phytoestrogens and the Relationship with Speed of Processing in Older Adults: A Cross-Sectional Analysis of NHANES, 1999–2002. Nutrients 2019, 11, 1780. [Google Scholar] [CrossRef] [Green Version]
- Grosso, G.; Marventano, S.; D’Urso, M.; Mistretta, A.; Galvano, F. The Mediterranean healthy eating, ageing, and lifestyle (MEAL) study: Rationale and study design. Int. J. Food Sci. Nutr. 2017, 68, 577–586. [Google Scholar] [CrossRef]
- Mistretta, A.; Marventano, S.; Platania, A.; Godos, J.; Galvano, F.; Grosso, G. Metabolic profile of the Mediterranean healthy Eating, Lifestyle and Aging (MEAL) study cohort. Med. J. Nutrition Metab. 2017, 10, 131–140. [Google Scholar] [CrossRef]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Buscemi, S.; Rosafio, G.; Vasto, S.; Massenti, F.M.; Grosso, G.; Galvano, F.; Rini, N.; Barile, A.M.; Maniaci, V.; Cosentino, L.; et al. Validation of a food frequency questionnaire for use in Italian adults living in Sicily. Int. J. Food Sci. Nutr. 2015, 66, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Marventano, S.; Mistretta, A.; Platania, A.; Galvano, F.; Grosso, G. Reliability and relative validity of a food frequency questionnaire for Italian adults living in Sicily, Southern Italy. Int. J. Food Sci. Nutr. 2016, 67, 857–864. [Google Scholar] [CrossRef] [PubMed]
- Castiglione, D.; Platania, A.; Conti, A.; Falla, M.; D’Urso, M.; Marranzano, M. Dietary micronutrient and mineral intake in the mediterranean healthy eating, ageing, and lifestyle (MEAL) study. Antioxidants 2018, 7, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marventano, S.; Godos, J.; Platania, A.; Galvano, F.; Mistretta, A.; Grosso, G. Mediterranean diet adherence in the Mediterranean healthy eating, aging and lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2018, 69, 100–107. [Google Scholar] [CrossRef]
- Sofi, F.; Dinu, M.; Pagliai, G.; Marcucci, R.; Casini, A. Validation of a literature-based adherence score to Mediterranean diet: The MEDI-LITE score. Int. J. Food Sci. Nutr. 2017, 68, 757–762. [Google Scholar] [CrossRef]
- Godos, J.; Marventano, S.; Mistretta, A.; Galvano, F.; Grosso, G. Dietary sources of polyphenols in the Mediterranean healthy Eating, Aging and Lifestyle (MEAL) study cohort. Int. J. Food Sci. Nutr. 2017, 68, 750–756. [Google Scholar] [CrossRef]
- Neveu, V.; Perez-Jiménez, J.; Vos, F.; Crespy, V.; du Chaffaut, L.; Mennen, L.; Knox, C.; Eisner, R.; Cruz, J.; Wishart, D.; et al. Phenol-Explorer: An online comprehensive database on polyphenol contents in foods. Database 2010, 2010, bap024. [Google Scholar] [CrossRef]
- Godos, J.; Rapisarda, G.; Marventano, S.; Galvano, F.; Mistretta, A.; Grosso, G. Association between polyphenol intake and adherence to the Mediterranean diet in Sicily, southern Italy. NFS J. 2017, 8, 1–7. [Google Scholar] [CrossRef]
- Pfeiffer, E. A short portable mental status questionnaire for the assessment of organic brain deficit in elderly patients. J. Am. Geriatr. Soc. 1975, 23, 433–441. [Google Scholar] [CrossRef]
- Erkinjuntti, T.; Sulkava, R.; Wikström, J.; Autio, L. Short Portable Mental Status Questionnaire as a screening test for dementia and delirium among the elderly. J. Am. Geriatr. Soc. 1987, 35, 412–416. [Google Scholar] [CrossRef]
- Pilotto, A.; Ferrucci, L. Verso una definizione clinica della fragilità: Utilità dell’approccio multidimensionale. G. Gerontol. 2011, 59, 125–129. [Google Scholar]
- Franco, O.H.; Burger, H.; Lebrun, C.E.I.; Peeters, P.H.M.; Lamberts, S.W.J.; Grobbee, D.E.; Van Der Schouw, Y.T. Higher dietary intake of lignans is associated with better cognitive performance in postmenopausal women. J. Nutr. 2005, 135, 1190–1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwerdt, J.; Valdés, E.G.; Chanti-Ketterl, M.; Small, B.J.; Edwards, J.D. The relationship between phytoestrogens and speed of processing. Menopause 2016, 23, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.-H.; Luetters, C.; Buckwalter, G.J.; Seeman, T.E.; Gold, E.B.; Sternfeld, B.; Greendale, G.A. Dietary genistein intake and cognitive performance in a multiethnic cohort of midlife women. Menopause 2006, 13, 621–630. [Google Scholar] [CrossRef] [PubMed]
- Mena, P.; Del Rio, D. Gold standards for realistic (poly)phenol research. J. Agric. Food Chem. 2018, 66, 8221–8223. [Google Scholar] [CrossRef]
- Greendale, G.A.; Huang, M.-H.; Leung, K.; Crawford, S.L.; Gold, E.B.; Wight, R.; Waetjen, E.; Karlamangla, A.S. Dietary phytoestrogen intakes and cognitive function during the menopausal transition: Results from the Study of Women’s Health Across the Nation Phytoestrogen Study. Menopause 2012, 19, 894–903. [Google Scholar] [CrossRef] [Green Version]
- Igase, M.; Igase, K.; Tabara, Y.; Ohyagi, Y.; Kohara, K. Cross-sectional study of equol producer status and cognitive impairment in older adults. Geriatr. Gerontol. Int. 2017, 17, 2103–2108. [Google Scholar] [CrossRef]
- Caruso, G.; Fresta, C.G.; Grasso, M.; Santangelo, R.; Lazzarino, G.; Lunte, S.M.; Caraci, F. Inflammation as the common biological link between depression and cardiovascular diseases: Can carnosine exert a protective role? Curr. Med. Chem. 2020, 27, 1782–1800. [Google Scholar] [CrossRef]
- Caruso, G.; Spampinato, S.F.; Cardaci, V.; Caraci, F.; Sortino, M.A.; Merlo, S. β-amyloid and Oxidative Stress: Perspectives in Drug Development. Curr. Pharm. Des. 2019, 25, 4771–4781. [Google Scholar] [CrossRef]
- Lu, Y.; An, Y.; Lv, C.; Ma, W.; Xi, Y.; Xiao, R. Dietary soybean isoflavones in Alzheimer’s disease prevention. Asia Pac. J. Clin. Nutr. 2018, 27, 946–954. [Google Scholar] [CrossRef]
- Soni, M.; Rahardjo, T.B.W.; Soekardi, R.; Sulistyowati, Y.; Lestariningsih; Yesufu-Udechuku, A.; Irsan, A.; Hogervorst, E. Phytoestrogens and cognitive function: A review. Maturitas 2014, 77, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Sullivan, J.C.; Schreihofer, D.A. Dietary genistein and equol (4′, 7 isoflavandiol) reduce oxidative stress and protect rats against focal cerebral ischemia. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010, 299, R871–R877. [Google Scholar] [CrossRef] [PubMed]
- Mas-Bargues, C.; Borrás, C.; Viña, J. Genistein, a tool for geroscience. Mech. Ageing Dev. 2022, 204, 111665. [Google Scholar] [CrossRef]
- Ahmed, T.; Javed, S.; Tariq, A.; Budzyńska, B.; D’Onofrio, G.; Daglia, M.; Nabavi, S.F.; Nabavi, S.M. Daidzein and its effects on brain. Curr. Med. Chem. 2017, 24, 365–375. [Google Scholar] [CrossRef]
- Sekikawa, A.; Ihara, M.; Lopez, O.; Kakuta, C.; Lopresti, B.; Higashiyama, A.; Aizenstein, H.; Chang, Y.-F.; Mathis, C.; Miyamoto, Y.; et al. Effect of S-equol and Soy Isoflavones on Heart and Brain. Curr. Cardiol. Rev. 2019, 15, 114–135. [Google Scholar] [CrossRef]
- An, J.; Chen, B.; Kang, X.; Zhang, R.; Guo, Y.; Zhao, J.; Yang, H. Neuroprotective effects of natural compounds on LPS-induced inflammatory responses in microglia. Am. J. Transl. Res. 2020, 12, 2353–2378. [Google Scholar]
- Yu, J.; Kwon, H.; Cho, E.; Jeon, J.; Kang, R.H.; Youn, K.; Jun, M.; Lee, Y.C.; Ryu, J.H.; Kim, D.H. The effects of pinoresinol on cholinergic dysfunction-induced memory impairments and synaptic plasticity in mice. Food Chem. Toxicol. 2019, 125, 376–382. [Google Scholar] [CrossRef]
- Zálešák, F.; Bon, D.J.-Y.D.; Pospíšil, J. Lignans and Neolignans: Plant secondary metabolites as a reservoir of biologically active substances. Pharmacol. Res. 2019, 146, 104284. [Google Scholar] [CrossRef]
- Keinan-Boker, L.; Peeters, P.H.M.; Mulligan, A.A.; Navarro, C.; Slimani, N.; Mattisson, I.; Lundin, E.; McTaggart, A.; Allen, N.E.; Overvad, K.; et al. Soy product consumption in 10 European countries: The European Prospective Investigation into Cancer and Nutrition (EPIC) study. Public Health Nutr. 2002, 5, 1217–1226. [Google Scholar] [CrossRef] [Green Version]
- Ismail, I.; Hwang, Y.-H.; Joo, S.-T. Meat analog as future food: A review. J. Anim. Sci. Technol. 2020, 62, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Hematdar, Z.; Ghasemifard, N.; Phishdad, G.; Faghih, S. Substitution of red meat with soybean but not non- soy legumes improves inflammation in patients with type 2 diabetes; a randomized clinical trial. J. Diabetes Metab. Disord. 2018, 17, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Salomé, M.; Huneau, J.-F.; Le Baron, C.; Kesse-Guyot, E.; Fouillet, H.; Mariotti, F. Substituting Meat or Dairy Products with Plant-Based Substitutes Has Small and Heterogeneous Effects on Diet Quality and Nutrient Security: A Simulation Study in French Adults (INCA3). J. Nutr. 2021, 151, 2435–2445. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Sievenpiper, J.L.; Williamson, P.; Kiel, J.; Erdman, J.W. Perspective: Soy-Based Meat and Dairy Alternatives, Despite Classification as Ultra-Processed Foods, Deliver High-Quality Nutrition on Par With Unprocessed or Minimally Processed Animal-Based Counterparts. Adv. Nutr. 2022, nmac026. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Baroni, L. Soy, soy foods and their role in vegetarian diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elizabeth, L.; Machado, P.; Zinöcker, M.; Baker, P.; Lawrence, M. Ultra-Processed Foods and Health Outcomes: A Narrative Review. Nutrients 2020, 12, 1955. [Google Scholar] [CrossRef]
- Martini, D.; Godos, J.; Bonaccio, M.; Vitaglione, P.; Grosso, G. Ultra-Processed Foods and Nutritional Dietary Profile: A Meta-Analysis of Nationally Representative Samples. Nutrients 2021, 13, 3390. [Google Scholar] [CrossRef]
- Medina-Reyes, E.I.; Rodríguez-Ibarra, C.; Déciga-Alcaraz, A.; Díaz-Urbina, D.; Chirino, Y.I.; Pedraza-Chaverri, J. Food additives containing nanoparticles induce gastrotoxicity, hepatotoxicity and alterations in animal behavior: The unknown role of oxidative stress. Food Chem. Toxicol. 2020, 146, 111814. [Google Scholar] [CrossRef]
- Pagliai, G.; Dinu, M.; Madarena, M.P.; Bonaccio, M.; Iacoviello, L.; Sofi, F. Consumption of ultra-processed foods and health status: A systematic review and meta-analysis. Br. J. Nutr. 2021, 125, 308–318. [Google Scholar] [CrossRef]
- Suksatan, W.; Moradi, S.; Naeini, F.; Bagheri, R.; Mohammadi, H.; Talebi, S.; Mehrabani, S.; Hojjati Kermani, M.A.; Suzuki, K. Ultra-Processed Food Consumption and Adult Mortality Risk: A Systematic Review and Dose-Response Meta-Analysis of 207,291 Participants. Nutrients 2021, 14, 174. [Google Scholar] [CrossRef]
Phytoestrogen Intake | ||||
---|---|---|---|---|
T1, n = 270 (Median = 1.0 mg/d) | T2, n = 327 (Median = 2.3 mg/d) | T3, n = 286 (Median = 6.2 mg/d) | p-Value | |
Age (years), mean (SD) | 66.2 (11.1) | 64.9 (9.4) | 63.8 (7.9) | 0.011 |
Sex, n (%) | 0.008 | |||
Male | 110 (40.7) | 163 (49.8) | 109 (38.1) | |
Female | 160 (59.3) | 164 (50.2) | 177 (61.9) | |
Weight status, n (%) | 0.067 | |||
Normal | 111 (42.4) | 103 (33.1) | 86 (33.3) | |
Overweight | 104 (39.7) | 130 (41.8) | 105 (40.7) | |
Obese | 47 (17.9) | 78 (25.1) | 67 (26.0) | |
Educational level, n (%) | 0.132 | |||
Low | 125 (46.3) | 174 (53.2) | 152 (53.1) | |
Medium | 104 (38.5) | 95 (29.1) | 86 (30.1) | |
High | 41 (15.2) | 58 (17.7) | 48 (16.8) | |
Smoking status, n (%) | 0.042 | |||
Non-smoker | 156 (57.8) | 175 (53.5) | 166 (58.0) | |
Ex-smoker | 55 (20.4) | 62 (19.0) | 70 (24.5) | |
Current smoker | 59 (21.9) | 90 (27.5) | 50 (17.5) | |
Physical activity, n (%) | 0.198 | |||
Low | 63 (27.0) | 67 (24.0) | 66 (27.8) | |
Medium | 120 (51.5) | 130 (46.6) | 120 (50.6) | |
High | 50 (21.5) | 82 (29.4) | 51 (21.5) | |
Alcohol intake, n (%) | <0.001 | |||
No | 57 (21.1) | 77 (23.5) | 56 (19.6) | |
Moderate | 162 (60.0) | 207 (63.3) | 146 (51.0) | |
Regular | 51 (18.9) | 43 (13.1) | 84 (29.4) | |
Mediterranean diet adherence, n (%) | <0.001 | |||
Low | 255 (94.4) | 264 (80.7) | 230 (80.4) | |
High | 15 (5.6) | 63 (19.3) | 56 (19.6) | |
Health status, n (%) | ||||
Hypertension | 205 (75.9) | 248 (75.8) | 207 (72.4) | 0.533 |
Cardiovascular disease | 127 (47.0) | 138 (42.4) | 141 (49.3) | 0.195 |
Cancer | 34 (12.6) | 23 (7.0) | 17 (5.9) | 0.01 |
Total energy intake (kcal/d), mean (SD) | 1855.1 (543.5) | 2042.9 (558.4) | 2234.8 (780.3) | <0.001 |
Total Population | Cognitively-Healthy | Cognitively- Impaired | p-Value | |
---|---|---|---|---|
Mean (SD) | ||||
Phytoestrogens (mg/day) | 5.47 (10.72) | 5.51 (10.63) | 5.05 (11.68) | 0.709 |
Isoflavones (mg/day) | 2.61 (10.18) | 2.60 (10.14) | 2.67 (10.63) | 0.953 |
Daidzein (mg/day) | 0.09 (0.22) | 0.09 (0.22) | 0.09 (0.25) | 0.816 |
Genistein (mg/day) | 0.09 (0.26) | 0.09 (0.26) | 0.09 (0.29) | 0.853 |
Lignans (mg/day) | 2.86 (2.56) | 2.91 (2.58) | 2.38 (2.28) | 0.071 |
Lariciresinol (mg/day) | 1.54 (1.55) | 1.57 (1.56) | 1.25 (1.38) | 0.075 |
Matairesinol (mg/day) | 0.03 (0.03) | 0.03 (0.03) | 0.03 (0.03) | 0.041 |
Pinoresinol (mg/day) | 0.99 (0.80) | 1.01 (0.81) | 0.85 (0.72) | 0.099 |
Secoisolariciresinol (mg/day) | 0.12 (0.09) | 0.12 (0.09) | 0.10 (0.09) | 0.068 |
Phytoestrogen Intake | |||
---|---|---|---|
T1 | T2 | T3 | |
Phytoestrogens (mg/d), mean (SD) | 1.00 (0.36) | 2.56 (0.69) | 13.01 (16.42) |
Model 1, OR (95% CI) a | 1 | 0.42 (0.23–0.75) | 0.70 (0.40–1.22) |
Model 2, OR (95% CI) b | 1 | 0.44 (0.22–0.86) | 1.16 (0.61–2.19) |
Model 3, OR (95% CI) c | 1 | 0.48 (0.24–0.94) | 1.25 (0.65–2.41) |
Isoflavones (mg/d), mean (SD) | 0.01 (0.01) | 0.05 (0.02) | 9.05 (17.49) |
Model 1, OR (95% CI) a | 1 | 0.67 (0.39–1.13) | 0.57 (0.30–1.06) |
Model 2, OR (95% CI) b | 1 | 0.61 (0.34–1.11) | 0.43 (0.20–0.92) |
Model 3, OR (95% CI) c | 1 | 0.66 (0.36–1.22) | 0.46 (0.21–1.00) |
Daidzein (mg/d), mean (SD) | 0.01 (0.00) | 0.03 (0.01) | 0.22 (0.34) |
Model 1, OR (95% CI) a | 1 | 0.77 (0.45–1.32) | 0.52 (0.28–0.95) |
Model 2, OR (95% CI) b | 1 | 0.76 (0.42–1.40) | 0.41 (0.20–0.84) |
Model 3, OR (95% CI) c | 1 | 0.84 (0.45–1.57) | 0.44 (0.21–0.92) |
Genistein (mg/d), mean (SD) | 0.00 (0.00) | 0.02 (0.01) | 0.23 (0.41) |
Model 1, OR (95% CI) a | 1 | 0.60 (0.35–1.03) | 0.49 (0.27–0.88) |
Model 2, OR (95% CI) b | 1 | 0.50 (0.27–0.94) | 0.36 (0.18–0.73) |
Model 3, OR (95% CI) c | 1 | 0.53 (0.28–1.01) | 0.38 (0.18–0.78) |
Lignans (mg/d), mean (SD) | 0.85 (0.34) | 1.92 (0.41) | 5.28 (2.75) |
Model 1, OR (95% CI) a | 1 | 0.64 (0.37–1.11) | 0.48 (0.26–0.88) |
Model 2, OR (95% CI) b | 1 | 0.71 (0.38–1.32) | 0.74 (0.37–1.47) |
Model 3, OR (95% CI) c | 1 | 0.77 (0.40–1.46) | 0.84 (0.41–1.71) |
Lariciresinol (mg/d), mean (SD) | 0.35 (0.19) | 0.98 (0.23) | 2.99 (1.69) |
Model 1, OR (95% CI) a | 1 | 0.51 (0.30–0.90) | 0.44 (0.24–0.80) |
Model 2, OR (95% CI) b | 1 | 0.54 (0.29–1.02) | 0.66 (0.34–1.29) |
Model 3, OR (95% CI) c | 1 | 0.58 (0.30–1.11) | 0.73 (0.36–1.47) |
Matairesinol (mg/d), mean (SD) | 0.01 (0.00) | 0.02 (0.01) | 0.06 (0.04) |
Model 1, OR (95% CI) a | 1 | 0.80 (0.47–1.37) | 0.52 (0.28–0.98) |
Model 2, OR (95% CI) b | 1 | 0.84 (0.44–1.57) | 0.80 (0.39–1.62) |
Model 3, OR (95% CI) c | 1 | 0.90 (0.48–1.70) | 0.92 (0.44–1.91) |
Pinoresinol (mg/d), mean (SD) | 0.34 (0.12) | 0.70 (0.14) | 1.76 (0.84) |
Model 1, OR (95% CI) a | 1 | 0.66 (0.38–1.14) | 0.48 (0.26–0.89) |
Model 2, OR (95% CI) b | 1 | 0.73 (0.39–1.36) | 0.75 (0.38–1.47) |
Model 3, OR (95% CI) c | 1 | 0.80 (0.42–1.51) | 0.85 (0.42–1.71) |
Secoisolariciresinol (mg/d), mean (SD) | 0.04 (0.02) | 0.09 (0.02) | 0.21 (0.10) |
Model 1, OR (95% CI) a | 1 | 0.68 (0.39–1.18) | 0.62 (0.34–1.12) |
Model 2, OR (95% CI) b | 1 | 0.69 (0.36–1.32) | 1.03 (0.52–2.04) |
Model 3, OR (95% CI) c | 1 | 0.77 (0.40–1.49) | 1.18 (0.58–2.38) |
Phytoestrogen Intake | |||
---|---|---|---|
T1 | T2 | T3 | |
Phytoestrogens (mg/d), mean (SD) | 1.03 (0.3) | 2.55 (0.71) | 13.27 (17.04) |
<70 y, OR (95% CI) a | 1 | 1.01 (0.39–2.61) | 1.99 (0.87–4.53) |
Phytoestrogens (mg/d), mean (SD) | 0.96 (0.37) | 2.59 (0.65) | 12.03 (14.00) |
≥70 y, OR (95% CI) a | 1 | 0.41 (0.15–1.11) | 0.42 (0.09–1.89) |
Isoflavones (mg/d), mean (SD) | 0.01 (0.01) | 0.05 (0.01) | 7.58 (14.68) |
<70 y, OR (95% CI) a | 1 | 0.61 (0.26–1.39) | 0.79 (0.35–1.77) |
Isoflavones (mg/d), mean (SD) | 0.01 (0.01) | 0.05 (0.02) | 9.54 (18.35) |
≥70 y, OR (95% CI) a | 1 | 0.52 (0.19–1.44) | 0.10 (0.01–0.88) |
Lignans (mg/d), mean (SD) | 0.85 (0.33) | 1.89 (0.41) | 5.59 (3.02) |
<70 y, OR (95% CI) a | 1 | 1.18 (0.49–2.88) | 1.68 (0.71–4.00) |
Lignans (mg/d), mean (SD) | 0.85 (0.34) | 1.98 (0.39) | 4.28 (1.06) |
≥70 y, OR (95% CI) a | 1 | 0.79 (0.31–2.05) | 0.16 (0.03–0.87) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giampieri, F.; Godos, J.; Caruso, G.; Owczarek, M.; Jurek, J.; Castellano, S.; Ferri, R.; Caraci, F.; Grosso, G. Dietary Phytoestrogen Intake and Cognitive Status in Southern Italian Older Adults. Biomolecules 2022, 12, 760. https://doi.org/10.3390/biom12060760
Giampieri F, Godos J, Caruso G, Owczarek M, Jurek J, Castellano S, Ferri R, Caraci F, Grosso G. Dietary Phytoestrogen Intake and Cognitive Status in Southern Italian Older Adults. Biomolecules. 2022; 12(6):760. https://doi.org/10.3390/biom12060760
Chicago/Turabian StyleGiampieri, Francesca, Justyna Godos, Giuseppe Caruso, Marcin Owczarek, Joanna Jurek, Sabrina Castellano, Raffaele Ferri, Filippo Caraci, and Giuseppe Grosso. 2022. "Dietary Phytoestrogen Intake and Cognitive Status in Southern Italian Older Adults" Biomolecules 12, no. 6: 760. https://doi.org/10.3390/biom12060760
APA StyleGiampieri, F., Godos, J., Caruso, G., Owczarek, M., Jurek, J., Castellano, S., Ferri, R., Caraci, F., & Grosso, G. (2022). Dietary Phytoestrogen Intake and Cognitive Status in Southern Italian Older Adults. Biomolecules, 12(6), 760. https://doi.org/10.3390/biom12060760